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Abstract
This paper is based on the estimation of the kurtosis parameters of several multivariate

populations under the assumption that all the kurtosis parameters are equal. The shrinkage
and preliminary test estimators are suggested for the estimation of the vector of kurtosis
parameters. Asymptotic properties of the suggested estimators are presented analytically and
compared on the basis of their asymptotic distributional bias and asymptotic quadratic risk.
Monte-Carlo simulations are performed in order to explain the analytical results numerically.
A real data example is also given to demonstrate the application of the suggested estimators.
From the results it can be observed that the Stein-type estimators perform better than all
other estimators when the number of populations is greater than four and also when the
assumption of homogeneity is suspicious.
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1. Introduction

Kurtosis and skewness are often considered as the shape parameters of a probability
distribution. First introduced by Karl Pearson in 1905, kurtosis can be defined as a mea-
surement with which to represent the size of a distribution’s tails in contrast to a normal
distribution. In a contemporary context, kurtosis is widely used in different areas of research,
such as finance, space science, economics and signal processing. See Kim and White (2004),
Liang et al. (2008), Nita and Gary (2010), Lai (2012), Araújo et al. (2012), and Echer and
Bolzan (2016) for detailed examples.

Mardia (1970) defined the kurtosis parameter of a p-dimensional random variable X
with mean vector µ and covariance matrix Σ as

β = E
[{

(X − µ)TΣ−1(X − µ)
}2
]
. (1)
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For a random sample of n observations X1,X2, · · · ,Xn taken from a multivariate
population, let µ̂ and Σ̂ be the estimators of µ and Σ respectively, then the estimator of
kurtosis parameter proposed by Mardia (1970) can be defined as

β̂ = 1
n

n∑
i=1

{
(Xi − µ̂) Σ̂−1 (Xi − µ̂)T

}2
, (2)

where µ̂ = 1
n

∑n
i=1Xi and Σ̂ = 1

n

∑n
i=1 (Xi − µ̂) (Xi − µ̂)T .

Ahmed et al. (2012) worked on the improved estimation of kurtosis parameter β of a
multivariate population using uncertain prior information (UPI). They proposed the linear
shrinkage and the preliminary test estimators for β and developed the large sample theory
for these estimators. Zahra et al. (2017 b) presented the improved estimation of kurto-
sis parameters for two multivariate populations and suggested that the shrinkage pretest
estimator performs better when the null hypothesis β1 = β2 is uncertain; otherwise, the re-
stricted estimator performs well. In this paper, we have extended their work on multivariate
populations to q sample case using the UPI that kurtosis parameters of all populations are
homogeneous. The UPI can be presented in the form of null hypothesis as

H0 : β1 = β2 = · · · = βq = β0, (3)

where β0 is unknown.

Let X(l)
i =

(
X

(l)
1i ,X

(l)
2i , · · · ,X

(l)
pi

)
where i = 1, 2, · · · , nl and l = 1, 2, · · · , q be a multi-

variate random sample of size nl from a p-variate normal distribution with mean vector µl
and covariance matrix Σl. We want to estimate the parameter vector of kurtosis coefficients
β = (β1, β2, · · · , βq)T using their maximum likelihood estimator (MLE) β̂ = (β̂1, β̂2, · · · , β̂q)T
with sample sizes (n1, n2, · · · , nq) under the UPI given in equation (3). Our multivariate
sampled data X(l)

i may have collected at q different times or spaces and there is natural
tendency to combine the data to get efficient estimation results. One has to integrate both
the sample information (SI) available in the form of X(l)

i , l = 1, 2, · · · , q and the UPI in such
a way that estimators having optimal properties in terms of smallest risk, can be developed.
Such integrated estimation strategies are based on the preliminary test (pretest) and Stein’s
shrinkage methodologies and are proved to be superior for data polling purposes. Many of
these estimation strategies under different contexts have been discussed by Zahra et al. (2017
a), Shah et al. (2017), Lisawadi et al. (2019), Shah et al. (2020) and references therein.

The organization of the paper is as follows: Several estimation strategies are given
in Section 2 that utilized either SI or the combination of both SI and UPI. Section 3 is
concerned with the expressions of the asymptotic distributional quadratic bias (ADQB) and
asymptotic distributional quadratic risk (ADQR) of the stated estimators. The results of the
Monte-Carlo simulations are given in Section 4. An empirical example is given in Section 5
and the concluding remarks are made in the last section. All computations are done with
the latest version of freeware R, and mathematical proofs are given in the Appendix. The
matrices and vectors are represented with boldface symbols, while script letters E and V are
reserved for the operators of expectation and variance.
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2. Estimation Strategies

In this section, some improved estimation strategies for the kurtosis parameter vector
β for q multivariate populations are described. At the first place, Using Mardia’s estimator
given in equation (2), the unrestricted estimator (UE) of β using only the SI is defined as

β̂UE = (β̂1, β̂2, · · · , β̂q)T . (4)

The restricted estimator (RE) of the parameter vector β under UPI is given as

β̂RE =
(
β̂0, β̂0, · · · , β̂0

)T
= β̂01q. (5)

The point estimator of β0 denoted by β̂0 is calculated as β̂0 = ω̂−1∑q
l=1 λl,nβ̂

UE
l , where

ω̂ = ∑q
l=1 λl,n and λl,n = nl/n. An alternative form of β̂RE, which is further used for the

derivation of the mathematical results, is given as

β̂RE = ω̂−1JqV
−1
n β̂UE = Hnβ̂

UE, (6)

where Jq = 1q1
T
q , Hn = ω̂−1JqV

−1
n , Vn = diag

(
v

λ1,n
, v
λ2,n

, · · · , v
λq,n

)
, and v = 8p(p + 2).

Assuming lim(λl,n) = λl is fixed for l = 1, 2, · · · , q then Vn converges in probability to
V = diag

(
v
λ1
, v
λ2
, · · · , v

λq

)
as n → ∞ where n = n1 + n2 + · · · + nq. The linear shrinkage

(LS) estimator of β may be defined as

β̂LS = β̂UE − π(β̂UE − β̂RE); π ∈ (0, 1), (7)

where π is the degree of trust in the null hypothesis (3). The linear shrinkage estimator
becomes a restricted estimator when π is one and an unrestricted estimator when it is zero.

The preliminary test or simply pretest (PT) estimator of the population parameter
vector β is stated as

β̂PT = β̂UE −
(
β̂UE − β̂RE

)
I(Ln < cn,α), (8)

where I(·) is an indicator function and Ln is a Wald-type test statistic computed as

Ln = n
(
β̂UE − β̂RE

)T
V −1
n

(
β̂UE − β̂RE

)
. (9)

Under the null hypothesis given in equation (3), Ln converges in distribution to a χ2

distribution with (q−1) degrees of freedom. Thus, upper α-level critical values of Ln defined
by cn,α are approximated by a χ2

(q−1) distribution. The shrinkage pretest (SP) estimator
which incorporates π into equation (8) is given as

β̂SP = β̂UE − π
(
β̂UE − β̂RE

)
I(Ln < cn,α). (10)

It is interesting to note that for π = 1, the shrinkage preliminary test estimator β̂SP is
reduced to the preliminary test estimator β̂PT .
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The Stein-type shrinkage (SS) estimator is defined as

β̂SS = β̂UE − (q − 3)L−1
n

(
β̂UE − β̂RE

)
, q ≥ 4, (11)

and an improved Stein-type shrinkage (S+) estimator for q ≥ 4 is given as

β̂S+ = β̂UE−(q−3)L−1
n

(
β̂UE − β̂RE

)
−
[
1− (q − 3)L−1

n

]
I(Ln < q−3)

(
β̂UE − β̂RE

)
. (12)

Secondly, it is to be noted that the test-statistic given in equation (9) is consistent
against fixed β such that β /∈ H0, hence all the estimators involving Ln are equivalent to
the bench-mark estimator β̂UE for the fixed alternatives in a large sample setup. Interested
readers are referred to Ahmed (2002) for further details. Therefore, we consider a sequence
of local alternatives {H(n)} as

H(n) : β = β(n), (13)
where β(n) = β01q +n−1δ, and δ ∈ Rq is a fixed real vector. It is to be noted that we are not
making any assumption for local alternatives setup either. By virtue of Ahmed et al. (2012)
and under the sequence of local alternatives defined in equation (13) in the univariate sense,
following result holds: √

nl(β̂l − βl) ∼ N (δ, v) . (14)
Following Appendix A.1 in Zahra et al. (2017 a) with aforementioned local alternative and
using equation (14), the asymptotic distribution of β̂UE is

√
n(β̂UE − β) ∼ N (0,V ) . (15)

3. Asymptotic Results

In this section, the analytical results regarding the asymptotic properties of the afore-
mentioned estimators are presented. Using the asymptotic framework cited in Section 3
of Shah et al. (2020), and under the sequence of local alternatives given in equation (13),
following evaluation criterion are used to assess the performance of the estimators under
consideration. We have omitted the special cases of estimators (as mentioned above) from
discussions in order to save space, as one can deduce their results by using their relations.

3.1. Asymptotic distributional bias

The vector of asymptotic distributional bias (ADB) of an estimator β̂∗ is calculated as

B(β̂∗) = lim
n→∞

E
(√

n
(
β̂∗ − β(n)

))
. (16)

Theorem 1: Expressions for ADB of various estimators under sequence of local alternatives
are given as

B(β̂LS) = −πδ?,
B(β̂SP ) = −πδ?Φq+1(χ2

q−1,α; ∆),
B(β̂SS) = −(q − 3)δ?E

(
χ−2
q+1(∆)

)
,

B(β̂S+) = −δ?[Φq+1(q − 3; ∆) + (q − 3)E{χ−2
q+1(∆)I(χ2

q+1(∆) > (q − 3))}],
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where δ? = C0δ, C0 = Iq−H0, and Φq+1 (·; ∆) is the cumulative distribution function (CDF)
of a non-central chi-square distribution with q + 1 degrees of freedom and non-centrality
parameter ∆.

Proof: See Appendix 1 for the proof.

3.2. Asymptotic distributional quadratic bias

The expressions given in Theorem 1 are in vector form and for comparison purposes,
we needed expressions in scalar form. Thus, we applied following quadratic transformation
that yielded asymptotic distributional quadratic bias (ADQB) of the competing estimators:

B?(β̂∗) =
(
B(β̂∗)

)T
V −1B(β̂∗). (17)

Theorem 2: Under the sequence of local alternatives, expressions for ADQB of various
estimators are given as

B?(β̂LS) = π2∆,

B?(β̂SP ) = π2∆
[
Φq+1(χ2

q−1,α; ∆)
]2
,

B?(β̂SS) = (q − 3)2∆
[
E
{
χ−2
q+1(∆)

}]2
,

B?(β̂S+) = ∆
[
Φq+1(q − 3; ∆) + (q − 3)E

{
χ−2
q+1(∆)I(χ2

q+1(∆) > (q − 3))
}]2

.

Proof: Using the transformation mentioned in equation (17) and with the help of following
Lemma, the proof is straightforward.

Lemma 3: The test statistic given in equation (9) converges to a non-central χ2 distribution
with (q − 1) degrees of freedom and non-centrality parameter ∆ = (δ?)TV −1δ? as n→∞.

Note that the estimators based on the strategies of preliminary test and Stein-type
shrinkage methodologies are biased.

3.3. Asymptotic mean square error matrix

The asymptotic mean-square error matrices are needed for the computations of asymp-
totic distributional quadratic risk (ADQR) expressions of the various estimators mentioned
above. Under the sequence of local alternative, the general expression for such matrices is
given as

S(β̂∗) = lim
n→∞

E
[√
n
(
β̂∗ − β(n)

)√
n
(
β̂∗ − β(n)

)T ]
. (18)
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Theorem 4: The expressions for the asymptotic mean square error matrices for various
estimators, under the sequence of local alternatives and for C = V CT

0 , are given as follows:

S(β̂LS) = V − π(2− π)C + π2δ?(δ?)T ,
S(β̂SP ) = V − π(2− π)Φq+1(χ2

q−1,α; ∆)C
+ πδ?(δ?)T

[
2Φq+1(χ2

q−1,α; ∆)− (2− π)Φq+3(χ2
q−1,α; ∆)

]
,

S(β̂SS) = V − (q − 3)C
[
2E

[
χ−2
q+1(∆)

]
− (q − 3)E

[
χ−4
q+1(∆)

]]
+ (q − 3)(q + 1)δ?(δ?)TE

[
χ−4
q+3(∆)

]
,

S(β̂S+) = S(β̂SS)−CE
[{

1− (q − 3)χ−2
q+1(∆)

}2
I
(
χ2
q+1(∆) < (q − 3)

)]

+ δ?(δ?)T
 2E

[{
1− (q − 3)χ−2

q+1(∆)
}
I
(
χ2
q+1(∆) < (q − 3)

)]
−E

[{
1− (q − 3)χ−2

q+3(∆)
}2
I
(
χ2
q+3(∆) < (q − 3)

)]
 ,

Proof: Following Appendix 7 of Zahra et al. (2017 a), the proof can be completed.

3.4. Asymptotic distributional quadratic risk

The asymptotic distributional quadratic risk (ADQR) of an estimator β̂? of the pa-
rameter vector β is defined as

R(β̂?;W ) = lim
n→∞

E
[√
n
(
β̂∗ − β(n)

)T
W
√
n
(
β̂∗ − β(n)

)]
= lim

n→∞
tr
[
WE

{√
n
(
β̂∗ − β(n)

)√
n
(
β̂∗ − β(n)

)T}]
= tr

[
WS(β̂∗)

]
, (19)

where W is a (q × q) positive semi-definite (psd) weight matrix.
Theorem 5: Under the sequence of local alternatives, expressions of ADQR for the various
estimators are given as

R(β̂LS;W ) = tr (WV )− π(2− π)tr (WC) + π2∆W ,

R(β̂SP ;W ) = tr (WV )− π(2− π)tr (WC) Φq+1(χ2
q−1,α; ∆)

+ π∆W

[
2Φq+1(χ2

q−1,α; ∆)− (2− π)Φq+3(χ2
q−1,α; ∆)

]
,

R(β̂SS;W ) = tr (WV )− (q − 3)tr (WC)
[
2E

[
χ−2
q+1(∆)

]
− (q − 3)E

[
χ−4
q+1(∆)

]]
+ (q − 3)(q + 1)∆WE

[
χ−4
q+3(∆)

]
,

R(β̂S+;W ) = R(β̂SS;W )

− tr (WC)E
[{

1− (q − 3)χ−2
q+1(∆)

}2
I
(
χ2
q+1(∆) < (q − 3)

)]

+ ∆W

 2E
[{

1− (q − 3)χ−2
q+1(∆)

}
I
(
χ2
q+1(∆) < (q − 3)

)]
−E

[{
1− (q − 3)χ−2

q+3(∆)
}2
I
(
χ2
q+3(∆) < (q − 3)

)]
 ,
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where ∆W = (δ?)TWδ? is the non-centrality parameter involving weight matrix W .

Proof: Using the asymptotic mean square matrices given in Theorem 4 and the definition
of ADQR in equation (19), the proof is trivial.

Corollary 6: For the choice W = V −1, ADQR expressions given above are simplified and
are given as

R1 = R(β̂UE;V −1) = q,

R2 = R(β̂RE;V −1) = 1 + ∆,
R3 = R(β̂LS;V −1) = q − π(2− π)(q − 1) + π2∆,
R4 = R(β̂PT ;V −1) = q − (q − 1)Φq+1(χ2

q−1,α; ∆)
+ ∆

[
2Φq+1(χ2

q−1,α; ∆)− Φq+3(χ2
q−1,α; ∆)

]
,

R5 = R(β̂SP ;V −1) = q − π(2− π)(q − 1)Φq+1(χ2
q−1,α; ∆)

+ π∆
[
2Φq+1(χ2

q−1,α; ∆)− (2− π)Φq+3(χ2
q−1,α; ∆)

]
,

R6 = R(β̂SS;V −1) = q − (q − 1)(q − 3)
[
2E

[
χ−2
q+1(∆)

]
− (q − 3)E

[
χ−4
q+1(∆)

]]
+ (q − 3)(q + 1)∆E

[
χ−4
q+3(∆)

]
,

R7 = R(β̂S+;V −1) = R(β̂SS;V −1)

− (q − 1)E
[{

1− (q − 3)χ−2
q+1(∆)

}2
I
(
χ2
q+1(∆) < (q − 3)

)]

+ ∆

 2E
[{

1− (q − 3)χ−2
q+1(∆)

}
I
(
χ2
q+1(∆) < (q − 3)

)]
−E

[{
1− (q − 3)χ−2

q+3(∆)
}2
I
(
χ2
q+3(∆) < (q − 3)

)]
 .

Proof: This proof of Corollary 6 can be completed by replacingW = V −1 and noting that
tr(WV ) = tr(Iq) = q, tr(WC) = tr(V −1V CT

0 ) = tr(CT
0 ) = tr(Iq −H0)T = tr(Iq −H0) =

q − 1, and ∆W = (δ?)TV δ? = ∆.

3.5. Risk comparison

In this section, the performance of restricted (RE), linear shrinkage (LS), both prelim-
inary test (PT and SP) and Stein-type shrinkage estimators (SS and S+) is compared with
the benchmark unrestricted estimator (UE) using the aforementioned simplified ADQR ex-
pressions of Corollary 6. For this purpose, we have defined the notion of asymptotic relative
efficiency (AREFF) of an estimator β̂∗ with reference to β̂UE as

AREFF(β̂∗, β̂UE) = R(β̂UE;V −1)
R(β̂∗;V −1)

= R1

Rj

; j ≤ 7. (20)

An estimator is considered to be more efficient, in asymptotic terms, if AREFF exceeds 1,
and vice versa. Since all the risk expressions are the function of a drift parameter ∆, we
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have plotted the AREFF of all the competing estimators against ∆ in order to compare their
performance in Figures 1–4, while fixing q = 4, 8, 10, π = 0.50, and α = 0.01, 0.05, 0.10, 0.20.

From Figure 1, it can be seen that both β̂RE and β̂LS have higher efficiencies than β̂UE
(which is constant), and that the AREFF decreases as ∆ increases but the decay of β̂RE is
much faster than that of β̂LS.

Figure 1: Asymptotic relative efficiencies of β̂UE, β̂RE, and β̂LS

AREFFs of the unrestricted estimator and the preliminary test estimators are compared
in Figure 2. It can be observed that the β̂PT dominates the β̂SP in a region where the drift
parameter ∆ is smaller i.e., when the null hypothesis (3) is true or nearly true. But for larger
values of ∆, the situation is reversed, and it is β̂SP that outperforms β̂PT for all choices of
α. Moreover, curves of AREFFs of β̂PT are approaching β̂SP for larger values of α. This
means that for smaller values of α, the region where β̂PT dominates β̂SP is more spacious.

From Figure 3, it is evident that β̂S+ is far superior to β̂SS and β̂UE, uniformly
dominating both estimators. Figure 4 establishes the dominance of the restricted estimator
β̂RE over the Stein-type shrinkage estimator β̂SS and shrinkage preliminary test estimator
β̂SP for smaller values of ∆. Even the shrinkage preliminary test estimator β̂SP performs
better than β̂SS in a reasonable region over ∆.

4. Monte-Carlo Simulations

In this section, we conducted extensive Monte-Carlo simulations to examine the per-
formance of the various estimators discussed earlier for β, which incorporates UPI into the
estimation procedure. The performance of the estimators is investigated by comparing their
simulated relative efficiencies (SRE). The SRE of an estimator β̂∗ to a benchmark unre-
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Figure 2: Asymptotic relative efficiencies of β̂UE, β̂PT , and β̂SP

stricted estimator β̂UE is defined by the ratio of their simulated risks as

SRE(β̂∗, β̂UE) = Simulated Risk(β̂UE)
Simulated Risk(β̂∗)

. (21)

The value of an SRE greater than 1 indicates that β̂∗ is superior to β̂UE. Furthermore, we
have defined a parameter ∆∗ (which is essentially a measure of how far away we deviate from
the hypothesized common kurtosis vector β0) as ∆∗ = (β − β0)T (β − β0).

Ahmed et al. (2012) mentioned comparisons for kurtosis of a multivariate normal
distribution with t-distribution with degrees of freedom ranging from ν = 5 to ν = 60. Fol-
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Figure 3: Asymptotic relative efficiencies of β̂UE, β̂SS, and β̂S+

Figure 4: Asymptotic relative efficiencies of β̂RE, β̂SP , and β̂SS

lowing the same idea, we have considered multivariate normal distributions with dimensions
p = 2 and 4 initially, when the null hypothesis is assumed to be true. In order to study the
deviation of the data from the null hypothesis, further samples are taken from multivariate
t-distribution with various degrees of freedom between 5 and 60.

Simulation processes are repeated N = 5000 times for different choices of q = 4, 6, 8,
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10 and nl = 80, 100, 150, 200. The choices of α and π are assumed to be 0.05, 0.10 and
0.25, 0.50, 0.75, respectively. Simulated relative efficiencies of the suggested estimators for
different configurations of p, q, nl, α, and π against various values of ∆∗ ≥ 0 were computed;
results are reported in Table 1 for only p = 4, π = 0.50 and nl = 100 to conserve space. A
graphical representation is shown in Figure 5.

Table 1: Simulated relative efficiencies of estimators when p = 4, π = 0.50 and
nl = 100

q ∆∗ β̂RE β̂LS β̂PT β̂SP β̂SS β̂S+

α = 0.05 α = 0.10 α = 0.05 α = 0.10

4 0.00 4.00 2.29 2.41 2.00 1.78 1.60 1.35 1.50
0.58 2.52 2.02 1.60 1.43 1.46 1.34 1.23 1.32
1.30 1.22 1.55 1.02 1.01 1.12 1.09 1.09 1.13
1.89 0.82 1.25 0.86 0.89 0.99 0.99 1.02 1.04
3.46 0.51 0.89 0.81 0.86 0.91 0.94 0.98 0.99
10.39 0.45 0.69 0.97 0.98 0.99 0.99 0.99 0.99

6 0.00 5.91 2.65 3.03 2.39 2.01 1.77 1.86 2.33
0.50 3.17 2.28 1.97 1.74 1.68 1.54 1.58 1.90
1.12 1.58 1.86 1.16 1.12 1.24 1.18 1.29 1.37
1.63 0.96 1.42 0.92 0.93 1.06 1.04 1.09 1.14
2.98 0.53 0.93 0.80 0.84 0.92 0.94 0.99 0.99
8.94 0.43 0.69 0.97 0.98 0.98 0.99 0.99 0.99

8 0.00 7.84 2.89 3.57 2.77 2.17 1.92 2.43 3.15
0.44 2.98 2.08 1.62 1.45 1.42 1.32 1.72 1.79
0.99 1.66 1.85 1.27 1.22 1.34 1.26 1.39 1.55
1.44 1.07 1.52 0.98 0.98 1.12 1.09 1.18 1.24
2.65 0.57 0.99 0.81 0.85 0.93 0.95 0.99 0.99
7.94 0.42 0.68 0.96 0.97 0.98 0.99 0.99 0.99

10 0.00 9.91 3.07 3.85 2.97 2.25 1.99 3.05 3.94
0.40 4.02 2.41 1.88 1.63 1.57 1.43 2.14 2.28
0.90 2.23 2.05 1.36 1.27 1.32 1.24 1.68 1.74
1.31 1.30 1.72 1.08 1.06 1.20 1.15 1.34 1.41
2.40 0.61 1.04 0.83 0.86 0.95 0.96 0.99 0.99
7.20 0.42 0.68 0.96 0.97 0.98 0.99 0.99 0.99

The restricted estimator β̂RE performed better when homogeneity assumption of kur-
tosis parameters holds, but when it is not true, the SRE of the restricted estimator declined
rapidly, and approaches zero for larger values of ∆∗. The SRE of the linear shrinkage esti-
mator β̂LS declined slowly and its performance is comparable to shrinkage estimators only
when q and ∆∗ are small. The SRE of the pretest β̂PT and shrinkage pretest β̂SP estimators
declined as ∆∗ increased, but after reaching a minimum value, it attained a value of one
again. Both pretest estimators performed well for smaller values of q ≤ 4 and ∆∗. The
Stein-type estimators β̂SS and β̂S+ performed better than all other suggested estimators in
the wider range of ∆∗, especially as q increases. In short, simulation study endorsed the
analytical findings.
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Figure 5: Simulated relative efficiency of the estimators

5. Data Application

Our real-data application considered the four-dimensional multivariate data of geo-
graphical regions of Europe, based on monthly long-term interest rates in percentages. Four
countries of each region are considered; Central Europe: Austria, Germany, Hungry, and
Poland; Southern Europe: Spain, Italy, Portugal, and Slovenia; Western Europe: Belgium,
France, Netherlands, and Switzerland; Northern Europe: United Kingdom, Norway, Den-
mark, and Sweden. The data comprises of 100 observations for each country from August
2007 to November 2015, as reported by the Organisation for Economic Co-operation and
Development (OECD) website.
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The unrestricted estimator is obtained as β̂UE = (25.16, 27.20, 28.17, 20.45)T . Next,
we want to test the hypothesis that the kurtosis parameters are same for all four regions,
against the alternative that at least one of them is different from others. The test statis-
tic Ln is 18.42, therefore, we reject the null hypothesis at α = 0.05. The suggested esti-
mators are calculated for π = 0.50 and α = 0.05 as β̂RE = (25.24, 25.24, 25.24, 25.24)T ;
the pretest, shrinkage pretest and Stein-type estimators are equal to the unrestricted es-
timator, while linear shrinkage and improved Stein-type shrinkage estimators are given as
β̂LS = (25.20, 26.22, 26.71, 22.85)T and β̂S+ = (25.17, 27.10, 28.01, 20.71)T .

Bootstrap methodology is used to assess the performance of the suggested estima-
tors. Samples of equal size nl = 100 are selected from each country with replacement;
this process is repeated N = 5000 times. All the suggested estimators are computed for
π = 0.25, 0.50, 0.75 and α = 0.05, 0.10, 0.30. Simulated relative efficiencies of the estimators
under consideration relative to the unrestricted estimator are computed and reported in the
following table:

Table 2: Relative efficiencies of estimators for long-term interest rates data based
on multivariate bootstrap samples

α π β̂RE β̂LS β̂PT β̂SP β̂SS β̂S+

0.25 0.54 1.23 0.93 0.99 1.01 1.01
0.05 0.50 0.54 1.11 0.93 0.97 1.01 1.01

0.75 0.54 0.80 0.93 0.95 1.01 1.01

It is revealed from the above table that the SRE of β̂RE is less than 1, which is in line
with the analytical and simulated results; this confirms when the null hypothesis is not true,
the restricted estimator performs inferior to all other estimators. The SRE of β̂LS declines as
the value of π increases. β̂PT and β̂SP both have SREs smaller than 1 and their SREs remain
below 1 as π increases. However, we recommend using the positive part of the Stein-type
shrinkage estimator, since its performance is not drastically impacted by departure from the
null hypothesis.

6. Concluding Remarks

In this paper, we have discussed the asymptotic theory of simultaneous estimation of
kurtosis parameters for q multivariate normal distributions using the UPI that all kurto-
sis parameters are homogeneous. It is concluded that the performance of restricted and
pretest estimators is better when the null hypothesis of equal kurtosis parameters holds,
while the risk of the restricted estimator becomes unbounded as we move away from the null
hypothesis. The pretest estimator performs better than restricted and Stein-type shrinkage
estimators but only in a certain region of the parametric space. Stein-type estimators, out-
perform the unrestricted estimator in the entire parametric space. The improved Stein-type
shrinkage estimator is strongly recommended when the equality of parameters is uncertain
for q ≥ 4, while for small dimensions, shrinkage pretest estimator is a better choice.
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APPENDIX
Mathematical Proofs

Two important results cited in Lemma 3 of Shah et al. (2020) are used, as well as
some distributional results crucial for the derivation of mathematical results of appendices,
are given in the following theorem:

Theorem 7: Under the sequence of local alternatives {Hn} and assuming independence
among q components, following distributional result holds:

η1,n =
√
n
(
β̂UE − β

)
D−→ η1 ∼ Nq(0,V ),

η2,n =
√
n
(
β̂UE − β0

)
D−→ η2 ∼ Nq(δ,V ),

η3,n =
√
n
(
β̂RE − β0

)
D−→ η3 ∼ Nq(0, vJq),

η4,n =
√
n
(
β̂UE − β̂RE

)
D−→ η4 ∼ Nq(δ?,C),(

η2,n
η4,n

)
D−→
(
η2
η4

)
∼ N2q

{(
δ
δ?

)
,

(
V C
CT C

)}
,(

η3,n
η4,n

)
D−→
(
η3
η4

)
∼ N2q

{(
0
δ?

)
,

(
vJq 0
0 C

)}
,

where D−→ means convergence in distribution as n→∞.

Proof: See Appendices A1–A6 of Zahra et al. (2017 a) for detailed proof with some adjust-
ments in notations.

A1. Proof of Theorem 1

B(β̂LS) = lim
n→∞

E
[√
n(β̂LS − β(n))

]
= lim

n→∞
E
[
√
n

{
β̂UE − π(β̂UE − β̂RE)− β0 −

1√
n
δ

}]
= lim

n→∞
E [η2,n − δ − πη4,n] = E(η2)− δ − πE(η4) = −πδ?.

B(β̂SP ) = lim
n→∞

E
[√
n(β̂SP − β(n))

]
= lim

n→∞
E
[
√
n

{
β̂UE − π(β̂UE − β̂RE)I(Ln < cn,α)− β0 −

1√
n
δ

}]
= lim

n→∞
E [η2,n − δ − πη4,nI(Ln < cn,α)]

= E(η2)− δ − πE[η4I(χ2
q−1(∆) < χ2

q−1,α)] = −πE[η4I(χ2
q−1(∆) < χ2

q−1,α)]
= −πδ?Φq+1(χ2

q−1,α; ∆).
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B(β̂SS) = lim
n→∞

E
[√
n(β̂SS − β(n))

]
= lim

n→∞
E
[
√
n

{
β̂UE − (q − 3)L−1

n (β̂UE − β̂RE)− β0 −
1√
n
δ

}]
= lim

n→∞
E
[
η2,n − δ − (q − 3)η4,nL

−1
n

]
= E(η2)− δ − (q − 3)E[η4χ

−2
q−1(∆)]

= −(q − 3)δ?E[χ−2
q+1(∆)].

B(β̂S+) = lim
n→∞

E
[√
n(β̂S+ − β(n))

]
= lim

n→∞
E
[
√
n

{
β̂SS −

(
1− (q − 3)L−1

n

)
I(Ln < (q − 3))(β̂UE − β̂RE)− 1√

n
δ

}]
= lim

n→∞
E
[√
n
{
β̂SS − β(n) −

(
1− (q − 3)L−1

n

)
I(Ln < (q − 3))(β̂UE − β̂RE)

}]
= B(β̂SS)− lim

n→∞
E [η4,nI(Ln < (q − 3))] + (q − 3) lim

n→∞
E
[
η4,nD

−1
n I(Dn < (q − 3))

]
= B(β̂SS)− E

[
η4I(χ2

q−1(∆) < (q − 3))
]

+ (q − 3)E
[
η4χ

−2
q−1(∆)I(χ2

q−1(∆) < (q − 3))
]

= B(β̂SS)− δ?Φq+1(q − 3; ∆) + (q − 3)δ?E
[
χ−2
q+1(∆)I(χ2

q+1(∆) < (q − 3))
]

= −δ?
[
Φq+1(q − 3; ∆) + (q − 3)E[χ−2

q+1(∆)I(χ2
q+1(∆) > (q − 3))]

]
.


