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“Some bards have already published this history, some are now teaching it,
and others, in like manner, will hereafter promulgate it upon the earth.”

Abstract
Rao (1948) introduced the score test statistic as an alternative to the likelihood ratio

and Wald test statistics. In spite of the optimality properties of the score statistic shown in
Rao and Poti (1946), the Rao score (RS) test remained unnoticed for almost 20 years. Today,
the RS test is part of the “Holy Trinity” of hypothesis testing and has found its place in
Statistics and Econometrics textbooks and related software. Reviewing the history of the RS
test we note that remarkable test statistics proposed in the literature earlier or around the
time of Rao (1948) mostly from intuition, such as Pearson (1900) goodness-fit-test, Moran
(1948) I test for spatial dependence and Durbin and Watson (1950) test for serial correlation,
can be given RS test statistic interpretation. At the same time, recent developments in the
robust hypothesis testing under certain forms of misspecification, make the RS test an active
area of research in Statistics and Econometrics. From our brief account of the history of the
RS test we conclude that its impact in science goes far beyond its calendar starting point
with promising future research activities for many years to come.
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1. Prologue

C. R. Rao’s work was always inspired by some practical problems. In 1946, he was
deputed from the Indian Statistical Institute (ISI), Calcutta, to work on an anthropometric
project in the Museum of Anthropology and Ethnology at the Cambridge University, U.K.
While at Cambridge, Rao took the opportunity to contact R. A. Fisher, then the Belfour
Professor of Genetics, and registered for a Ph.D. degree in Statistics under Fisher’s guidance.
As recollected in Rao (2001), Fisher agreed under the condition that Rao spends time in
the Genetics Laboratory where Fisher was breeding mice to map their chromosomes. Rao
started by mating mice of different genotypes to collect the necessary data and additionally,
he was trying to develop appropriate statistical methodology to analyze the experimental
data. The problem was estimation of linkage parameters (recombination probabilities in the
various segments of the chromosomes) using data sets from different experiments, designed
in such a way that each data set had information on the same parameters. It was thus
necessary to test whether the parameters in different experiments are the same or not.

Rao wrote and published two papers based on this work. The first paper, Rao (1948),
deals with the general problem of testing simple and composite hypotheses concerning a
vector parameter. The test was based on the scores, derivatives of the log-likelihood function
with respect to the individual parameters. The paper was published in the Proceedings of
the Cambridge Philosophical Society, where he termed the test principle as a score test. In
this paper, we will refer to it as the Rao score (RS) test. The other paper, Rao (1950a),
contains the detail steps for analyzing the data involving the segregation of several factors
in mating of different genotypes. And it used the RS test for the meta-analysis of testing
the equality of parameters coming from different experimental data sets. That paper was
published in Fisher’s new journal Heredity. For more, see Rao (2001).

The rest of the paper is organized as follows. In Section 2, we start with the first
principle of testing, namely the Neyman-Pearson Lemma and derive the simplest version of
RS test and then discuss it in its full generality. There, we also provide RS test interpretation
to some of the classic tests in Econometrics and Statistics, such as the quintessential Pearson
(1900) goodness-fit-test, which was suggested mostly by pure intuition, but its theoretical
foundation can be buttressed by RS test principle. In Sections 3 and 4, we list a (somewhat
incomplete) catalogue of RS tests in Econometrics and Statistics. In Section 5, we outline
some of the possible ways an assumed probability model can be misspecified, and discuss
how the various RS tests can be robustified to make them valid under misspecification. We
close the paper in Section 6 (Epilogue) with some concluding remarks. At the outset let us
mention that while compiling the 75 years (from 1948 to 2023) history of the RS test, we
have included here some of our own past historical accounts and cited accordingly. Our aim
is to have a comprehensive review as far as possible at one place, like a one-stop-shopping
for the RS test history.

2. Score as an optimal test function: Rao and Poti (1946)

We start by introducing some notation and concepts. Suppose we have n independent
observations y1, y2, ..., yn on a random variable Y with density function f(y; θ), where θ is a
p × 1 parameter vector with θ ∈ Θ ⊆ Rp. It is assumed that f(y; θ) satisfies the regularity
conditions stated in Rao (1973, p.364) and Serfling (1980, p.144). The likelihood function is
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given by
L(θ,y) ≡ L(θ) =

n∏
i=1

f(yi; θ), (1)

where y = (y1, y2, . . . , yn) denotes the sample. Suppose we want to test H0 : θ = θ0 against
H1 : θ ̸= θ0 based on the sample y.

The foundation of the theory of hypothesis testing was laid by Neyman and Pearson
(1933) fundamental lemma. This lemma provides a way to find the most powerful (MP) and
uniformly most powerful (UMP) tests. According to the Neyman-Pearson (N-P) Lemma,
the MP critical region for testing H0 : θ = θ0 versus H1 : θ = θ1 having size α, is given by

ω(y) = {y | L(θ1) > κL(θ0)}, (2)

where κ is such that Pr[ω(y)|H0] = α.

If an MP test maximizes powers uniformly in θ1 ∈ Θ1 ⊆ Θ, the test is called UMP test.
Unfortunately, an UMP test rarely exists, and when it does not, there is no single critical
region best for all alternatives. We, therefore, try to find a critical region that is good for
alternatives close to the null hypothesis, called local alternatives, hoping that the region will
also be good for alternatives away from the null. Lehmann (1999, p.529) advocated for such
critical region when the sample size n is large, stating, “if the true value is at some distance
from θ0, a large sample will typically reveal this so strikingly that a formal test may be
deemed unnecessary.”

For a critical region ω(y), let us define the power function as

γ(θ) = Pr[ω(y)|θ] =
�
ω(y)

L(θ)dy. (3)

Assuming a scalar θ and that γ(θ) admits Taylor series expansion, we have

γ(θ) = γ(θ0) + (θ − θ0)γ′(θ0) + (θ − θ0)2

2 γ′′(θ∗), (4)

where θ∗ is a value in between θ and θ0. If we consider local alternatives of the form
θ = θ0 + n− 1

2 δ, 0 < δ < ∞, the third term will be of the order O(n−1). Therefore, from (4),
to obtain the highest power, we need to maximize

γ′(θ0) = ∂

∂θ
γ(θ)

∣∣∣∣∣∣
θ=θ0

= ∂

∂θ

�
ω(y)

L(θ0)dy =
�
ω(y)

∂

∂θ
L(θ0)dy, (5)

for θ > θ0, assuming the regularity conditions that allow differentiation under the sign of
intergration.

Using the generalized N-P Lemma given in Neyman and Pearson (1936), it is easy to
see that the locally most powerful (LMP) critical region for H0 : θ = θ0 versus H1 : θ > θ0,
is given by

ω(y) =
{

y
∣∣∣∣ ∂∂θL(θ0) > κL(θ0)

}
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or
ω(y) =

{
y
∣∣∣∣ ∂∂θ ln(L(θ0)) = ∂

∂θ
l(θ0) > κ

}
, (6)

where l(θ) denotes the log-likelihood function and κ is a constant such that the size of the
test is α. The quantity S(θ) = ∂l(θ)/∂θ is called the Fisher-Rao score function. The above
result in (6) was first discussed in Rao and Poti (1946), who stated that a LMP critical
region for H0 : θ = θ0 is given by

ω(y) = {y | κ1S(θ0) > κ2}, (7)

where κ2 is so determined that the size of the test is equal to a preassigned value α with κ1
as +1 or −1, respectively, for alternatives θ > θ0 and θ < θ0.

Let us define the Fisher information as

I(θ) = −E
[
∂2l(θ)
∂θ2

]
= V ar[S(θ)]. (8)

The result that under H0, S(θ0) is asymptotically distributed as normal with mean zero and
variance I(θ0), led Rao and Poti (1946) to suggest a test based on S(θ0)/

√
I(θ0) as standard

normal [or S2(θ0)/I(θ0) as χ2
1], for large n.

2.1. From Rao and Poti (1946) to Rao (1948): Test for the multiparameter
case

Rao and Poti (1946) can be viewed as a precursor to Rao (1948). Generalization of
the LMP test in (7) to the multiparameter case (p ≥ 2) is not trivial. There will be scores
for each individual paramter, and the problem is to combine them in an “optimal” way. Let
H0 : θ = θ0, where now θ = (θ1, θ2, ..., θp)′ and θ0 = (θ10, θ20, ..., θp0)′. Consider a scalar linear
combination

p∑
j=1

δj
∂l(θ)
∂θj

= δ′S(θ), (9)

where δ = (δ1, δ2, ..., δp)′ is a fixed vector and test the hypothesis H0δ : δ′θ = δ′θ0 against
H1δ : δ′θ ̸= δ′θ0, δ ∈ Rp.

We rewrite the Fisher information in (8) as

I(θ) = −E
[
∂2l(θ)
∂θ∂θ′

]
. (10)

Asymptotically, under H0, δ′S(θ0) is distributed as normal, with mean zero and variance
δ′I(θ0)δ. Thus if δ’s were known, a test could be based on

[δ′S(θ0)]2

δ′I(θ0)δ
, (11)

which under H0 will be distributed as χ2
1 as in Rao and Poti (1946). Note that our H0 : θ = θ0

for p ≥ 2 can be expressed as H0 ≡ ⋂
δ∈Rp

H0δ, i.e., the multiparameter testing problem can be
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decomposed into a series of single-parameter problems. To obtain a linear function like (9),
Rao (1948) maximized (11) with respect to δ. Using the Cauchy-Schwarz inequality

(u′v)2

u′Au
≤ v′A−1v, (12)

where u and v are column vectors and A is a non-singular matrix, we have

sup
δ∈Rp

[δ′S(θ0)]2

δ′I(θ0)δ
= S(θ0)′I(θ0)−1S(θ0). (13)

In (13), the supremum reaches at δ = I(θ0)−1S(θ0) and this provides an optimal linear
combination of scores.

Roy (1953) used Rao’s maximization technique (13) to develop his union-intersection
(UI) method of testing. Let H0 ≡ ⋂

j∈J
H0j, where J is an index set. Roy’s UI method gives

the rejection region for H0 as the union of rejection regions for all H0j, j ∈ J . Consider
testing H0δ : δ′θ = δ′θ0 against H1δ : δ′θ ̸= δ′θ0, δ ∈ Rp. Let H0 = ⋂

δ∈Rp
H0δ and H1 ≡ ⋂

δ∈Rp
H1δ.

If Tδ is the likelihood ratio (LR) statistic for testing H0δ against H1δ, then

T = sup
δ∈Rp

Tδ (14)

is Roy’s LR statistic for testing H0 against H1. This is the same principle that was used by
Rao (1948) to convert a “multivariate” problem into a series of “univariate” ones, as we have
seen in equation (13).

When the null hypothesis is composite, like H0 : h(θ) = c, where h(θ) is an r × 1
vector function of θ with r ≤ p, the general form of the RS test statistic is

RS = S(θ̃)′I(θ̃)−1S(θ̃), (15)

where θ̃ is the restricted maximum likelihood estimator (MLE) of θ, i.e., h(θ̃) = c. Asymp-
totically, under H0, the RS test statistic is distributed as χ2

r. Therefore, we observe two
optimality principles behind the RS test; first, in terms of LMP test as given in (6), and
second, in deriving the “optimal” direction for the multiparameter case, as in (13).

Rao (1948) suggested the score test as an alternative to the Wald (1943) statistic,
which for testing H0 : h(θ) = c is given by

W =
[
h(θ̂) − c

]′ [
H(θ̂)′I(θ̂)−1H(θ̂)

]−1 [
h(θ̂) − c

]
, (16)

where θ̂ is the unrestricted MLE of θ, and H(θ) = ∂h(θ)/∂θ is a r×p matrix with full column
rank r. Rao (1948, p.53) stated that his test (15), “besides being simpler than Wald’s has
some theoretical advantages.” For more on this see Bera (2000) and Bera and Bilias (2001).

Neyman and Pearson (1928) suggested their LR test as

LR = 2
lnL(θ̂)

L(θ̃)

 = 2
[
l(θ̂) − l(θ̃)

]
. (17)
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Their suggestion did not come from any search procedure satisfying an optimality criterion.
It was purely based on intuitive grounds; as Neyman (1980, p.6) stated, “The intuitive
background of the likelihood ratio test was simply as follows: if among the contemplated
admissible hypotheses there are some that ascribe to the facts observed probabilities much
larger than that ascribed by the hypothesis tested, then it appears ‘reasonable’ to reject the
null hypothesis.”

The three statistics RS, W, and LR, given respectively in (15), (16), and (17) are
referred to as the “Holy Trinity.” These tests can be viewed as three different distance mea-
sures between H0 and H1. When H0 is true, we should expect the restricted and unrestricted
MLEs of θ, namely θ̃ and θ̂ to be close, and likewise the log-likelihood functions l(θ̃) and
l(θ̂), respectively. The LR statistic in (17) measures the distance through the log-likelihood
function and is based on the difference l(θ̂) − l(θ̃). To see the intuition behind the RS test,
note that S(θ̂) = 0 by construction, and thus we should expect S(θ̃) to be cloes to zero if
H0 is true. Therefore, the basis of the RS test is S(θ̃) − S(θ̂) = S(θ̃), distance between θ̃

and θ̂ measured through the function S(θ). Finally to test H0 : h(θ) = c, W considers the
distance directly in terms of h(θ), and is based on

[
h(θ̂) − c

]
−
[
h(θ̃) − c

]
= h(θ̂) − c, where

h(θ̃) = c by construction, as we see in expression (16). It is interesting to note the similarity
between the Wald and the RS tests based on h(θ̂) and S(θ̃), respectively. Therefore the
RS test statistic is closer to W than LR. Therefore, it makes sense that Rao (1948, p.53)
mentioned his test as an alternative to W.

The interrelationships among these three tests can be brought home to the students
of Statistics through the following amusing story [see Bera and Premaratne (2001, p.58)]:
Once around 1946 Ronald Fisher invited Jerzy Neyman, Abraham Wald, and C.R. Rao to his
Cambridge University lodge for afternoon tea. During their conversation, Fisher mentioned
the problem of deciding whether his dog, who had been going to an “obedience school” for
some time, was disciplined enough. Neyman quickly came up with an idea: leave the dog free
for some time and then put him on leash. If there is not much difference in his behavior, the
dog can be thought of as having completed the course successfully. Wald, who lost his family
in the concentration camps, was adverse to any kind of restrictions and simply suggested
leaving the dog free and seeing whether it behaved properly. Rao, who had observed the
nuisances of stray dogs in Calcutta streets, did not like the idea of letting the dog roam freely,
and suggested keeping the dog on a leash at all times and observing how hard it pulls on
the leash. If it pulled too much, it needed more training. That night when Rao was back in
his Cambridge dormitory after tending Fisher’s mice at the genetics laboratory, he suddenly
realized the connection of Neyman and Wald’s recommendations to the Neyman–Pearson
LR and Wald tests, respectively. He got an idea and the rest, as they say, is history.

At this stage, it will be instructive to provide a geometric illustration highlighting the
fundamental connections and contrasts among the three tests [see Bera (1983, pp.56-60)].
For simplicity, let us consider the case of scalar θ, i.e., p = 1, and that the null hypothesis
is H0 : θ = θ0. In Figure 1, we plot the score function S(θ) = dl(θ)/dθ against θ, the solid
curved line. The unrestricted MLE θ̂ is obtained by setting S(θ̂) = 0, i.e., at the point D.
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Figure 1: Geometry of LR, W and RS statistics

From the Figure 1, it is easily seen that

l(θ̂) − l(θ0) =
� θ̂

θ0

S(θ)d(θ) =

= Area under the curve S(θ) from θ0(point C) to θ̂(point D). (18)

Therefore,
LR = 2[l(θ̂) − l(θ0)] = 2 · Area(CDF ). (19)

For our particular case, h(θ) = θ−θ0, H(θ) = 1 and c = 0. Thus, W in (16) can be expressed
as

W = (θ̂ − θ0)2I(θ̂) = CD2 · I(θ̂). (20)

I(θ̂) can be obtained from −d2l(θ)/dθ2 = −dS(θ)/dθ, evaluated at θ = θ̂, i.e., from tanϕθ̂ =
CG/CD. Therefore,

W = CD2 · CG
CD

= CD · CG = 2 · Area(△CDG). (21)

On the other hand, the RS test will be based on S(θ) at θ0, i.e., on the distance CF. The
variance of S(θ0) can be estimated by −dS(θ0)/dθ = tanϕθ0 = CF/CE. Hence,

RS = CF 2.
CE

CF
= CF · CE = 2 · Area(△CEF ). (22)
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From above, we can note the following features of the three tests. First, since the
tests are based on three different areas in general, they will yield conflicting inference if the
same critical value is used [see Berndt and Savin (1977)]. Second, the RS tests depends only
on S(θ) and the slope of S(θ) at θ0. We can draw many curved lines through F with the same
slope at F, and the dotted line A′FD′ is an example. This implies that there may be other
S(θ) functions, i.e., other likelihood function representing different alternative hypothesis,
with the same slope at θ0, giving rise to the same RS test statistic. In the literature, this
property is known as invariance property of the RS test principle [see Godfrey (1988, p.70)].
Finally, for both the RS and W tests, the variances can be calculated in a number of ways
which are asymptotically equivalent. This can lead to different versions of the test statistics.
It is not clear which versions will give better results in finite samples.

Example 1: Let us start with a simple example where yi ∼ IIDN(θ, 1), i = 1, 2, . . . , n,
and we test H0 : θ = θ0 = 0 against θ > 0. Here the log-likelihood and score functions are
respectively

l(θ) = Constant − 1
2

n∑
i=1

(yi − θ)2,

and S(θ) =
n∑
i=1

(yi − θ) = n(ȳ − θ),
(23)

where ȳ = ∑
i yi/n. Note that here S(θ) is linear in θ, and thus from Figure 1, all the three

tests LR, W, and RS will be identical. Given that S(θ0) = nȳ with V ar[S(θ0)] = n, we will
reject H0, if

√
nȳ > zα, where zα is the upper α percent cut-off point of standard normal

distribution. For fixed n, the power of this test goes to 1 as θ → ∞. Hence the score test√
nȳ > zα is not only LMP, but also UMP for all θ > 0.

Example 2: [Ferguson (1967, p.235)] Consider testing for the median of a Cauchy distri-
bution with density

f(y; θ) = 1
π

· 1
1 + (y − θ)2 , −∞ < y < ∞. (24)

Since here I(θ) = n/2, the RS test will reject H0 : θ = θ0 against H1 : θ > θ0, if

S(θ0)√
I(θ0)

=
√

2
n

n∑
i=1

2(yi − θ0)
1 + (yi − θ0)2 > zα. (25)

As θ → ∞ with n remaining fixed, min(yi − θ0)
p→ ∞, and S(θ0)/

√
I(θ0)

p→ 0. Thus the
power of the test tends to zero as θ → ∞. Therefore what works for local alternatives may
not work for not-so-local alternatives. This is in contrast to Example 1 where the LMP test
is also the UMP.

In the example below we illustrate one of the most famous tests in the Statistics
literature that was suggested long before 1948 and the theoretical foundation of which can
be buttressed by the RS test principle.

Example 3: [Pearson (1900) Goodness-of-fit test]. Consider a multinomial distribution with
p classes and let the probability of an observation belonging to the j-th class be θj(≥ 0),
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j = 1, 2, . . . , p, so that ∑p
i=1 θj = 1. Denote the observed frequency of the j-th class by nj

with ∑p
j=1 nj = n. We are interested in testing θj = θj0, j = 1, 2, . . . , p, where θj0 are known

constants. Pearson (1900) suggested the statistic

P =
p∑
j=1

(nj − nθj0)2

nθj0
=
∑ (O − E)2

E
, (26)

where O and E denote respectively, the observed and expected frequencies. Given the
profound importance of P in almost all branches of science, we demonstrate the theoretical
underpinnings of P based on the RS test principle. The log-likelihood function, score and
information matrix are respectively, given by [see Bera and Bilias (2001, p.17)]

l(θ) = Constant+
p∑
j=1

nj ln(θj) (27)

S(θ)
[(p−1)×1]

=


n1
θ1

− np

θp
n2
θ2

− np

θp

· · ·
np−1
θp−1

− np

θp

 (28)

and
I(θ)

[(p−1)×(p−1)]
= n

[
diag

(
1
θ1
,

1
θ2
, . . . ,

1
θp−1

)
+ 1
θp

11′
]

(29)

where 1 = (1, 1, . . . , 1)′ is a (p − 1) × 1 vector of ones. We end up with effectively (p − 1)
parameters since ∑p

j=1 θj = ∑p
j=1 θj0 = 1. Using the above expressions, it is easy to see that

S(θ0)′I(θ0)−1S(θ0) = P, (30)

where θ0 = (θ10, θ20, ..., θp0)′ [see Rao (1973, p.442) and (Cox and Hinkley, 1974, p.316)]. The
coincidence that P is same as the RS test, is an amazing result. Pearson (1900) suggested
his test mostly based on intuitive grounds almost 50 years before Rao (1948).

3. Some applications of the RS test in econometrics

RS test was well ahead of its time. It went unnoticed for very many years. It is fair to
say that econometricians can claim major credit in recognizing its importance and applying
the RS test in several useful contexts and coming up with closed form, neat test statistics.
Rao himself acknowledged this fact by writing [see Rao (2005, p.15)] “I am gratified to
see the large number of papers contributed by econometricians on the application of the
score statistic to problems in econometrics and the extensions and improvements they have
made.” More recently, statisticians are catching up with innovative applications. To obtain a
quantitative perception of the influence of Rao (1948), we plot the yearly citations for the last
75 years in Figure 2. The corresponding cumulative citations are depicted in Figure 3. First
thing to note is that the total number of citations in the last 75 years is only 980, apparently
a very low number for such a seminal paper. Of course, we need to take into consideration of
the fact that there are many papers, especially in the Statistics literature, that use the score
test without making any reference to Rao (1948). Second, there are only a handful citations
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during the first thirty years, i.e., until around 1978. That was the time econometricians
recognized the usefulness of the Rao test principle, and used it in developing several model
specification tests. There was another surge in its use after another 30 years, i.e., around
2008, in both the Statistics and Econometrics literature. Finally, from both Figures 2 and
3, it is clear that overall, the number of citations is still going up at an increasing rate,
indicating continuing influence of Rao (1948), as far as the citation numbers go.

Figure 2: Yearly number of citations
of Rao (1948): 1948-2023

Figure 3: Cumulative number of ci-
tations

Byron (1968) was probably the first to apply the RS test in Econometrics. He used
Silvey (1959) Lagrange multiplier (LM) version along with the LR statistic for testing ho-
mogeneity and symmetry restrictions in the demand system. In the Econometrics literature,
the RS test is known as the LM test - the terminology came from Silvey (1959). Note that
the restricted MLE θ̃ under the restriction H0 : h(θ) = c can be obtained from the first order
condition of the Lagrangian function

L = l(θ) − λ′[h(θ) − c], (31)

where λ is an r × 1 vector of Lagrange multipliers. The first order conditions are

S(θ̃) −H(θ̃)λ̃ = 0 (32)

h(θ̃) = c, (33)

where H(θ) = dh(θ)/dθ. Therefore, from (32) we have S(θ̃) = H(θ̃)λ̃. Given that H(θ)
has full rank, S(θ̃) = 0 is equivalent to λ̃ = 0. These multipliers can be interpreted as the
implicit cost (shadow prices) of imposing the restrictions h(θ) = c. It can be shown that

λ̃ = dl(θ̃)
dc

, (34)

i.e., the multipliers give the rate of change of the maximum attainable value of the log-
likelihood function with respect to the change in constraints. If H0 : h(θ) = c is true and
l(θ̃) gives the optimal value, λ̃ should be close to zero. Given this “economic” interpretation
in terms of Lagrange multipliers, it is not surprising that econometricians prefer the term
LM rather than RS. In terms of Lagrange multipliers, (15) can be expressed as

RS = LM = λ̃′H(θ̃)′I(θ̃)−1H(θ̃)λ̃. (35)
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After Byron (1968), it took another decade for econometricians to realize the poten-
tial of the RS test. The earlier notable contributions include Savin (1976), Berndt and Savin
(1977), Breusch (1978, 1979) and Godfrey (1978a,b,c). Possibly Breusch and Pagan (1980)
had been the most influential. They collected relevant research reported in the Statistics
literature, presented the RS test in a general framework in the context of evaluating various
econometric models, and discussed many applications. In a full length research monograph,
Godfrey (1988) provided a comprehensive account of most of the available RS tests in Econo-
metrics. Bera and Ullah (1991) and Bera and Bilias (2001) demonstrated that many of the
commonly used specification tests could be given a score-test interpretation. For the last
two-score years the RS tests had been the most common items in econometricians’ kit for
testing tools. It is not hard to understand the popularity of the score test principle in eco-
nomics. In most cases, the algebraic forms of W and LR tests can hardly be simplified
beyond their original formulae (16) and (17). On the other hand, in the majority of the
cases the RS test statistics can explicitly be reduced to neat and elegant explicit formulae
enabling its easy incorporation into computer software.

We will not make any attempt to provide a comprehensive list of applications of the
RS test in Econometrics, for there are far too many. For instance, consider the workhorse of
basic econometric modeling, the linear regression model:

yi = x′
iβ + ϵi, (36)

where yi is the i-th observation on the dependent variable, xi is the i-th observation on
k exogenous variables and ϵi ∼ IIDN(0, σ2), i = 1, 2, . . . , n. The ordinary least squares
(OLS) estimation and the related hypotheses tests are based on the four basic assumptions:
correct linear functional form; the assumptions of disturbance normality; homoskedasticity;
and serial independence. Just to name some of the uses of the RS test principle, test for
normality was derived by Bera and Jarque (1981) and Jarque and Bera (1987); Breusch and
Pagan (1979) proposed a test for homoskedasticity; and Godfrey (1978a,b) developed tests
for serial independence which are very close to the earlier Durbin and Watson (1950) test.

To see the attractiveness of the RS test, let us briefly consider the popular Jarque
and Bera (JB) test for normality. Bera and Jarque (1981) started with the Pearson (1895)
family of distributions for the disturbance term ϵi in (36). That means if the pdf of ϵi is
f(ϵi), we can write

d log f(ϵi)
dϵi

= c1 − ϵi
σ2 − c1ϵi + c2ϵ2

i

, i = 1, 2, . . . , n, (37)

where c1 and c2 are constants. The null hypothesis of normality can be stated as H0 : c1 =
c2 = 0 in (37). Given the complexity of ML estimation of σ2, c1, and c2 in the Pearson family
of distributions, W and LR tests are ruled out from a practical point of view. However, the
score functions corresponding to c1 and c2 in (37), evaluated under the normality assumption,
are given respectively by

S(c̃1) = n
√
b1

3 (38)

and
S(c̃2) = n

4 (b2 − 3), (39)
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where
√
b1 = m3/m

3/2
2 and b2 = m4/m

2
2 with mj = 1

n

∑n
i=1 ϵ̃

j
i , ϵ̃i = yi −x′

iβ̃ as OLS residuals,
j = 2, 3, 4. For large n, under normality

E
[√

b1

]
= 0, V ar

[√
nb1

]
= 6, (40)

E [b2] = 3, V ar
[√
nb2

]
= 24, (41)

and they are asymptotically normally distributed. Thus, a simple test statistic for normality
is given by

JB = n

[
(
√
b1)2

6 + (b2 − 3)2

24

]
, (42)

which is asymptotically distributed as χ2
2. It turns out that this test was mentioned by

Bowman and Shenton (1975) but was hardly used in practice due to its lack of theoretical
underpinnings. The RS test principle uncovered the theoretical justification of (42), ensuing
the asymptotic optimality of the test. As it is obvious, JB is based on the two moments, third
and fourth. One could have started with these two moments directly without going through
the full derivations. From that point of view this RS test has a moment test interpretation.

It is quite common to express specification tests in Econometrics as moment tests.
In a way “any” moment test can be obtained as a RS test under a suitably defined density
function. To see this, let us write the r moment restrictions as

Ef [m(y; θ)] = 0, (43)
where Ef [·] means that (43) is true only when f(y; θ) is the correct pdf. A test for the
hypothesis H0 : Ef [m(y; θ)] = 0 can be based on the estimate of the sample counterpart of
Ef [m(y; θ)], namely,

1
n

n∑
i=1

m(yi; θ). (44)

Now consider an auxiliary density function
f ∗(y; θ, γ) = f(y; θ) exp[γ′m(y; θ) − ϕ(θ, γ)], (45)

where ϕ(θ, γ) = ln
�

exp[γ′m(y; θ)]f(y; θ)dy, with γ as (r × 1) parameter vector.

Note that if f(y; θ) is the correct pdf, then γ = 0 in (45). The log-likelihood function
under the alternative hypothesis is

l∗(θ, γ) =
n∑
i=1

ln f ∗(yi; θ, γ). (46)

Therefore, the score function for testing γ = 0 in (45) is given by

∂l∗(θ, γ)
∂γ

∣∣∣∣∣
γ=0

=
n∑
i=1

m(yi, θ), (47)

and it provides the identical moment test as in (44). This interpretation of the moment test
as a score test was first noted by White (1994). It is easy to see that there are many choices
of auxiliary pdf f ∗(y; θ, γ) and the score test will be invariant with respect to these choices,
as depicted in Figuire 1. The LR and W tests, however, will be sensitive to the forms of
f ∗(y; θ, γ). This ends our coverage of the use of the RS test in Econometrics.



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

RAO’s SCORE TEST: A BRIEF HISTORY 413

4. Some applications of the RS test in statistics

Rao (1950b) proposed a sequential test of null hypotheses based on the score statistic
and his work on locally most powerful (LMP) tests in the case of one-sided alternative
hypotheses. His proposal was a reaction to Wald (1945) sequential probability ratio test
(SPRT) which was based on the idea of likelihood ratio test for the fixed sample case.

Wald’s SPRT statistic was devised to discriminate between different alternative hy-
potheses for the value of the unknown parameter θ. On the other hand, Rao (1950b) seeks
to test a null hypothesis H0 : θ = θ0 against a one-sided alternative hypothesis H1 : θ > θ0
with a test statistic that depends only on the null value.

For the fixed sample case, with sample of size N , the LMP test suggested by Rao and
Poti (1946) is defined by [also see equation (6)]

P ′
N(θ0) ≥ µPN(θ0), (48)

where P ′
N(θ0) is the first derivative of PN(θ) at θ = θ0, with µ chosen so as to maintain

Type-I error at a predetermined level. Motivated by this result, Rao (1950b) proposes a
sequential test of the form

P ′
n(θ0) ≥ A(N)Pn(θ0), (49)

with n ≤ N , A(N) a properly determined constant depending on the overall level of sig-
nificance, and N being the upper limit to the number of observations. According to this
sequential testing scheme, the sampling stops with rejection of the null hypothesis, at the
smallest value of n for which the inequality (49) holds true. If by the Nth sampled unit (49)
is not realized, the null is not rejected.

Berk (1953) proved that the sequential score tests against a one-sided alternative,
where the stopping rule is the first time a certain random walk exceeds a bounded interval,
are LMP tests asymptotically.

Sequential testing procedures that perform interim analyses during the evolution of
the experiment, with the goal of obtaining the result earlier than the termination time sug-
gested by the fixed sample analysis due to time or monetary cost considerations or ethical
reasons, are easier validated with the use of score-based test statistics rather than the ana-
logues of LR statistics. We may refer to chapters 9-11 of Sen (1981) for the role of score
processes in sequential nonparametrics, where it is mentioned (p.339) “it is comparatively
simpler to verify these regularity conditions [i.e., for the score] than those for the likelihood
function.”

Lombardi (1951), in a thesis on how to select a panel of judges for taste testing
and quality evaluation using scientifically sound methods, appears to be one of the first
applications of the sequential testing using Rao (1950b) methodology and its comparison
with Wald’s approach.

To diagnose the potential ability of candidate judges and to decide on the selection of
a taste panel, each candidate judge is required to perform a prespecified number of sample
comparisons. The number of sample comparisons that should be performed by each candi-
date judge before reaching to a decision on who to include in the taste panel is always a
concern.
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Bradley (1953), in conjunction with Lombardi, adapted Rao’s method to binomial dis-
tribution, and is an early effort to communicate these statistical procedures for the selection
of a taste panel to food technologists.

What makes the Rao procedure relatively more appropriate than that of Wald is
that a limit to the testing of any one potential judge may be set. In this application, N
denotes the maximum number of tests to be given to any judge. As it is noted by (Bradley,
1953, p.28): “The theory of the procedure needs further investigation since its properties
are not well known. However, when it is applied to sequences of triangle tests, apparently
satisfactory results are obtained.”

In another context, time-series researchers use sequential analysis to determine and
test for structural breaks. In a recent application, Bucci (2024) proposes a sequentially
computed score statistic to test for the number of regimes in multivariate nonlinear models.

4.1. The role of the score statistic in survival analysis

Another context where the RS test statistic has found fruitful applications for in-
ference is the analysis of survival data. The semiparametric proportional hazards model
proposed by Cox (1972) is a standard tool of analysis for time-to-an-event data met in
medical, engineering and economic applications. The parameter estimation using the partial
likelihoood of Cox (1975) initiated an intense research activity for the validation of inference.
The majority of the test statistics are special cases of weighted score statistics for different
weighting functions and different type of covariates.

The partial likelihood score statistic has a natural martingale characterization. By
rewriting the model within the counting process framework, Andersen and Gill (1982) were
able to obtain a general asymptotic theory of the score statistic and the associated estimator.
In a research related to sequentially computed score test statistic for repeated significance
tests, Tsiatis (1981) established the joint asymptotic normality of efficient scores test for the
proportional hazards model calculated over time. In a fundamental breakthrough, Sellke
and Siegmund (1983) showed that the score process (over time) of the partial likelihood
is approximated by a suitable martingale and thus behaves asymptotically like Brownian
motion.

Bilias (2000) offered an application of a repeated significance test in a retrospective
analysis of the Pennsylvania ‘Reemployment Bonus’ controlled experiments conducted by the
US Department of Labor. Their main purpose was to determine whether the offer of a bonus
amount to the unemployment insurance (UI) claimants, provided that they find a job with
some required permanence within a given period of time, can act as an incentive for more
intensive job-seeking with subsequent reduction of the unemployment spells. The response
of primary interest is the length of insured unemployment spell and it is assumed that it
follows a proportional hazard regression model. The statistic for measuring the effect of the
various bonus packages on the duration of insured unemployment relative to the existing
scheme is the partial likelihood score statistic. In carrying out sequential analysis, the score
statistic is evaluated repeatedly, at different points in chronological time, each time with the
available data. The retrospective sequential analysis concluded that the experiment could
be concluded earlier than the fixed sample analysis with gains in time and monetary savings.
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5. Robust RS tests under distributional and parametric misspecifications

As we have narrated in the previous sections the success of the RS test had been
phenomenal. However the main problem in these specification tests is that they are developed
under the assumption that the underlying probability model is correctly specified. When the
assumed model is misspecified, it is well known that the RS test loses its local optimal
properties.

While discussing the problem in statistical hypothesis testing, Haavelmo (1944, pp.65-
66) stated, “Whatever be the principles by which we choose a “best” critical region of size
α, the essential thing is that a test is always developed with respect to a given fixed set
of possible alternatives Ω0.” Haavelmo called Ω0, the a priori admissible hypotheses and
according to him, a test is not robust if we shift our attention to another admissible set Ω′

(that may be obtained by extending Ω0 to include new/different alternatives), for which the
proposed test has poor size and power properties.

Very often it is difficult to interpret the results of a test applied to a misspecified
model. For instance, while testing the significance of some of the regression coefficients in
the linear regression models, the results are not easily interpretable when a nonlinear model
is the appropriate one [see, White (1980), Bera and Byron (1983) and Byron and Bera
(1983)]. In the Statistics and Econometrics literature, most emphasis has been put on the
minimization of type-I and type-II error probabilities. There are, however, only a few works
that seriously consider the consequences and suggest remedies of misspecifying the a priori
admissible hypothesis – which can be called the type-III error.

Note that the model under our a priori admissible hypothesis could be misspecified
in a variety of ways. Here we consider only two kinds: distributional and parametric. In the
former case, the assumed probability density function differs from the true data generating
process (DGP). Kent (1982) and White (1982) analyzed this case and suggested a modified
version of the RS test that involves adjustment of the variance of the score function. In the
parametric misspecification case, the dimension of the assumed parameter space does not
match with the true one. Bera and Yoon (1993) developed a modified RS test that is valid
under the local parametric misspecification.

5.1. Robust RS test under distributional misspecification

Let the true DGP be described by the unknown density g(y) and f(y; θ) be our as-
sumed distribution. The RS test statistic given in (15) is not valid when g(y) and f(y; θ)
differ. This is because some of the standard results breakdown under distributional misspec-
ification. For instance, consider the information matrix (IM) equality:

Ef

[
∂ ln f(y; θ)

∂θ
· ∂ ln f(y; θ)

∂θ′

]
= Ef

[
−∂2 ln f(y; θ)

∂θ∂θ′

]
, (50)

where Ef [·] denotes expectation under f(y; θ). Let us now define

J(θg) = nEg

[
∂ ln f(y; θ)

∂θ
· ∂ ln f(y; θ)

∂θ′

]
(51)

K(θg) = nEg

[
−∂2 ln f(y; θ)

∂θ∂θ′

]
, (52)
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where θg minimizes the Kullback-Leibler information criterion [see White (1982)]

IKL = Eg

[
ln g(y)
f(y; θ)

]
. (53)

One can easily see that J(θg) ̸= K(θg), in general.

Example 4: Suppose we take f(y; θ) ≡ N(µ, σ2), and let the DGP g(y) satisfy
Eg[y] = µ, Eg[y − µ]2 = σ2, Eg[y − µ]3 = µ3 and Eg[y − µ]4 = µ4. Then it is easy to show
that

J(θg) =
[

1
σ2

µ3
2σ6

µ3
2σ6

µ4
4σ2 − 1

4σ4

]
(54)

and

K(θg) =
[

1
σ2 0
0 1

2σ2

]
. (55)

Hence, J(θg) = K(θg) if and only if µ3 = 0 and µ4 = 3σ4. We can clearly see the connection
of these conditions and the JB test for normality given in (42).

Due to this divergence between J and K, and noting that we defined the information
matrix I(θ) in (10) by taking expectation under f(y; θ) instead of under the DGP g(y),
the standard RS test in (15) is not valid. Let us define an estimator of θ by maximizing a
likelihood function based on the misspecified density f(y; θ) in place of the unknown DGP
g(y). Such an estimator is called quasi-MLE (QMLE). An early reference to QMLE can be
found in Koopmans et al. (1950, p.135) [for more on this see Bera et al. (2020)]. We will
denote QMLE of θ (under H0) by θ̃. Kent (1982) and White (1982) suggested the following
robust form of the RS test statistic for testing the H0 : h(θ) = c:

RS∗(D) = S(θ̃)′K(θ̃)−1H(θ̃)[H(θ̃)′B(θ̃)H(θ̃)]H(θ̃)′K(θ̃)−1S(θ̃), (56)

where H(θ) = ∂h(θ)/∂θ, B(θ) = K(θ)−1J(θ)K(θ)−1 and the notation RS∗(D) is used to
signify robust RS test statistic under distributional misspecification.

Under H0 : h(θ) = c, RS∗(D) is asymptotcally distributed as χ2
r even under distri-

butional misspecification, that is, when the assumed density f(y; θ) does not coincide with
the true DGP g(y). This approach of finding the asymptotically correct formula for variance
has its origin in Koopmans et al. (1950, pp.148-150); for more on this see Bera et al. (2021).
Expression (56) can be simplified if the parameter vector θ (p × 1) can be partitioned as
θ = (γ′, ψ′)′ where γ and ψ have dimensions m and r, respectively, m + r = p, and we test
H0 : ψ = ψ∗ (say). Let us also partition the score function S(θ) and J(θ) [similarly K(θ)] as

S(θ) = ∂l(θ)
∂θ

=
∂l(θ)

∂γ
∂l(θ)
∂ψ

 =
[
Sγ(θ)
Sψ(θ)

]
(say) (57)

and

J(θ) =
[
Jγ Jγψ
Jψγ Jψ

]
. (58)
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While testing H0 : ψ = ψ∗, under this setup h(θ) = ψ−ψ∗ and H(θ) = [0r×(p−r), I(r×r)], and
we can express RS∗(D) in (56) as [see also Bera et al. (2020)]

RS∗
ψ(D) = S ′

ψ(θ̃)
[
Kψ(θ̃) + Jψγ(θ̃)J−1

γ (θ̃)Kγ(θ̃)J−1
γ (θ̃)Jγψ(θ̃)

−Jψγ(θ̃)J−1
γ (θ̃)Kγψ(θ̃) −Kψγ(θ̃)J−1

γ (θ̃)Jγψ(θ̃)
]−1

Sψ(θ̃), (59)

where θ̃ = (γ̃′, ψ′
∗)′, the restricted MLE under H0 : ψ = ψ∗.

Example 5: In (37) the parameters c1 and c2 of the Pearson family of distributions can
be treated, respectively, as the “skewness” and “kurtosis” parameters. Suppose we test the
symmetry ignoring the (excess) kurtosis. Then we can start with the system (37) with c2 = 0,
that is,

d log f(ϵi)
dϵi

= c1 − ϵi
σ2 − c1ϵi

. (60)

After some derivation, it can be shown that the standard RS test for c1 = 0 is given by

RSc1 = n
(
√
b1)2

6 , (61)

which is essentially the first part of JB in (42). If f(ϵi) in (60) is not the true DGP, RSc1 will
not be valid; in particular, the asymptotic variance formula used in (61), V ar(

√
nb1) = 6 is

incorrect [see also equation (40)]. For instance in the presence of excess kurtosis, there will be
proportionately more outliers, resulting in higher variance, and thus “6” will underestimate
the true variance of

√
nb1. After incorporating the variance correction as in RS∗

ψ(D) in (59)
the robust RS test statistic can be written as [for further details see Premaratne and Bera
(2017)]:

RS∗
c1(D) = n

(
√
b1)2

[9 +m6m
−3
2 − 6m4m

−2
2 ]

, (62)

where mj = 1
n

∑n
i=1 ϵ̃

j
i , j = 2, 4, 6. From (62) we can write the population counterpart of the

V ar(
√
nb1) as

V ar(
√
nb1) = 9 + µ6µ

−3
2 − 6µ4µ

−2
2 , (63)

where µj denotes the j-th population moment of ϵ. Therefore, the construction of the robust
RS test statistic RS∗

c1(D) indicates that the true variance of
√
nb1 that is valid under excess

kurtosis is given by (63). If we impose normality, µ6 = 15σ6 and µ4 = 3σ4, then with
µ2 = σ2, (63) reduces to V ar(

√
nb1) = 9 + 15 − 6 × 3 = 6, as in (61).

Example 6: Consider the test for homoskedasticity under the regression framework of (36),
where we now explicitly specify the heteroskedastic structure as V ar(ϵi) = σ2

i = σ2 + δ′zi,
where δ is a r × 1 vector and zi’s are fixed exogenous variables, i = 1, 2, . . . , n. Assuming
normality of ϵi the RS statistic for testing homoskedasticity hypothesis H0 : δ = 0 is given
by [see Breusch and Pagan (1979)]

RSδ = ν ′Z(Z ′Z)−1Z ′ν

2σ̃4 , (64)

where νi = ϵ̃2
i − σ̃2, ν = (ν1, ν2, . . . , νn)′ and Z = (z1, z2, . . . , zn)′. The factor “2σ̃4” is the

consequence of the normality assumption, and therefore, the test in (64) will not be valid
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even asymptotically if ϵi’s are not distributed as normal. Using (61), the robust form of RS
test statistics can be derived as

RS∗
δ (D) = ν ′Z(Z ′Z)−1Z ′ν

ν′ν
n

. (65)

This is the same modification suggested by Koenker (1981). Note that the modification
amounts to replacing V ar(ϵ2

i ) = µ4 − µ2
2 = 3σ4 − σ4 = 2σ4 (derived under normality) by a

robust estimate, namely, by, 1
n

∑n
i=1(ϵ̃2

i − σ̃2)2 = (ν ′ν)/n. For other applications of RS∗(D)
see for instance, Lucas (1998) and Premaratne and Bera (2017).

In a similar fashion the Wald statistic in (16) can be robustified as [see Kent (1982),
White (1982), and Pace and Salvan (1997)]:

W ∗ = [h(θ̂) − c]′[H(θ̂)B(θ̂)H(θ̂)]−1[h(θ̂) − c], (66)

and asymptotically it has χ2
r distribution under the null hypothesis H0 : h(θ) = c. Thus,

robust RS∗ and W ∗ are obtained by robustifying the variance expressions, respectively,
of S(θ̃) and h(θ̂). However, similar robustification of LR statistic in (17) is not possible.
Kent (1982) showed that under distributional misspecification LR statistic is asymptotically
distributed as a weighted sum of r independent χ2

1 variables, and thus no obvious “variance”
adjustment is possible.

5.2. Robust RS tests under parametric misspecification

Consider a general statistical model represented by the log-likelihood function l(γ, ψ, ϕ)
where γ, ψ, and ϕ are parameter vectors with dimensions (m × 1), (r × 1) and (q × 1), re-
spectively. Thus our (p × 1) parameter vector is θ = (γ′, ψ′, ϕ′)′ and p = m + r + q.
Suppose an investigator sets ϕ = 0 and tests H0 : ψ = 0 using the log-likelihood function
l1(γ, ψ) = l(γ, ψ, 0). We will denote the RS statistic for testing H0 in l1(γ, ψ) by RSψ. Let
us also denote θ̃ = (γ̃′, 0, 0)′, where γ̃ is MLE of γ when ψ = 0 and ϕ = 0. The score vector
and the information matrix are defined, respectively, as

S(θ) = ∂l(θ)
∂θ

=


∂l(θ)
∂γ
∂l(θ)
∂ψ
∂l(θ)
∂ϕ

 =

Sγ(θ)Sψ(θ)
Sϕ(θ)

 (say) (67)

I(θ) = Eθ

[
−∂2l(θ)
∂θ∂θ′

]
=

 Iγ Iγψ Iγϕ
Iψγ Iψ Iψϕ
Iϕγ Iϕψ Iϕ

 . (68)

If l1(γ, ψ) were correctly specified, then the RS test statistic of (15), in the current context
can be written as

RSψ = Sψ(θ̃)′I−1
ψ·γ(θ̃)Sψ(θ̃), (69)

where Iψ·γ = Iψ − IψγI−1
γ Iγψ and it will be asymptotically distributed as central χ2

r. Under
this set-up, asymptotically RSψ will have the correct size and will be locally optimal.
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Let us now consider the case of parametric misspecification. Suppose the true log-
likelihood function is l2 = (γ, ϕ) = l(γ, 0, ϕ), so that the alternative l1(γ, ψ) becomes mis-
specified. Using the sequence of local DGP ϕ = δ/

√
n, Davidson and MacKinnon (1987) and

Saikkonen (1989) showed that under l2(γ, ϕ) with ϕ = δ/
√
n, RSψ in (69), under H0 : ψ = 0

will be distributed as non-central χ2
r with noncentrality parameter,

λ(δ) = δ′Iϕψ·γI−1
ψ·γIψϕ·γδ, (70)

with I ′
ϕψ·γ = Iψϕ·γ = Iψϕ − IψγI−1

γ Iγϕ. Owing to the presence of this non-centrality pa-
rameter, RSψ will reject the null hypothesis H0 : ψ = 0 more often than allowed by the
preassigned size of the test, even when ψ = 0. Therefore, under parametric misspecification,
RSψ will have an excessive size. For the expression of λ(δ) in (70), we note that the crucial
quantity is Iψϕ·γ, which can be interpreted as the conditional covariance between the scores
Sψ and Sϕ given Sγ. If Iψϕ·γ = 0, then the local presence of the misspecified parameter
ϕ = δ/

√
n will have no effect on the performance of RSψ.

Using the expression in (70), Bera and Yoon (1993) suggested a modification to RSψ
so that the resulting test is robust to the presence of ϕ. The modified statistic is given by

RS∗
ψ(P ) =[Sψ(θ̃) − Iψϕ·γ(θ̃)I−1

ϕ·γ(θ̃)Sϕ(θ̃)]′

[Iψ·γ(θ̃) − Iψϕ·γ(θ̃)I−1
ϕ·γ(θ̃)Iϕψ·γ(θ̃)]−1

[Sψ(θ̃) − Iψϕ·γ(θ̃)I−1
ϕ·γ(θ̃)Sϕ(θ̃)].

(71)

Here the notation RS∗(P ) is used to signify robust RS test statistic under parametetric
misspecification. Under H0 : ψ = 0, RS∗

ψ(P ) is asymptotically distributed as central χ2
r,

i.e., RS∗
ψ(P ) has the same asymptotic distribution as of RSψ in (69) based on the correct

specification. Thus, RS∗
ψ(P ) provides an asymptotically correct-size test under the locally

misspecified alternative l2(γ, ϕ).

RS∗
ψ(P ) essentially adjusts the asymptotic mean and variance of standard (unad-

justed) RSψ. Another way to look at RS∗
ψ(P ) is to view the quantity, Iψϕ·γ(θ̃)Iϕ·γ(θ̃)−1Sϕ(θ̃)

as the prediction of Sψ(θ̃) by Sϕ(θ̃). Here Sϕ(θ̃) is the score function of the parameter vec-
tor ϕ whose effect we want to take into account in constructing the robust version of the
test. Therefore, the net score S∗

ψ(θ̃) = Sψ(θ̃) − Iψϕ·γ(θ̃)I−1
ϕ·γ(θ̃)Sϕ(θ̃) is the part of Sψ(θ̃)

that remains after eliminating the effect of Sϕ(θ̃). In summary, S∗
ψ(θ̃ ⊥ Sϕ(θ̃), though Sϕ(θ̃)

has “peer” effect on Sψ(θ̃). Three more things regarding RS∗
ψ(P ) are worth noting. First,

RS∗
ψ(P ) requires estimation only under the joint null, namely for the constrained model in

which both ψ = 0 and ϕ = 0. Given the full specification of the model l(γ, ψ, ϕ), it is of
course possible to derive a RS test for H0 : ψ = 0 in the presence of ϕ. However, that requires
the MLE of ϕ, which could be difficult to obtain in some cases. Second, when Iψϕ·γ = 0,
RS∗

ψ(P ) = RSψ. This is a simple condition to check in practice. As mentioned earlier, if this
condition is true, RSψ is an asymptotically valid test in the local presence of ϕ. Finally, Bera
and Yoon (1993) showed that for local misspecification RS∗

ψ(P ) is asymptotically equivalent
to Neyman (1959) C(α) test, and therefore, shares its optimality properties.

Example 7: To illustrate the usefulness of the robust score statistic RS∗
ψ(P ), we now

consider the tests developed in Anselin et al. (1996) for the mixed regressive - spatial au-
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toregressive (SAR) model with a SAR disturbance

y = ϕWy +Xγ + u

u = ψWu+ ϵ

ϵ ∼ N(0, Iσ2).
(72)

In this model, y is an (n × 1) vector of observations on a dependent variable recorded at
each of n locations, X is an (n×m) matrix of exogenous variables, and γ is a (m× 1) vector
of parameters, ϕ and ψ are scalar spatial parameters and W is an observable spatial weight
matrix with positive elements, associated with the spatially lagged dependent variable and
SAR disturbance u. This spatial weight matrix represents “degree of potential interactions”
among neighboring locations and are scaled so that the sum of the each row elements of W
is equal to one.

The conventional RS statistic for testing H0 : ψ = 0 is given by

RSψ = [ũ′Wũ/σ̃2]2

T
, (73)

where ũ = y − Xγ̃ are the OLS residuals, σ̃2 = ũ′ũ/n and T = tr[(W ′ + W )W ]. One very
interesting observation here is that RSψ is essentially same as the widely used Moran (1948)
I test. Let us now consider testing H0 under the local presence of ϕ. First, the crucial
quantity to consider is Iψϕ·γ which is equal to T and that can never be zero. Therefore
robustification of RSψ is needed. Anselin et al. (1996) derived the robust test as

RS∗
ψ(P ) = [(ũ′Wũ)/σ̃2 − T (Iϕ·γ)−1(ũ′Wy)/σ̃2]2

T [1 − T (Iϕ·γ)−1] , (74)

where
Iϕ·γ = [(WXγ̃)′M(WXγ̃) + T σ̃2]

σ̃2 , (75)

with M = I − X(X ′X)−1X ′. A comparison of (73) and (74) clearly reveals that RS∗
ψ(P )

modifies the standard RSψ by correcting the asymptotic mean and variance of the score
function Sψ.

In a similar way we can find RSϕ and RS∗
ϕ(P ) which are given, respectively, by

RSϕ = [(ũ′Wy)/σ̃2]2

Iϕ·γ
(76)

and
RS∗

ϕ(P ) = [(ũ′Wy)/σ̃2 − (ũ′Wũ)/σ̃2]2

Iϕ·γ − T
, (77)

where Iϕ·γ = Iϕ − IϕγI−1
γ Iγϕ using the submatrices of the partinioned form of I(θ) given in

(68). Anselin (1988) derived a joint RS test for H0 : ψ = ϕ = 0 under the framework of (72)
and that takes the following form

RSψϕ = [(ũ′Wũ)/σ̃2]2

T
+ [(ũ′Wy)/σ̃2 − (ũ′Wũ)/σ̃2]2

Iϕ·γ − T
. (78)
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This statistic is asymptotically distributed χ2
2. It is easy to verify that [see Bera et al. (2020,

Corollary 1)]
RSψϕ = RSψ +RS∗

ϕ(P ) = RSϕ +RS∗
ψ(P ). (79)

In other words, the directional RS test for ψ and ϕ can be decomposed into sum of the
unadjusted one-directional test for one type of alternative and the adjusted form for the
other alternative. Equalities in (79) can facilitate computations of the adjusted (robust) RS
tests after having the unadjusted versions which are easy to obtain and are reported in most
of the spatial software.

Anselin and Florax (1995) and Anselin et al. (1996) provided simulation results on
the finite sample performance of the unadjusted and adjusted RS tests and some related
tests. The adjusted tests RS∗

ψ(P ) and RS∗
ϕ(P ) performed remarkably well. Those had very

reasonable empirical sizes, remaining within the confidence intervals in all cases. In terms
of power they performed exactly the way they were supposed to.

5.3. Robust RS tests under both the distributional and parametric misspecifi-
cations

Now we combine the results of Sections 5.1 and 5.2 and develop robust tests RS∗
ψ(DP )

which provides a two-way protection against both types of misspecifications, distributional
(D) and parametric (P ). As we have noted in (59), RS∗

ψ(D) involves both the J(θ) and
K(θ) matrices in the variance expression of Sψ(θ̃). While to account of the parametric
misspecification, as we did in (71), Iψϕ·γ(θ̃)I−1

ϕ·γ(θ̃)Sϕ(θ̃) must be subtracted from Sψ(θ̃) to
center its mean to zero. The expression for RS∗

ψ(DP ) is given by [for details see Bera et al.
(2020)]:

RS∗
ψ(DP ) =

[
Sψ(θ̃) − Jψϕ·γ(θ̃)J−1

ϕ·γ(θ̃)Sϕ(θ̃)
]′

[
Bψ·γ(θ̃) + Jψϕ·γ(θ̃)J−1

ϕ·γ(θ̃)Bϕ·γ(θ̃)J−1
ϕ·γ(θ̃)Jϕψ·γ(θ̃)

−Jψϕ·γ(θ̃)J−1
ϕ·γ(θ̃)Bϕψ·γ(θ̃)Bψϕ·γ(θ̃)J−1

ϕ·γ(θ̃)Jϕψ·γ(θ̃)
]−1

[
Sψ(θ̃) − Jψϕ·γ(θ̃)J−1

ϕ·γ(θ̃)Sϕ(θ̃)
]
, (80)

where
Bψ·γ = Kψ + JψγJ

−1
γ KγJ

−1
γ Jγψ − JψγJ

−1
γ Kγψ −KψγJ

−1
γ Jγψ, (81)

similarly Bϕ·γ and

Bψϕ·γ = Kψϕ − JψγJ
−1
γ Kγϕ −KψγJ

−1
γ Jγϕ + JψγJ

−1
γ KγJ

−1
γ Jγϕ, (82)

and similarly Bϕψ·γ. Expressions for the general forms of J(θ) and K(θ) are given in (51)
and (52) and here we are using their partitioned forms for θ = (γ′, ψ′, ϕ′)′. Under H0 : ψ = 0,
the RS∗

ψ(DP ) test statistic will be asymptotically distributed as χ2
r in the presence of both

distributional and parametric misspecifications. Although RS∗
ψ(DP ) has rather a lengthy

expression as in (80), it is actually easy to compute requiring only θ̃ = (γ̃′, 0′, 0′)′. It can be
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easily seen that under no distributional misspecification, i.e., when f(y; θ) ≡ g(y), resulting
in K(θ̃) = J(θ̃),

RS∗
ψ(DP ) = RS∗

ψ(P ), (83)

and similarly under no parametric misspecification, i.e., when δ = 0 in ϕ = δ/
√
n,

RS∗
ψ(DP ) = RS∗

ψ(D). (84)

Finally, trivially when K = J and δ = 0,

RS∗
ψ(DP ) = RSψ (85)

as given in (69).

Example 8: Let us briefly go back to Example 7 and now introduce distributional misspeci-
fication along with the presence of parametric misspecification. This case has been rigorously
considered by Fang et al. (2014) and they demostrated both analytically and through exten-
sive simulations that RS∗

ψ(P ) and RS∗
ϕ(P ) as given, respectively in (74) and (77) are valid

under non-normality. Therefore, RS∗
ψ(DP ) = RS∗

ψ(P ) and RS∗
ϕ(DP ) = RS∗

ϕ(P ). This is a
somewhat unsual situation. For this model as given in (72), information matrix equality does
not hold, i.e., J(θg) ̸= K(θg) [see equations (51)-(53)]. However, still J−1KJ−1 = J−1. This
is a serendipitous situation, since no additional adjustment is needed for the distributional
misspecification. The intuition behind this serendipity is that the hypotheses ψ = 0 and
ϕ = 0 relate to the conditional mean (first moment) of y in (72) (conditional on the neigh-
borhood as captured by the W matrix). However, in general, only tests for variance (second
moment) and higher moments get affected by non-normality. A similar case appeared in
Bera et al. (2020) where they considered testing for random effects and serial correlation
within an error component model. Extensive simulation results are also given in Koley and
Bera (2022, 2024) demonstrating the robustness of the RS tests under non-normality in finite
sample in spatial regression model set up.

6. Epilogue

We started this survey paper by stating that C.R. Rao’s work was always inspired by
some practical problems. In his 2003 Econometric Theory (ET) Interview [see Bera (2003,
p.349)], on the RS test, Rao had the following to say, “The test evolved in a natural way
while I was analyzing some genetic data. As I recall, the problem was the estimation of a
linkage parameter using data sets from different experiments designed in such a way that
each data set had information on the same linkage parameter. It was, however, necessary
to test whether such an assumption could be made because of unforeseen factors affecting
the experiments. This required a test for consistency of estimates derived from different
experimental data sets.” Thus we had a new statistical test principle, after LR and W,
motivated by a practical problem in genetics. However, as we have narrated here, the
resulting RS test principle has a far reaching influence even beyond the Statistics, and in
particular, it has become one of the most useful model misspecification testing tools in the
Econometrics literature. In the history of any scientific field, once in a while there comes a
moment for a major breakthrough. Appearance of Rao (1948) was such a historical moment.
In fact, after that we have not witnessed any new test principle, beyond the trinity, LR, W
and RS.
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To keep our exposition simple and to be close to the spirit of Rao (1948), we have
sticked to the likelihood framework. However, it is easy to extend the RS test and its various
ramifications to the generalized method of moments (GMM) and estimating functions (EF)
frameworks [for more on these, see for instance Basawa (1991) and Bera et al. (2010)].
We have also largely confined ourselves to the asymptotic properties and distributions of the
tests. However there is a huge literature on the investigation of the finite sample performance
of the RS, particularly, in relation to that of LR and W and finding bootstrap critical values;
for example see, Mukerjee (1990, 1993) and Horowitz (1997).

To conclude, we can only speculate what is stored in the future. Given the current
vastness of the field we have lost “sharp moments of birth”, like that of Rao (1948). However,
considering that 75 years have already been passed, it might be a time for a brand new equally
good test principle.
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