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Abstract
We start with a recently published connection from Lomax to exponential distribution

through the limiting distribution of a Lomax distribution scaled by its shape parameter.
Motivated by that observation, we explore several relationships between (generalized) Lomax
and other distributions of exponential family such as Gamma, Beta type II, Rayleigh and
Weibull. As further extension, we introduce the generalized double Pareto distribution on the
entire real line. Various properties of generalized double Pareto distribution are then studied
including its representation as a mixture of Student’s t and its connection to Laplace (double
exponential) distribution. We then provide a simple approach to simulate random numbers
from the double Pareto distribution and its implementation in R. Finally, we illustrate an
application in a real biomedical research problem.
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1. Introduction

It is our distinct privilege to dedicate this paper in honor of Late Prof. Aloke Dey. One
of us has learned a lot and personally benefited greatly in his research as well as in teaching
from Prof. Dey’s landmark book on block designs and although later he never got a chance
to thank Prof. Dey in person, we hope our this article serves as our symbolic appreciation
of Prof. Dey’s contributions to the goal of advancing the knowledge for the betterment of
society.

This article came into being due to an earlier simple curiosity described in Lun and
Khattree (2020) about univariate and multivariate Lomax distributions. The relationship
between Pareto/Lomax and exponential distributions has been well recorded in the literature
(see Johnson, Kotz, and Balakrishnan (1994) and Kotz, Kozubowski and Podgórski (2001))
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yet has not been very well publicized. Harris (1968) provides an approach to generate the
Pareto variates through a mixture of exponential variates with parameter having a gamma
distribution. Specifically and more generally, let X follow an exponential distribution with
rate parameter η and allow η to have a gamma distribution with shape parameter β and
scale parameter θ. Then, the unconditional probability density function of X is

f(x) =
� ∞

0
ηe−ηx

1
Γ(β)θβ η

β−1e−η/θdη = θβ

(1 + θx)β+1 , x > 0, θ, β > 0, (1)

which is the density function of Lomax (also called Pareto type II) distribution (hereon
denoted by Lomax(β, θ)) with shape parameter β and rate parameter θ. Alternatively, given
two independent standard exponential variates W1 and W2, the probability density function
of Y = W1/W2 is a standard Lomax distribution (with θ = 1, β = 1). On the other hand,
assume that X has a Pareto type I distribution with density g(x) = λx−(λ+1), x ≥ 1, then
the density function of Y = logX is λe−λy, y > 0. To indicate the other connections, in
Table 1, we summarize the expectations, variances, Pearson’s coefficients of skewness and
Khattree-Bahuguna’s skewness 1 of Lomax and exponential distributions.

As β → ∞, for Lomax(β, θ
β
) , we observe that the variance approaches the square

of expectation of an Exponential distribution with the rate parameter θ and the Pearson’s
coefficient of skewness approaches to 2. As we shall see later, as β → ∞ the Khattree-
Bahuguna’s skewness of the above Lomax distribution also approaches that of exponential
distribution. Proof is given in Section 2.3. A natural question then arises as to why does
Lomax distribution have its distributional properties so similar to those of exponential dis-
tribution?

One of our main objectives in this article is to explore above question by showing
and generalizing the connections between Lomax and exponential distributions. These have
been motivated by a result by Lun and Khattree (2020) about the limiting distribution of
a Lomax random variable scaled by its shape parameter. Based on this result, we discover
many more results which establish many other connections between (generalized) Lomax
and other distributions of exponential family. We further take upon introducing another
connection between Laplace (double exponential) distribution and generalized double Pareto
distribution, which is a popular choice of prior distribution in recent years for robust Bayesian
shrinkage estimators.

The article is organized as follows. In Section 2, we show the Lomax-exponential and
generalized Lomax-gamma connections. Then, we attempt to quantify the distance of Lomax
to exponential distributions in terms of Patil-Patil-Bagkavos’s η (2012) and by using the
Kullback-Leibler divergence. In Section 3, we give some results pertaining to relationships
between multivariate Lomax and other distributions of exponential family such as Gamma,
Beta type II, Rayleigh and Weibull. In Section 4, we discuss a three-parameter generalized
double Pareto distribution, including its simulation and connection to Laplace distribution.
Section 5 includes an approach to simulation of generalized double Pareto variates. In Section
6, we give a real-world application of bivariate Lomax distribution. Section 7 includes some
concluding remarks.

1Khattree-Bahuguna’s skewness for a random variable is defined in Khattree and Bahuguna (2019) and
reproduced here in Section 2.3. The values of this skewness for Lomax and Exponential distributions are
also computed there.
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Table 1: Comparison of summary parameters for Lomax(β, θ) and Exp(λ)

Summary Parameter Lomax(β, θ) Exp(λ)

E(X) 1
θ(β−1) , β > 1 1

λ

Var(X) β
θ2(β−1)2(β−2) , β > 2 1

λ2

Pearson’s coefficient of skewness 2(β+1)
β−3

√
β−2
β , β > 3 2

Khattree-Bahuguna’s skewness 1
2

[
1 +

(
B(1− 1

β , 1−
1
β )− β2

(β−1)2

)
(β−1)2(β−2)

β

]
, β > 2 1− π2

12 ' 0.177533

2. Connections Between Generalized Lomax and Gamma Distributions

In this section, we first state a surprisingly simple connection between Lomax and
exponential distributions partially given in Lun and Khattree (2020). This result is then
generalized to connect the generalized Lomax with Gamma distribution in a straight forward
way. To begin with, we first address the limiting distributions.

2.1. Limiting distributions

The following two theorems about limiting distributions can be easily proved.

Theorem 1: Let X be a univariate Lomax(β, θ) random variable with probability density
function defined in (1). Define Y = βX. Then

(i) the distribution of Y is Lomax(β, θ
β
);

(ii) as β → ∞, the distribution of Y approaches an exponential distribution with rate
parameter θ;

(iii) as β →∞, the hazard function of Y approaches θ.

The result (ii) is given in Lun and Khattree (2020). It may be pointed out that an
exponential distribution is characterized by its constant hazard function. Thus, (iii) in fact,
provides an alternative proof of (ii). We leave it to the reader to calculate the hazard function
of the indicated Lomax distribution and then verify the assertion in (iii). The importance
of above theorem is that it allows us to be able to conveniently substitute, for large β, one
distribution for another by approximating Lomax(β, θ

β
) by Exp(θ). Figure 1 shows a series

of density function plots for Lomax(β, λ
β
) for parameter β = 3.01, 10, 20 and for a fixed

λ = 0.25, along with an exponential density with rate parameter λ. The closeness of two
distributions for large β values is self evident.

Nayak (1987) has introduced a k-dimensional multivariate Lomax distribution by mix-
ing k independent univariate exponential distributions with different failure rates with the
mixing parameter η that has a gamma distribution with certain shape parameter β and the
scale parameter 1. The Theorem 1 is easily extended to connect the multivariate Lomax and
exponential distributions. Again, see Lun and Khattree (2020).



340 ZHIXIN LUN AND RAVINDRA KHATTREE [Vol. 19, No. 1

Figure 1: Density plots of a series of Lomax density for various β values (=
3.01, 10, 20) and with θ = λ/β where λ = 0.25, along with exponential density with
rate parameter λ = 0.25.

Theorem 2: Let X1, X2, . . . , Xk jointly have k-dimensional multivariate distribution with
probability density function (Nayak, 1987),

f(x1, x2, · · · , xk) =

(∏k
i=1 θi

)∏k
i=1 (β + i− 1)(

1 +∑k
i=1 θixi

)β+k , β > 0, (2)

where θi, xi > 0, i = 1, · · · , k. Define Yi = βXi, i = 1, · · · , k. Then as β → ∞, the joint
probability distribution of Y1, Y2, . . . , Yk approaches to that of k independent exponential
variates with rate parameters θi, i = 1, 2, · · · , k, respectively.

A series of density contour plots for bivariate Lomax distributions with parameters β
(= 3.01, 10, 200) and θ1 = λ1/β, θ2 = λ2/β where λ1 = 0.25, λ2 = 0.50 are shown in Figure 2
(a), (b) and (c). As one can see, as β increases, the density contour plots of bivariate Lomax
distribution more and more resemble the bivariate independent exponential density contour
plot given in Figure 2 (d) with respective rate parameters λ1 = 0.25, λ2 = 0.50.

Note that the resulting limiting distribution involves independent exponential variates.
In some ways, this is somewhat surprising even though the correlation matrix of a multivari-
ate Lomax distribution has a compound symmetric structure with Corr(Xi, Xi) = 1

β
which

clearly goes to 0 when β →∞. On the other hand, this fact also underscores the well known
difficulty that researchers have encountered to satisfactorily define a suitable multivariate
exponential distribution with some kind of dependence among variables.

Nayak (1987) also generalized the distribution in (2) by mixing conditionally indepen-
dent Xi having the Gamma(li, ηθi) distribution, with a mixing variable η ∼ Gamma(β, 1),
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(a) Bivariate Lomax (β = 3.01, θ1 = λ1
β , θ2 = λ2

β ) (b) Bivariate Lomax (β = 10, θ1 = λ1
β , θ2 = λ2

β )

(c) Bivariate Lomax (β = 200, θ1 = λ1
β , θ2 = λ2

β ) (d) Independent Bivariate Exponential (λ1, λ2)

Figure 2: Contour plots of a series of bivariate Lomax distributions with changing
parameters β, θ1 = λ1/β, θ2 = λ2/β where β = 3.01, 10, 200 and λ1 = 0.25, λ2 = 0.50
and independent bivariate exponential density function with rate parameters
λ1 = 0.25 and λ2 = 0.50, respectively.
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Figure 3: Density plots of a series of generalized Lomax distributions with
changing parameters β(= 3.01, 10, 50), θ = 1.0/β and a fixed parameter l = 3.0,
and gamma density function with shape parameter l = 3.0 and rate parameter
λ = 1.0.

i = 1, . . . , k. The generalization of above multivariate Lomax-exponential connection to this
generalized multivariate Lomax-gamma connection is stated in Theorem 3.

Theorem 3: Let X1, X2, . . . , Xk be a k-dimensional generalized multivariate Lomax random
variable with probability density function,

f(x1, x2, · · · , xk) =

(∏k
i=1 θ

li
i

)
Γ
(∑k

i=1 li + β
) (∏k

i=1 x
li−1
i

)
Γ(β)

[∏k
i=1 Γ(li)

] (
1 +∑k

i=1 θixi
)∑k

i=1 li+β
,

where β, li, θi, xi > 0, i = 1, · · · , k. Define Yi = βXi, i = 1, · · · , k. Then as β →∞, the joint
distribution of Y1, Y2, . . . , Yk approaches that of k independent gamma random variables with
shape parameter li and rate parameters θi, i = 1, 2, · · · , k, respectively.

Clearly, in the special case of li = 1, i = 1, · · · , k, the above generalized Lomax-gamma
connection reduces to the previous Lomax-exponential connection. Again, to underscores the
closeness, we give the density function plots in Figure 3 for a series of univariate generalized
Lomax distributions for various values of the parameters β, θ = λ/β where β = 3.01, 10, 50,
λ = 1.0, and for a fixed parameter l = 3.0, along with Gamma(3,1). To avoid being repetitive,
we suppress the contour plots.

2.2. Some measures of closeness to exponential distribution

We have shown that the similarity between Lomax and exponential is due to the
fact that the limiting distribution of Lomax(β, θ

β
) is Exp(θ) as β → ∞. That begs the
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question: How to quantify the closeness between a given Lomax distribution and an ex-
ponential distribution? To do so, we adopt several approaches. Specifically, we first use
Patil-Patil-Bagkavos’s η (2012) to measure the closeness of Lomax to exponential and then
employ the Kullback-Leibler divergence measure. Later In Section 2.3, we also evaluate their
Khattree-Bahuguna skewnesses for this purpose. In order to do all of this, we first define
the Patil-Patil-Bagkavos’s η (2012).

2.2.1. Patil-Patil-Bagkavos’s η

Patil, Patil and Bagkavos (2012) attempted to propose a measure of (a)symmetry of a
random variable X as,

η =
{
−Corr(f(X), F (X)) if 0 < Var(f(x)) <∞,
0 if Var(f(x)) = 0,

where f(x) and F (x) are the probability density function and the cumulative distribution
function of X, respectively. Clearly, −1 ≤ η ≤ 1. However, these authors incorrectly
claimed that the η defined above is a measure of the degree of (a)symmetry of a distribution
and hence can be used as a measure of skewness of a distribution. Eberl and Klar (2019)
disputed their claim and via several examples, they demonstrated that above as a measure
of asymmetry is indeed a misleading measure. They further pointed out that η is instead, a
measure of the closeness of a given distribution to the exponential distribution and based on
their extensive discussion, we readily agree! They further pointed out that η equal to zero
indicates a complete departure from exponential distribution while values of +1 (−1) show
a complete similarity with the positive (negative) exponential. Therefore, in our context, η
can be deemed as a tailor-made measure to evaluate the closeness of a Lomax distribution
to the exponential distribution. The following theorem gives an explicit expression for η for
the Lomax distribution.

Theorem 4: For the Lomax distribution, the Patil-Patil-Bagkavos’s η is given by, η =√
3β(3β+2)
(3β+1) .

Proof:. Let X be a Lomax random variable with pdf given in (1). The cumulative dis-
tribution function of X is then given by F (x) = 1 − 1

(1+θx)β . The covariance between f(x)

and F (x) is Cov [f(X), F (X)] =
�∞

0

[
θβ

(1+θx)β+1

]2 [
1− 1

(1+θx)β
]
dx −

�∞
0

[
θβ

(1+θx)β+1

]2
dx · 1

2 =
− θβ2(β+1)

2(2β+1)(3β+1) . Also, Var(F (x)) = 1
12 and Var(f(x)) = θ2β3(β+1)2

(3β+2)(2β+1)2 . Thus,

η = −Corr(f(X), F (X)) =
θβ2(β+1)

2(2β+1)(3β+1)√
θ2β3(β+1)2

(3β+2)(2β+1)2

√
1

12

=
√

3β(3β+2)
(3β+1) .

As one would anticipate, η does not depend on scale parameter θ since correlation is
invariant of any such scaling.

Straight forward calculations show that even for β as small as 3, η = 0.995, which
indicates that Lomax distribution is generally very similar to exponential distribution even
for small β value. Clearly, as β →∞, η → 1, thereby reaffirming the previous result about
a β multiple of Lomax distribution converging to the exponential distribution .
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2.2.2. Kullback-Leibler divergence

Kullback-Leibler divergence is a measure of how different a given probability distribu-
tion described by a probability density function f(x) is from another reference distribution
with the probability density function g(x) and is defined as

DKL(f : g) = Ef

(
log f(x)

g(x)

)
=

� ∞
−∞

f(x) log
(
f(x)
g(x)

)
dx.

A zero value indicates that the two distributions are identical. In our context, the following
theorem delivers the quantification of closeness.

Theorem 5: Let f(x) = θβ
(1+θx)β+1 and g(x) = λe−λx. Then the Kullback-Leibler divergence

measure for (Lomax : Exponential) pair is given by, DKL(f : g) = ln
(
βθ
λ

)
− β+1

β
+ λ

θ(β−1) .

Proof:. With f(x) and g(x) as given above, we have,

DKL(f : g) =
� ∞

0

θβ

(1 + θx)β+1 ln
 θβ

(1+θx)β+1

λe−λx

 dx
=

� ∞
0

θβ

(1 + θx)β+1 ln
(

θβ

(1 + θx)β+1

)
dx−

� ∞
0

θβ

(1 + θx)β+1 [ln(λ)− λx]dx

= ln(βθ)− β + 1
β
− ln(λ) + λ

θ(β − 1) = ln
(
βθ

λ

)
− β + 1

β
+ λ

θ(β − 1) .

The measure does depend on the ratio of scale parameters λ
θ
. When λ

β
= θ and thus

f(x) is the pdf of a Lomax(β, λ
β
), we have DKL(f : g) = β

β−1 −
β+1
β

= 1
β(β−1) . Clearly, the

convergence to zero is of order 1
β2 which again reaffirms our assertion of the considerable

closeness of the two distributions.

2.3. Khattree-Bahuguna’s skewness for Lomax/Pareto and exponential distribu-
tions

Khattree and Bahuguna (2019) recently defined a measure of skewness of a probability
distribution which for a quick reference, we state below.

Definition 6: Let X be a random variable possibly assumed to have been centered by mean
and let F (·) be its cumulative distribution function. The Khattree-Bahuguna’s skewness of
X is defined as

δ =
� 1

0

(
F−1(α)+F−1(1−α)

2

)2
dα� 1

0

(
F−1(α)+F−1(1−α)

2

)2
dα +

� 1
0

(
F−1(α)−F−1(1−α)

2

)2
dα
.

When the second moment exists, the above simplifies to

δ = 1
2

1 +
� 1

0 F
−1(α)F−1(1− α)dα

µ2

 , (3)
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where µ2 is the second central moment of the distribution. The sample skewness (after the
sample has been scaled to have zero mean) can be computed as (see Khattree and Bahuguna,
2019),

Definition 7: Given a random sample of size n consist of observations x1, x2, . . . , xn, let
x(1) ≤ x(2) ≤ · · · ≤ x(n) be the order statistics of x1, x2, . . . , xn after being centered by their
sample mean. Define yi = x(i)+x(n−i+1)

2 and wi = x(i)−x(n−i+1)
2 . The sample Khattree-Bahuguna

univariate skewness is then defined as δ̂ =
∑

y2
i∑

y2
i+
∑

w2
i
.

Clearly being the measures of skewness, δ or δ̂ have no reference to any other distri-
bution from which the distance of a given distribution can be measured. Nonetheless, δ is
essentially a function of the (inverse) cumulative distribution function of the random vari-
able and hence, intuitively speaking, if the two probability distributions are very similar,
we expect that it would be reflected in their respective expressions of Khattree-Bahuguna’s
skewness. With this in mind, we evaluate the Khattree-Bahuguna’s skewness of Lomax and
exponential distributions and indicate how the former converges to the later. For this we
first give, in Theorem 8, the explicit expressions for the two skewnesses. Theorem 9 then
establishes the convergence.

Theorem 8: Let X1 ∼ Lomax(β, θ) and X2 ∼ Exp(λ). Then the Khattree-Bahuguna’s
skewness of X1 and X2 are respectively given by,

Lomax: δX1 = 1
2

[
1 +

(
B(1− 1

β
, 1− 1

β
)− β2

(β−1)2

)
(β−1)2(β−2)

β

]
, β > 2;

Exponential: δX2 = 1− π2

12 .

Note that neither δX1 nor δX2 depends on respective scale parameters.

Proof: Proof involves the corresponding evaluations of the expression given in (3). For
exponential distribution this evaluation is straightforward. Thus, we will work out the details
only for the Lomax distribution. We know that for the Lomax random variable X1, F (x1) =

1 − (1 + θx1)−β and hence F−1(α) = (1−α)−
1
β −1

θ
. For β > 2, the mean and variance of X1

are 1
θ(β−1) and β

θ2(β−1)2(β−2) , respectively. Therefore,
� 1

0 [F−1(α)− µ] [F−1(1− α)− µ] dα =
� 1

0

[
(1−α)−

1
β − β

β−1
θ

] [
α
− 1
β − β

β−1
θ

]
dα = 1

θ2

[
B(1− 1

β
, 1− 1

β
)− β2

(β−1)2

]
. Thus,

δX1 = 1
2

[
1 +

(
B(1− 1

β
, 1− 1

β
)− β2

(β − 1)2

)
(β − 1)2(β − 2)

β

]
, β > 2.

Theorem 9: As β →∞, Khattree-Bahuguna’s skewness of Lomax distribution approaches
that of exponential distribution.
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Proof: We have,

lim
β→∞

δX1 = lim
β→∞

1
2

[
1 +

(
B(1− 1

β
, 1− 1

β
)− β2

(β − 1)2

)
(β − 1)2(β − 2)

β

]

= lim
u→1

1
2

[
1 +

(
B(u, u) u2

(1− u)2 −
1

(1− u)2

)
(2u− 1)

] (
u = 1− 1

β

)

= 1
2 + 1

2 lim
u→1

u2B(u, u)− 1
(1− u)2

= 1
2 + 1

2 lim
u→1

2uB(u, u) + u2B′(u, u)
2(u− 1)

= 1
2 + 1

2 lim
u→1

2B(u, u) + 2uB′(u, u) + 2uB′(u, u) + u2B′′(u, u)
2

= 1
2 + 1

2 ·
2 + 2(−2) + 2(−2) + 8− π2

3
2 = 1− π2

12 = δX2 .

The calculation of the last limit in above is rather complex and therefore is evaluated by
using the Lemmas 21 and 22 which are given in ANNEXURE A.

3. Relationships of Multivariate Lomax to Other Distributions in Exponential
Family of Distributions

We now again consider the multivariate Lomax distribution of Nayak (1987). As
pointed out by him, multivariate Lomax distribution is related to many other multivari-
ate distributions such as Mardia’s Pareto type I, Burr, Logistic, Cook-Johnson’s uniform
(alternatively called Clayton copula), and F . We will further observe here that Lomax dis-
tribution is also related to a few other univariate distributions of exponential family through
the linear combinations of multivariate Lomax or via one-to-one transformation from uni-
variate Lomax. We convey these facts via following Theorems. We skip the proofs for the
sake of brevity.

Theorem 10: Let (X1, X2, · · · , Xk) follow a k-dimensional multivariate Lomax distribution
as given by probability density function in (2). Define X∗ = ∑k

i=1 θiXi. Then X∗ is dis-
tributed as beta type II (also called inverted beta or beta prime) with shape parameters k
and β, and therefore its probability density function is given by,

f ∗(x∗) = x∗k−1(1 + x∗)−(β+k)

B(k, β) . (4)

Theorem 11: Let (X1, X2, · · · , Xk) be k random variables jointly following multivariate
Lomax distribution as defined in (2). Define Y ∗ = β

∑k
i=1 θiXi. Then

(i) Y ∗ is distributed as beta type II with shape parameters k and β and scale parameter
β and therefore,

f(y∗) =
y∗k−1(1 + y∗

β
)−(β+k)

βkB(k, β) . (5)
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(ii) as β →∞, the distribution of Y ∗ approaches gamma distribution with shape parameter
k and scale parameter 1.

Theorem 12: Let X be a random variable following Lomax distribution defined in (1).
Define Y = (θX/d)1/c. Then

(i) the probability density function of Y is a Burr density with shape parameters β and c,
and rate parameter d 1

c , that is, f(y) = cdβyc−1

(1+dyc)β+1 , y > 0. See Nayak (1987);

(ii) let W = β
1
cY , then the probability density function of W is f(w) = cdwc−1

(1+ d
β
wc)β+1 , w > 0;

(iii) as β →∞, the distribution of W approaches a Weibull distribution with shape param-
eter c and rate parameter d, density which is given by, f(w) = cdwc−1e−dw

c
, w > 0.

It may be noted that when c = 2 and d = θ, the distribution of W approaches to that
of a Rayleigh random variable.

4. A Generalized Double Pareto-Laplace Connection

We take the previous discussion one step further by making the support of the respective
random variables as the entire real line. Specifically, the role of Lomax will now be played by
double Pareto distribution and that of exponential is now played by the generalized Laplace
distribution. The probability density function for the two are given below.

Double Pareto : f(x) =


θ1θ2β

(θ1+θ2)(1−θ1x)β+1 , if x ≤ 0, β, θ1, θ2 > 0

θ1θ2β
(θ1+θ2)(1+θ2x)β+1 , if x > 0, β, θ1, θ2 > 0.

Generalized Laplace : g(x) = 1
σ

κ

1 + κ2


e

1
σκ

(x−µ), if x ≤ 0, σ, κ > 0, µ ∈ R

e−
κ
σ

(x−µ), if x > 0, σ, κ > 0, µ ∈ R.

A particular connection between the above two distributions is given by Kotz et al. (2001)
who indicate that a double Pareto random variable can be generated by taking the ratio
of two independent Laplace variates. Two especially attractive properties of double Pareto
distribution are (i) its Laplace like spike of density function at zero and (ii) its Student’s t-like
heavy tails. See Armagan, Dunson and Lee (2013) and Pal, Khare and Hobert (2017). The
double Pareto has recently received considerable attention as a choice of the prior distribution
in the context of Bayesian robust shrinkage estimation (Armagan et al., 2013) and thus its
connection to generalized Laplace distribution is of special interest.

We will show that as in the case of Lomax-exponential connection, the properties (i)
and (ii) stated above can be interpreted through the double Pareto-Laplace connection. We
will also demonstrate that the double Pareto can be represented as a mixture of several
t-distributions. However, to do so, we must first define a three-parameter generalized double
Pareto distribution, which allows the possibility of asymmetry in the density. For this, it
is convenient to pursue an approach where the bivariate Lomax distribution plays a central
role. This is given by Theorem 13 that follows.
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4.1. Three-parameter generalized double Pareto distribution

To set the stage, we observe that similar to the case of Laplace, a classical symmetric
double Pareto distribution can be obtained by the difference of two independent Lomax
variates. In order to incorporate asymmetric double Pareto distributions, we propose a three-
parameter generalized double Pareto distribution defined via a bivariate Lomax distribution,
where the variates naturally exhibit dependence.

Theorem 13: Assume that X1 and X2 are jointly distributed as the bivariate Lomax vari-
ables with parameters β, θ1, θ2 as given in (2). Then the probability density function of
X = X2 −X1 is given by,

h1(x) =


θ1θ2β

(θ1+θ2)(1−θ1x)β+1 , if x ≤ 0, β, θ1, θ2 > 0

θ1θ2β
(θ1+θ2)(1+θ2x)β+1 , if x > 0, β, θ1, θ2 > 0.

(6)

Proof: Let X = X2−X1 and Y = θ1X1 + θ2X2, then the Jacobian of the transformation is
|J | = 1

θ1+θ2
. The joint probability density of X and Y is thus, h(x, y) = θ1θ2β(β+1)

(θ1+θ2)(1+y)β+2 , y >

max{θ2x,−θ1x}. Integrating over y gives the marginal density function of X as given above.

Note that for bivariate Lomax variate (X1, X2), X = X1 +X2 does not follow a Lomax
distribution. We state the result about this sum as follows.

Theorem 14: Let (X1, X2) follow a bivariate Lomax distribution with parameters β, θ1, θ2
and let X = X1 +X2. Assuming θ1 6= θ2, the probability density function of X is

h2(x) = θ1θ2β

(θ2 − θ1)

[
1

(1 + θ1x)β+1 −
1

(1 + θ2x)β+1

]
, x > 0.

When θ1 = θ2 = θ, the probability density function of X is beta type II distribution given
in (4) with shape parameters k = 2 and β, and rate parameter θ.

Proof follows by letting Y = X1 and X = X1 + X2 and integrating over y. For the
case θ1 = θ2 = θ, the distribution of Y = X1 + X2 is a beta type II distribution with rate
parameter θ, as already stated in Theorem 10. Figure 4 gives the density plots for the sum
of the components of a bivariate Lomax vector with parameters β = 4, θ1 = 2.5, θ2 = 5 in
(a) and parameters β = 4, θ1 = θ2 = 2.5 in (b). Clearly, both density plots exhibit a very
different shape compared to Lomax distribution. The nth raw moment of X = X1 + X2

is given by E(Xn) = θ1θ2n!
(θ2−θ1)(β−1)···(β−n)

[
1

θn+1
1
− 1

θn+1
2

]
, n < β, and E(Xn) = ∞ when n ≥ β.

Specifically, for β > 2, we have, E(X) = θ1+θ2
θ1θ2(β−1) and Var(X) = βθ2

1+βθ2
2+2θ1θ2

θ2
1θ

2
2(β−1)2(β−2) .

Definition 15: We define a generalized double Pareto distribution as that for a real-valued
random variable X whose probability density function is given by (6). We will denote it by
GDP(β, θ1, θ2).

Thus, in the case of generalized double Pareto distribution, β is the shape parameter
and θ1, θ2 are two rate parameters. It is clear that if X is GDP(β, θ1, θ2) then −X is
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(a) β = 4, θ1 = 2.5, θ2 = 5.0
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(b) β = 4, θ1 = θ2 = 2.5 (Beta type II: shape
parameters k = 2 and β = 4 and rate parameter
θ = 2.5)

Figure 4: Examples of sum variable for bivariate Lomax distribution

GDP(β, θ2, θ1). When θ1 = θ2 = θ, the generalized double Pareto distribution reduces to the
classical symmetric double Pareto distribution, denoted by CDP(β, θ) and with the density
function f(x) = θ

2
1

(1+θ|x|)β+1 ,−∞ < x < ∞, β, θ > 0. Letting θ = 1
ξ

and scaling X by shape
parameter β in this density results in the density of the double Pareto distribution defined by
Armagan et al. (2013) with probability density function, f(x) = 1

2ξ

(
1 + |x|

βξ

)−(β+1)
,−∞ <

x <∞, β, ξ > 0.

Figure 5 contrasts the behavior of the density function of the generalized double Pareto
distribution random variables for the symmetric (θ1 = θ2) and asymmetric (θ1 6= θ2) cases.

The cumulative distribution function of GDP(β, θ1, θ2) is given by

F (x) =


θ2

(θ1+θ2)(1−θ1x)β , if x ≤ 0, β, θ1, θ2 > 0

1− θ1
(θ1+θ2)(1+θ2x)β , if x > 0, β, θ1, θ2 > 0.

It is easy to observe that P (X ≤ 0) = θ2
θ1+θ2

and P (X > 0) = θ1
θ1+θ2

, which can be interpreted
as the weights of the two rate parameters. There is a larger proportion of negative values
whenever θ2 > θ1. This observation is evident in Figure 5 (c).

The quantile function F−1(α) of GDP(β, θ1, θ2) is,

F−1(α) =


1
θ1

[
1−

(
θ2

α(θ1+θ2)

) 1
β

]
, if 0 < α ≤ θ2

θ1+θ2
,

1
θ2

[(
θ1

(1−α)(θ1+θ2)

) 1
β − 1

]
, if θ2

θ1+θ2
< α < 1.

(7)
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(b) β = 4, θ1 = θ2 = 5
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(c) β = 4, θ1 = 0.5, θ2 = 5
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(d) β = 4, θ1 = 5, θ2 = 0.5
Figure 5: Examples of symmetric (a)-(b) and asymmetric (c)-(d) double Pareto
distributions
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The nth raw moment of GDP(β, θ1, θ2) is given by E(Xn) = n!
(θ1+θ2)(β−1)···(β−n)

[
(−1)nθ2
θn1

+ θ1
θn2

]
,

if n < β and E(Xn) = ∞ when n ≥ β. We defer this straightforward yet a bit tedious cal-
culation to ANNEXURE B. When β > 2, E(X) = θ1−θ2

θ1θ2(β−1) and Var(X) = βθ2
1+βθ2

2−2θ1θ2
θ2

1θ
2
2(β−1)2(β−2) =

β(θ1−θ2)2+2θ1θ2(β−1)
θ2

1θ
2
2(β−1)2(β−2) . Also assuming β > 3, the Pearson’s coefficient of skewness is given by,

γ =
2(β + 1)

√
(β − 2)(θ1 − θ2)[βθ2

1 + βθ2
2 + (β − 3)θ1θ2]

(β − 3)(βθ2
1 + βθ2

2 − 2θ1θ2)3/2 , β > 3.

Clearly, γ = 0 for the symmetric double Pareto as in that case, θ1 = θ2. By letting θ1
θ2

= κ, we

can further simplify the Pearson’s γ as γ = 2(β+1)
√

(β−2)(κ−1)[βκ2+β+(β−3)κ]
(β−3)(βκ2+β−2κ)3/2 . When κ→ 0, that

is, when θ1 � θ2, the skewness approaches to that of negative univariate Lomax distribution.
That is,

lim
κ→0

γ = −2(β + 1)
β − 3

√
β − 2
β

.

Similarly, let θ2
θ1

= κ∗, we have γ = 2(β+1)
√

(β−2)(1−κ∗)[βκ∗2+β+(β−3)κ∗]
(β−3)(βκ∗2+β−2κ∗)3/2 . When κ∗ → 0, that is,

θ2 � θ1, the skewness approaches that of positive univariate Lomax distribution. Specifically,
lim
κ∗→0

γ = 2(β+1)
β−3

√
β−2
β
.

By using (7), Khattree-Bahuguna’s skewness is evaluated to be

δ = 1
2

[
1 + 2I1 + I2 − µ2

µ2

]
,

where

I1 = d1

θ1θ2

 1
β − 1 −

(
d2

d1

) 1
β β

(β − 1)(β − 2)



I2 =
1

min(θ1, θ2)2

{
d

2
β

2

[
B

(
d2; 1−

1
β
, 1−

1
β

)
−B

(
d1; 1−

1
β
, 1−

1
β

)]
+ 2
(
d2

d1

) 1
β β

β − 1
d1 − 2

β

β − 1
d2 + d2 − d1

}

µ = θ1 − θ2

θ1θ2(β − 1) , µ2 = β(d2 − d1)2

d2
1d

2
2(β − 1)2(β − 2) + 2

θ1θ2(β − 1)(β − 2)

d1 = min
(

θ1

θ1 + θ2
,

θ2

θ1 + θ2

)
, d2 = 1− d1,

and B(x; a, b) =
� x

0 t
a−1(1 − t)b−1dt. For the symmetric double Pareto distribution, d1 =

d2 = 1
2 , and then I1 = −1

θ1θ2(β−1)(β−2) , I2 = 0. Accordingly, δ = 0. Detailed and cumbersome
calculations for all of these facts are deferred to ANNEXURE B.

Like Laplace distribution, the probability density function shown in Figure 5 is also
spiked. Thus, it is natural to explore any double Pareto-Laplace connection by using the
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similar technique as used earlier to obtain the Lomax-exponential connection. In fact, this
double Pareto-Laplace connection was indirectly hinted by Armagan et al. (2013) where
their Laplace prior (Bayesian lasso) was treated as the limiting case of double Pareto prior.
The following theorem formalizes it.

Theorem 16: Let X be a GDP(β, θ1, θ2) random variable. Define Y = βX. Then

(i) the distribution of Y is GDP(β, θ1
β
, θ2
β

);

(ii) as β →∞, the distribution of Y approaches a two-parameter Laplace distribution with
parameters θ1, θ2, (Laplace(θ1, θ2)) with probability density function

g∗(y) =


θ1θ2
θ1+θ2

eθ1y, if y ≤ 0,

θ1θ2
θ1+θ2

e−θ2y, if y > 0.
(8)

Therefore, we surmise that GDP(β, θ1
β
, θ2
β

) can be approximated by Laplace(θ1, θ2) if
the shape parameter β is large. Moreover, both GDP(β, θ1

β
, θ2
β

) and Laplace(θ1, θ2) have
the probability density spiked at zero. As pictorially demonstrated in Figure 6, as β in-
creases, the density plot of GDP(β, θ1, θ2) approaches that of Laplace distribution. Also
with reparameterization θ1 = 1

σκ
and θ2 = κ

σ
the Laplace density in (8) reduces to the form

introduced by Hinkley and Revankar (1977) with zero location parameter (µ = 0) as

g∗(y) = 1
σ

κ

1 + κ2


e

1
σκ
y, if y ≤ 0, σ, κ > 0

e−
κ
σ
y, if y > 0, σ, κ > 0.

4.2. A representation of double Pareto distribution

The next result shows that any symmetric double Pareto random variable can be
thought of as a Student’s t random variable when scaled by an independent Lomax random
variate. This results in a symmetric yet a Student’s t-like heavy tails of double Pareto
distribution. Due to this heavy-tail property, it has been widely used in Bayesian shrinkage
as a choice of prior. More formally,

Theorem 17: A symmetric double Pareto random variate X with shape parameter (ν− 1)
and scale parameter

√
ν can be represented as

X
d=
√
Y T, (9)

where the random variable Y has a standard Lomax distribution with shape parameter β > 0
and T has an independent Student’s t distribution with degrees of freedom ν = 2β + 1. The
notation d= indicates the equivalence of distributions.



2021] LOMAX, PARETO AND EXPONENTIALITY 353

Figure 6: Density plots of GDP(β, 0.5
β
, 5
β
) with changing parameter β = 3.01, 5, 20

and Laplace(θ1 = 0.5, θ2 = 5)

Proof:. Given Y ∼ Lomax(β, 1) and T ∼ Student’s t with degrees of freedom ν, the
probability density function of X, is

fX(x) =
� ∞

0
fT ( x
√
y

) 1
√
y
fY (y)dy =

Γ(ν+1
2 )√

νπΓ(ν2 )

� ∞
0

1
(1 + x2

νy
) ν+1

2

1
√
y

β

(1 + y)β+1dy

=
2βΓ(ν+1

2 )√
νπΓ(ν2 )

� ∞
0

1
(1 + x2

νu2 ) ν+1
2 (1 + u2)β+1

du (u = √y).

= 2β√
νB(ν2 ,

1
2)

� ∞
0

1
(1 + x2

νu2 ) ν+1
2 (1 + u2)β+1

du.

The above integral is difficult to evaluate for general values of ν and β. However, when
ν = 2β + 1 and hence ν+1

2 = β + 1, (as stated in Theorem) simplification occurs. In this
case, by using the Lemma 23 which is stated and proved in ANNEXURE, we have,

fX(x) = (ν − 1)√
νB(ν2 ,

1
2)

B(ν+1
2 −

1
2 ,

1
2)

2(1 + |x|√
ν
)2· ν+1

2 −1
= 1

2
√
ν

(ν − 1)
(1 + |x|√

ν
)ν
, −∞ < x <∞,

which is a symmetric double Pareto distribution with shape parameter (ν − 1) and scale
parameter

√
ν.

Theorem 18: A symmetric double Pareto random variable X with shape parameter (ν−1)
and scale parameter ν can be represented as X d=

√
νY T, where the random variable Y has
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a standard Lomax distribution with shape parameter β > 0 and T has an independent
Student’s t distribution with degrees of freedom ν = 2β + 1. Moreover, as ν → ∞, X
approaches the standard Laplace distribution.

Proof: Through the linear transformation used on Theorem 17, we easily obtain the prob-
ability density function of X as fX(x) = 1

2ν
ν−1

(1+ |x|
ν

)ν
,−∞ < x < ∞. Clearly lim

ν→∞
fX(x) =

1
2e
−|x|,−∞ < x <∞.

The above two results actually describe another remarkable feature of double Pareto-
Laplace connection where Laplace distribution also has the similar representation but of
mixture of normal distributions instead of Student’s t. For completeness and for the sake of
comparison, we restate the representation of Laplace distribution mentioned in Kotz et al.
(2001), in the following result.

Theorem 19: A standard classical (symmetric) Laplace random variable X has the repre-
sentation X d=

√
2WZ, where the random variables W and Z are independent and have the

standard exponential and normal distributions, respectively.

The above result establishes the Laplace distribution as a mixture of normal distribu-
tion with a scale parameter having exponential distribution. Actually, the above proposition
can be viewed as the limiting case of both sides of (9) as β, ν →∞ where the double Pareto,
Lomax and Student’s t distributions respectively approach Laplace, exponential and normal.
This is perhaps the reason as to why the double Pareto appears to be a better choice for
prior distribution than the Laplace distribution in Bayesian shrinkage estimation when we
require a prior with heavy tails.

5. Random Number Generation from Double Pareto Distribution

The R (R Core Team, 2019) package NonNorMvtDist (Lun and Khattree, 2020) is a
recent versatile package which implements the simulation and probability computations for
a large number of non-normal multivariate distributions including the Lomax. See Figure
10. By Theorem 13 and by using the aforementioned package, random numbers from the
GDP(β, θ1, θ2) can be easily generated in barely two steps as follows.

1. Generate a sample of size n bivariate Lomax random vector (X1, X2) with shape pa-
rameter β and the vector of rate parameters (θ1, θ2) using the function rmvlomax().

2. Return X = X2 −X1.

As an example, we generate GDP(3.5, 1.5, 5) of size 5000, using the following R code.

library(NonNorMvtDist)
beta = 3.5; theta1 = 1.5; theta2 = 5
set.seed(2020)
bivLomax = rmvlomax(n = 5000, parm1 = beta, parm2 = c(theta1, theta2))
x = bivLomax[,2] - bivLomax[,1]
hist(x, breaks=30, freq = FALSE)
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With suitable similar extensions of other distributions as shown in Figure 10, one can
implement random number generations in other cases as well.

6. An Illustrative Biomedical Application of Bivariate Lomax distribution

We consider a data set from a breast cancer study from University of California Irvine
Machine Learning Repository to highlight the usefulness of Lomax distribution for modeling
the non-negative skewed data. The data are attributed to Patŕıcio et al. (2018) and consist of
nine quantitative clinical features (age, BMI, glucose, insulin, HOMA, leptin, adiponectin,
resistin, and MCP-1), and a binary classification variable (Patients vs. Healthy controls)
observed for 64 patients with breast cancer and 52 healthy control subjects recruited from
the University Hospital Centre of Coimbra. With substantial skewness present in all clinical
features and hence the lack of normality assumptions, Crisóstomo et al. (2016) analyzed the
data by applying the nonparametric methods (specifically the Kruskal-Wallis test). Among
other things, insulin was identified as a significant discriminator between the two groups but
only for corresponding subsets with BMI > 25kg/m2. However, for the group with BMI
≤ 25kg/m2, the significance of insulin seemed inconclusive. Nonparametric approach with
relatively low power may be one of the reason for not so clear a conclusion.

We will choose insulin as the variable of interest for our work. Instead of choosing a
nonparametric approach which usually has low power especially when the sample size is not
very large, and forgoing the normality based methods due to absence of normality, we here
propose a Lomax model for this data. The high skewness in the data, as shown in Figures
7 (a) and (b) for healthy group and the breast cancer group respectively and the shape of
the distributions justify our use of this model. Using BMI as a matching variable to match
pairs of one healthy subject and one breast cancer subject, from each of the two groups, we
obtain the bivariate data on insulin measurements for n = 52 such pairs. These values after
discarding unmatched subjects are presented in Table 4 in ANNEXURE. The corresponding
R code for this application can be obtained from the authors.

Sample descriptive statistics summary for the respective marginal distributions are
given in the columns 2-4 of Table 2. With skewed marginal distributions as shown in Figure
7 (a) and (b), we fit the bivariate Lomax distribution on this data, using the maximum like-
lihood (ML) approach. This results in, β̂ = 283.8444, θ̂health = 0.000508, θ̂cancer = 0.000299.
The values of descriptive statistics based on these estimates are given as columns 5-7 of
Table 2. The agreement between the sample descriptive statistics and ML based descrip-
tive statistics is quite good, even though standard deviation for the latter is somewhat
higher. Also the ML estimates of correlation between the paired variables, is equal to
1/β̂ = 1/283.8444 = 0.0035 (the sample correlation = 0.0465), which is low (as we must
expect since the patients as well as two samples are independent). The bivariate Lomax
seems to fit the data very well. This is further justified by Lomax Q-Q plots given in Figure
8.

Clearly as the ML estimates of mean and variance in Table 2, show, breast cancer
group does indeed have not only much higher mean value of insulin, its values also vary
much more greatly within the group, compared to those for healthy subject group. Further,
we note that large variability is persistent even in the group with BMI < 25kg/m2 – a fact
obscured and hence lost in the nonparametric analysis done by the original authors.
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Table 2: Descriptive and theoretical statistics for healthy controls and breast
cancer patients, respectively.

Descriptive Statistics (n = 52)
Sample ML-Based

Group Mean SD Skewness Mean SD Skewness
Healthy controls 6.9340 4.86 2.2765 6.9540 6.98 2.0213
Breast cancer patients 11.8420 10.20 1.4753 11.8194 11.86 2.0213

It may also be mentioned that in view of large β̂ = 283.8444, the exponential model,
for insulin levels scaled by β̂, may be applicable for both groups – healthy as well as the
breast cancer group. Thus, the estimates of the two rate parameter are

λ̂health = β̂θ̂health = 0.1442 (1/X̄health = 0.1441 if fitting the exponential distribution)
λ̂cancer = β̂θ̂cancer = 0.0849 (1/X̄cancer = 0.0845 if fitting the exponential distribution)

Clearly the estimated value of λcancer is smaller than that for λhealth then again recon-
firming the higher levels of insulin for the cancer group.

Returning to Lomax context, we may be interested in formally testing the null hypoth-
esis H0 : θhealth = θcancer vs. Ha : θhealth > θcancer which aims to test if two mean insulin
levels are same for the two groups against the alternative that it is higher for healthy control
groups. To do so, we consider the variable representing the difference Y = Xcancer −Xhealth.
With bivariate Lomax assumption on (X1, X2) in place, under the null hypothesis Y must
follow the symmetric double Pareto distribution.

We take Khattree-Bahuguna’s skewness δ̂ as the test statistic. Clearly, under H0 and
hence under symmetry, δ = 0. Thus we must reject H0 for large values of δ̂, where δ̂ is the
estimate of δ obtained by using the sample Khattree-Bahuguna’s univariate skewness. For
our data, δ̂ = 0.1164, which is considerably larger than the one-sided cutoff value δ0.95 =
0.0742 calculated under the null hypothesis via large number of simulations (nsim = 1000)
and by using the R packages of Lun and Khattree (2020). The null hypothesis is thus
rejected.

We may also be interested in those pairs with BMI < 25kg/m2 (this is the data, which
original authors had discarded as they analyzed only subjects with BMI ≥ 25kg/m2). Thus,
we may try to fit the bivariate Lomax distribution only on n = 17 pairs of healthy control

Table 3: Descriptive and theoretical statistics for healthy controls and breast
cancer patients with BMI < 25kg/m2, respectively.

Descriptive Statistics (n = 17)
Sample ML-Based

Group Mean SD Skewness Mean SD Skewness
Healthy controls 4.4304 1.44 0.5955 4.4100 4.4194 2.0128
Breast cancer patients 8.2047 8.76 2.2348 8.2512 8.2689 2.0128
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(a) Healthy Controls (skewness = 2.2765) (b) Breast Cancer Patients (skewness = 1.4753)

Figure 7: Empirical distributions of healthy controls and breast cancer patients
and density plots (dashed lines) obtained by maximum likelihood estimation
based on bivariate Lomax model

(a) Healthy controls (b) Breast cancer patients
Figure 8: Quantile-Quantile plot of insulin levels for healthy controls and for
breast cancer patients.

and breast cancer patient, using the maximum likelihood (ML) approach. This results in,
β̂ = 471.0522, θ̂health = 0.000482, θ̂cancer = 0.000258.

However, as the histograms and summary statistics show, the bivariate Lomax distri-
bution may not fit this subset of data as satisfactorily as the whole data since the group of
healthy controls has relatively low skewness while the breast cancer group is highly skewed.
See the sample descriptive statistics in Table 3 and histogram in Figure 9. Therefore, as-
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(a) Healthy Controls (skewness = 0.5955)
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(b) Breast Cancer Patients (skewness = 2.2348)

Figure 9: Empirical distributions of healthy controls and breast cancer patients
with BMI < 25kg/m2 and density plots (dashed lines) obtained by maximum
likelihood estimation based on bivariate Lomax model

sumptions for the corresponding hypothesis testing are not met and hence hypothesis testing
is not performed for this subset of data. It is difficult to determine if the poor fit to Lomax
distribution is due to small number (n = 17) observations.

7. Concluding Remarks

As the title suggests, this article revolves around connections between Lomax and ex-
ponential distributions and between the extensions thereof. Various relationships between
multivariate Lomax and several other univariate and multivariate distributions are known to
exist and these relationships are graphically reproduced in Figure 10. Via these interrelation-
ships one can possibly establish many more similar connections. For example, generalized
double Pareto distribution can also be conveniently obtained via appropriate transformations
of many of these bivariate distributions. The same can be said about the representation of
generalized double Pareto by a mixture of Student’s t distributions. Compared with scale
mixture of normal distributions, Generalized double Pareto distribution provides a possibly
more robust and more flexible choice of prior in practice, such as robust Bayesian shrinkage
estimation and biomedical data modeling.

Data analysis presented here exemplifies the potential applications which distributions
presented in this work may have. Comparisons such as that presented in our illustration,
require the distributions of random variables which are linear functions of such variables
and may not result in nice symmetric distributions with support on the entire real line.
Generalized double Pareto distribution with asymmetry, skewness and fat tail is one such
distribution which may be a flexible enough choice to accommodate such situations.
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Figure 10: Lomax and its relationships through transformation (solid lines), pa-
rameter substitution (dotted lines) and limiting distribution (dash-dotted lines).
Univariate distributions are marked with *.
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ANNEXURE

A. Proofs of Some of the Lemmas Used

Lemma 20: For 0 < α < 1,
� 1

0 ln(1− α) ln(α)dα = 2− π2

6 .

Proof: Clearly, the integral is convergent. The orders of integration and summation can be
interchanged. Using Taylor series to expand ln(1− α) = −∑∞n=1

αn

n
, we have

� 1

0
ln(1− α) ln(α)dα = −

� 1

0
ln(α)

∞∑
n=1

αn

n
dα

= −
∞∑
n=1

1
n

[
− 1

(n+ 1)2

]
(by using integration by parts)

=
∞∑
n=1

[
1
n
− 1
n+ 1 −

1
(n+ 1)2

]

=
∞∑
n=2

[ 1
n− 1 −

1
n

]
−
∞∑
n=2

[ 1
n2

]
= 1− (π

2

6 − 1) = 2− π2

6 . (10)

Lemma 21: For the first derivative of beta function B(u, u), with respect to u, say B′(u, u),
lim
u→1

B′(u, u) = −2.

Proof. Given B(u, u) =
� 1

0 x
u−1(1− x)u−1dx, we have by using the Leibniz’s Rule, the

derivative of B(u, u) with respect to u,

B′(u, u) =
� 1

0

[
xu−1 ln(x)(1− x)u−1 + xu−1(1− x)u−1 ln(1− x)

]
dx.

Accordingly, lim
u→1

B′(u, u) =
� 1

0 ln(x)dx+
� 1

0 ln(1− x)dx = −1 +−1 = −2.

Lemma 22: For the second derivative of beta function B(u, u), say B′′(u, u), lim
u→1

B′′(u, u) =
8− π2

3 .

Proof: Again, by applying Leibniz’s Rule, we have

B′′(u, u) =
� 1

0
[xu−1 ln(x)2(1− x)u−1 + xu−1 ln(x)(1− x)u−1 ln(1− x)

+ xu−1 ln(x)(1− x)u−1 ln(1− x) + xu−1(1− x)u−1 ln(1− x)2]dx



362 ZHIXIN LUN AND RAVINDRA KHATTREE [Vol. 19, No. 1

Thus,

lim
u→1

B′′(u, u) =
� 1

0
ln(x)2dx+ 2

� 1

0
ln(1− x) ln(x)dx+

� 1

0
ln(1− x)2dx

= 2 + 2(2− π2

6 ) + 2 = 8− π2

3 .

The middle integral is evaluated by using the Lemma 20 and integration by parts.

Lemma 23:
� ∞

0

1
(1 + x2

y2 )p(1 + y2)p
dy =

B(p− 1
2 ,

1
2)

2(1 + |x|)2p−1 , −∞ < x <∞, p >
1
2 .

Proof:. Let I =
�∞

0
1

(1+x2
y2 )p(1+y2)p

dy.Define t = |x|
y

, then dy = − |x|
t2
dt. So I =

�∞
0

1
(1+x2

y2 )p(1+y2)p
dy =

�∞
0

|x|
t2

(1+t2)p(1+x2
t2

)p
dt. Thus,

2I =
� ∞

0

1
(1 + x2

t2
)p(1 + t2)p

dt+
� ∞

0

|x|
t2

(1 + t2)p(1 + x2

t2
)p
dt

=
� ∞

0

(
1 + |x|

t2

)
1

(1 + x2

t2
)p(1 + t2)p

dt =
� ∞

0

(
1 + |x|

t2

)
1

(1 + x2

t2
+ x2 + t2)p

dt.

Now define, s = t− |x|
t
, then ds = 1 + |x|

t2
dt, s2 = t2 − 2|x|+ x2

t2
, and hence we have

2I =
� ∞
−∞

1
(1 + s2 + 2|x|+ x2)pds =

� ∞
−∞

1
[s2 + (1 + |x|)2]pds.

Thus, I =
�∞

0
1

[s2+(1+|x|)2]pds = B(p− 1
2 ,

1
2 )

2(1+|x|)2p−1 .

B. Moments and Skewness of Generalized Double Pareto Distribution

B.1. Moments

Consider the nth raw moment for univariate Lomax distribution with shape parameter
β and rate parameter θ:

µ′n =
� ∞

0
xnf(x)dx =

� ∞
0

xn
βθ

(1 + θx)β+1dx

= β

θn

� 1

0
u(β−n)−1(1− u)(n+1)−1du

(
Let u = 1

1 + θx
, then dx = − 1

θu2du
)

= β

θn
B(β − n, n+ 1) = n!

θn(β − 1) · · · (β − n) , n < β.
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Consider the nth raw moment for generalized double Pareto distribution with proba-
bility density function given by

h(x) =


h1(x) = θ1θ2β

(θ1+θ2)(1−θ1x)β+1 , if x ≤ 0, β, θ1, θ2 > 0

h2(x) = θ1θ2β
(θ1+θ2)(1+θ2x)β+1 , if x > 0, β, θ1, θ2 > 0.

Then we have

µ′n =
� 0

−∞
xnh1(x)dx+

� ∞
0

xnh2(x)dx

= θ2

θ1 + θ2
(−1)n n!

θn1 (β − 1) · · · (β − n) + θ1

θ1 + θ2

n!
θn2 (β − 1) · · · (β − n)

= n!
(θ1 + θ2)(β − 1) · · · (β − n)

[
(−1)nθ2

θn1
+ θ1

θn2

]
, n < β.

B.2. Pearson’s Coefficient of Skewness

The third central moment is given by µ3 = µ′3−3µ2µ
′
1−µ′31 while the third raw moment

is given by

µ′3 = 3!
(θ1 + θ2)(β − 1)(β − 2)(β − 3)

[
(−1)3θ2

θ3
1

+ θ1

θ3
2

]
= 6(θ2

1 + θ2
2)(θ1 − θ2)

θ3
1θ

3
2(β − 1)(β − 2)(β − 3) .

Also, µ2 = Var(X) = βθ2
1+βθ2

2−2θ1θ2
θ2

1θ
2
2(β−1)2(β−2) and µ′1 = θ1−θ2

θ1θ2(β−1) . Upon substitution, the third central
moment is given by

µ3 = 6(θ2
1 + θ2

2)(θ1 − θ2)
θ3

1θ
3
2(β − 1)(β − 2)(β − 3)

− 3(βθ2
1 + βθ2

2 − 2θ1θ2)
θ2

1θ
2
2(β − 1)2(β − 2)

(θ1 − θ2)
θ1θ2(β − 1) −

(θ1 − θ2)3

θ3
1θ

3
2(β − 1)3

= 2(θ1 − θ2)(β + 1)[βθ2
1 + βθ2

2 + (β − 3)θ1θ2]
θ3

1θ
3
2(β − 1)3(β − 2)(β − 3)

.

Finally, the Pearson’s skewness becomes

γ = µ3

µ
3/2
2

= 2(θ1 − θ2)(β + 1)[βθ2
1 + βθ2

2 + (β − 3)θ1θ2]
θ3

1θ
3
2(β − 1)3(β − 2)(β − 3) ×

(
θ2

1θ
2
2(β − 1)2(β − 2)

βθ2
1 + βθ2

2 − 2θ1θ2

)3/2

=
2(β + 1)

√
(β − 2)(θ1 − θ2)[βθ2

1 + βθ2
2 + (β − 3)θ1θ2]

(β − 3)(βθ2
1 + βθ2

2 − 2θ1θ2)3/2 , β > 3.

B.3. Khattree-Bahuguna’s Skewness

Recall the quantile function for GDP(β, θ1, θ2)

F−1(α) =


1
θ1

[
1−

(
θ2

α(θ1+θ2)

) 1
β

]
, if 0 < α ≤ θ2

θ1+θ2
,

1
θ2

[(
θ1

(1−α)(θ1+θ2)

) 1
β − 1

]
, if θ2

θ1+θ2
< α < 1.
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For simplification, we let d1 = θ2
θ1+θ2

, d2 = θ1
θ1+θ2

. Clearly, d1 + d2 = 1. Thus,

F−1(α) =


h1(α) = 1

θ1

[
1−

(
d1
α

) 1
β

]
, if 0 < α ≤ d1,

h2(α) = 1
θ2

[(
d2

1−α

) 1
β − 1

]
, if d1 < α < 1,

and

F−1(1− α) =


g1(1− α) = 1

θ2

[(
d2
α

) 1
β − 1

]
, if 0 < α ≤ d2,

g2(1− α) = 1
θ1

[
1−

(
d1

1−α

) 1
β

]
, if d2 < α < 1.

As the above quantile functions have not been centered, the Khattree-Baguhuna’s
skewness is computed by δ = 1

2

[
1 +

� 1
0 F
−1(α)F−1(1−α)dα−µ2

µ2

]
. We consider the computation

of the kernel term
� 1

0 F
−1(α)F−1(1 − α). If d1 < d2, we have

� 1
0 F

−1(α)F−1(1 − α)dα =� d1
0 h1(α)g1(1−α)dα+

� d2
d1
h2(α)g1(1−α)dα+

� 1
d2
h2(α)g2(1−α)dα. Now, consider the first

and third integrals,

I1 =
� d1

0
h1(α)g1(1− α)dα = 1

θ1θ2

� d1

0

[(
d2

α

) 1
β

− 1−
(
d1d2

α2

) 1
β

+
(
d1

α

) 1
β

]
dα

= 1
θ1θ2

[(
d2

d1

) 1
β β

β − 1d1 − d1 −
(
d2

d1

) 1
β β

β − 2d1 + β

β − 1d1

]
= d1

θ1θ2

[(
d2

d1

) 1
β
(

β

β − 1 −
β

β − 2

)
+ 1
β − 1

]

= d1

θ1θ2

[
1

β − 1 −
(
d2

d1

) 1
β β

(β − 1)(β − 2)

]
.

Similarly,

I3 =
� 1

d2

h2(α)g2(1− α)dα = 1
θ1θ2

� 1

d2

[(
d2

1− α

) 1
β

−
(

d1d2

(1− α)2

) 1
β

− 1 +
(

d1

1− α

) 1
β

]
dα

= 1
θ1θ2

[(
d2

d1

) 1
β β

β − 1d1 −
(
d2

d1

) 1
β β

β − 2d1 − d1 + β

β − 1d1

]
= d1

θ1θ2

[
1

β − 1 −
(
d2

d1

) 1
β β

(β − 1)(β − 2)

]
.

Thus, I1 = I3. Now we consider the second integral term:

I2 =
� d2

d1
h2(α)g1(1− α)dα =

� d2

d1

1
θ2

[(
d2

1− α

) 1
β
− 1

]
1
θ2

[(
d2

α

) 1
β
− 1

]
dα

=
1
θ2

2

� d2

d1

[
d

2
β
2 (1− α)

− 1
β α

− 1
β −
(

d2

1− α

) 1
β
−
(
d2

α

) 1
β

+ 1

]
dα

=
1
θ2

2

{
d

2
β
2

[
B

(
d2; 1−

1
β
, 1−

1
β

)
− B
(
d1; 1−

1
β
, 1−

1
β

)]
− d

1
β
2

β

β − 1

[
−d

− 1
β

+1
1 + d

− 1
β

+1
2

]
− d

1
β
2

β

β − 1

[
d

− 1
β

+1
2 − d

− 1
β

+1
1

]
+ d2 − d1

}
=

1
θ2

2

{
d

2
β
2

[
B

(
d2; 1−

1
β
, 1−

1
β

)
− B
(
d1; 1−

1
β
, 1−

1
β

)]
+ 2
(
d2

d1

) 1
β β

β − 1
d1 − 2

β

β − 1
d2 + d2 − d1

}
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Recall that µ = θ1−θ2
θ1θ2(β−1) = d2−d1

θ2d2(β−1) and µ2 = β(d2−d1)2

d2
1d

2
2(β−1)2(β−2) + 2

θ1θ2(β−1)(β−2) . Therefore, the
Khattree-Bahuguna’s skewness is δ = 1

2

[
1 + 2I1+I2−µ2

µ2

]
. We omit the similar derivation for

d2 < d1.

Table 4: Data set of healthy controls and breast cancer pa-
tients (Suitably adjusted from the source data reported at
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra)

Healthy controls Breast cancer patients
Pair BMI Insulin BMI Insulin

1 18.67 6.11 18.37 6.03
2 20.69 3.12 20.83 4.56
3 20.76 7.55 20.83 3.42
4 21.11 3.55 21.08 6.20
5 21.37 3.23 21.30 13.85
6 21.47 3.47 21.36 3.00
7 22.00 3.35 21.51 6.68
8 22.03 2.87 22.21 36.94
9 22.70 4.69 22.22 5.70
10 22.85 3.23 22.50 5.26
11 22.86 4.09 22.66 3.48
12 23.00 4.95 22.83 6.86
13 23.01 5.66 22.89 2.74
14 23.12 4.50 23.14 4.90
15 23.34 5.78 23.62 4.42
16 23.50 2.71 24.22 3.73
17 23.80 6.47 24.24 21.70
18 25.30 3.51 25.51 10.39
19 25.70 8.08 25.59 2.82
20 25.90 4.58 26.56 10.55
21 26.35 5.14 26.56 6.52
22 26.60 4.46 26.67 41.61
23 27.10 26.21 26.67 22.03
24 27.20 14.07 26.84 4.53
25 27.30 5.20 26.85 3.33
26 27.69 3.85 27.18 19.91

Healthy controls Breast cancer patients
Pair BMI Insulin BMI Insulin
27 27.70 6.04 27.64 2.43
28 28.58 4.34 28.44 8.81
29 29.22 5.38 29.14 10.95
30 29.40 10.70 29.15 16.58
31 29.61 5.82 29.30 4.17
32 30.28 4.38 29.38 4.71
33 30.30 8.34 29.67 14.65
34 30.48 5.54 29.78 8.40
35 31.24 4.18 30.48 7.01
36 31.45 9.24 30.80 30.21
37 31.98 4.53 30.84 41.89
38 32.04 18.08 30.92 10.49
39 32.27 5.81 31.22 18.08
40 32.50 5.43 31.23 30.13
41 34.17 6.59 31.25 4.33
42 34.42 23.19 31.25 12.16
43 34.53 4.43 31.64 9.67
44 35.09 5.65 31.98 16.64
45 35.25 6.82 32.05 5.73
46 35.59 3.88 32.46 28.68
47 35.86 8.58 32.46 24.89
48 36.21 15.53 33.18 5.75
49 36.51 14.03 34.84 12.55
50 36.79 10.18 35.56 8.15
51 37.04 6.76 36.05 11.91
52 38.58 6.70 37.11 5.64


