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Abstract
Informatics and technological advancements have triggered generation of huge volume

of data with varied complexity in its management and analysis. Big Data analytics is the
practice of revealing hidden aspects of such data and making inferences from it. Although
storage, retrieval and management of Big Data seem possible through efficient algorithm
and system development, concern about statistical consistency remains to be addressed in
view of its specific characteristics. Since Big Data does not conform to standard analytics,
we need proper modification of the existing statistical theory and tools. Here we propose,
with illustrations, a general statistical framework and an algorithmic principle for Big Data
analytics that ensure statistical accuracy of the conclusions. The proposed framework has
the potential to push forward advancement of Big Data analytics in the right direction. The
partition-repetition approach proposed here is broad enough to encompass all practical data
analytic problems.
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1. Introduction

‘Big Data’ presents itself with unique challenges in retrieving, storing and all the way
to analysing the data. Technological breakthrough makes generation and collection of huge
volume of data possible in many fields like genetics, genomics, health care, customer service,
informatics, to name a few. Among various challenges presented by the abundance of data,
analysis of the data is a well recognized hurdle. While the explosion of information allows us
to know more about the process, appropriate methods or algorithms are essential to make
‘correct’ inference or to reveal hidden patterns.

Recent advancements of technology and targeted methods to Big Data analytics give
access to ample capacity for storing the data along with the skill of parallel computing.
Much effort has been dedicated to extract information from Big Data in an efficient manner.
From a practical standpoint, concern remains about the validity of results from analysis of
Big Data. As attested by many recent articles, in most cases the inference based on such
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data is unacceptable and unreliable. For example, High dimension conventional classification
methods are no better than random guesses (Fan and Fan, 2008). Understanding the output
of Big Data analytics than to fixate on the technical aspect of it is the most important issue
(Fan et al., 2014; Fan et al., 2018; Huang, 2014), because the future decision making process
depends only on this output. The aim of this article is to put forward a framework in order
to establish the acceptability of the learning from the Big Data. This framework also fits to
the paradigm of parallel computing and at the same time provides a robust statistical basis
for practical application.

The classical statistical theory of data analysis has its roots in axioms of probability
theory. By some arguments data analysis is more complex than physics, biology and even
behavioural science. Formal statistics developed so far can help to tackle the analytics but
it will produce realistic results only if we can keep the basic assumptions loose (Tukey,
1962). The velocity of data flow in today’s world makes it more challenging for producing
meaningful conclusion over time on the same problem (Efron, 2020). Naturally it is not
possible to analyze the entire data at the same instance when we have so little time to produce
results. Also, subsequent results can make a previous conclusion redundant. With growing
complexity of Big Data, statistical theory needs to be revisited (Davidian, 2013), mainly
due to the violation of probabilistic independence or exchangeability conditions. Statistics
community has raised concerns about how the sound and carefully developed theory can
help build a structure around it. Implicitly classical statistics is already equipped with basic
mechanisms to deal with big data. Sampling and sufficiency, among other core discoveries
of statistics, are extremely useful in analysis of data of large volume, a characteristic of
big data (Donoho, 2017). But the analysis of such high volume data needs to be done in
presence of variety and high velocity, the two main characteristics of big data. Algorithmic
or computational innovations for parallel computing are not the entire solution, but they are
important tools when coupled with appropriate statistical methods in order to utilise the
entire available information (sufficiency) that is contained in the data flow (large sample)
(Donoho, 2017). In this article we exploit an algorithmic architecture used in practice
to tackle Big Data and suggest an appropriate mathematical ground for analysis of such
architecture.

We propose a partition and repetition approach in a general framework for statistical
analysis of Big Data. This approach expands the horizon of standard statistical methods as
well as opens new avenues for novel methods to encompass and tackle the challenges arisen
due to the specific characteristics of Big Data. With the help of this general framework, we
prove consistency and accuracy of the analytic results thus obtained. We have explained
this theory through various examples that are usually required in common data analysis
paradigm in respect of many fields. We hope that such a framework would help in further
development of Big Data analytics. Note that although here we mainly address the problems
due to volume, velocity and variety, the 3-V’s that occur simultaneously in a typical Big Data
problem, the other 3-V’s–veracity, validity, and volatility–must always be taken care of in
any statistical analysis. A statistical model has to deal with inherent variability which is
nothing but volatility especially when considered with respect to time. It is natural that
with available data at hand, we have to model the variance and hence the volatility, how it
is related with time or other auxiliary variables. This study of volatility would be inbuilt
in our proposed framework. Similarly veracity and validity must be ensured properly with
appropriate strategies, for example, using back-testing, training-testing protocol etc. Our
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proposed framework for the basis of data analytics in the Big Data paradigm considers
many possible statistical fundamentals and validity requirements when analysing data with
the above characteristics.

2. Developing the general framework

2.1. The divide and conquer algorithm

Abundance of digital information is one way to explain what we today understand
as ‘Big Data’. There are two aspects to the story. Firstly, human intuition suggests that
accuracy of the answer to our question increases if we have more and more information. This
intuition works backward; we start with a question, try to comprehend what data we might
need to answer the question and then realize that relevant information exists somewhere in
digitized format. The catch is that, this retrospective thought process assumes that the skill
by which human intelligence finds this answer from the data is transferable to mechanical
and algorithmic computing. Secondly, with huge volume of data we can find a question
of interest from the data itself and then get the answer to the question. But the inherent
complexity of available data makes this task difficult. This whole process is advertised as
Big Data analytics.

Principle characteristics of Big Data are its volume, velocity, variety and complexity
(Katal, 2013). All of them presents as unique challenges at a technical level of dealing
with the data. At the hardware level we have reached a saturation point on the achievable
clock pulse on a single processor. Rather, the growth in computing capacity is attained by
increasing the number of threaded cores. Moreover, while storage capacity is fairly cheap
and scalable, the Random Access Memory is not so. Recognizing this hardware restriction
the state of the art algorithms (Hadoop, Amazon EC2) for Big Data analytics has adopted
a partitioning based method.

However, in view of advancements in computing systems including storage and pro-
cessing, need for new data analytic tools are required that are adaptive to new technologies
(Petcu et al., 2015). Building such statistical tools and algorithms for monitoring and anal-
ysis is needed to achieve success in Big Data analytics. Hence standard statistical methods
should be revisited, modified, and validated in the light of scalability to extremely large scale
data applications (Reed and Dongarra, 2015).

Fisher et al. (2012) have identified the standard workflow of data analysis as, (1)
acquiring data, (2) choosing an architecture, (3) shaping the data to the architecture, (4)
writing and editing the code, and (5) reflecting and iterating on the results. The initial
struggle is to adopt a suitable architecture for the data and map the collected data to that
architecture. In this article, we are not focusing on this domain of analytics job. Rather
the focus is on the later part of analysing the data. To address the problem of huge volume
of data, the way is to partition it into small portions that are manageable by the Random
Access Memory, process the data in a parallel manner, and finally combine the processed
information to produce the final output. This idea of partitioning has been used, although
in a subtle way, in other areas of research, e.g., data mining (Buehrer et al., 2015; Calders et
al., 2010), Markov Chain Monte Carlo (Wang et al., 2015). An extra benefit of this divide
and conquer method is that such an algorithm easily adapts to the velocity of Big Data.
Velocity contributes to new partitions which are to be analysed and then the inference is
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to be combined with the earlier output (Schifano et al., 2016). The other issues relating
to variety and complexity are taken into account by the statistical methods and algorithms
that are used in the analysis.

2.2. The framework

Sample space structure: Classical theory of statistical analysis is a well developed area with
sound theories. To establish a framework for Big Data analytics we naturally would like
to fall back on those works. To begin with, we consider a sample space (S,AS) where S
is the space of realized values of the data and AS is the sigma field associated with the
sample space. We denote by M(S) the set of probability measures on (S,AS). Also let
Me(S)

(
⊂M(S)

)
be the set of probability measures with finite support. An observed data

Xn×p can be identified by a probability measure mX on (S,AS), with a support having finite
cardinality, defined as follows,

mX(A) =
n∑

xi∈A,i=1

1
n
,

for any A ⊆ AS and xi (i = 1, . . . , n) is the i-th data point. To build a theory around it
we would require a suitable metric on the space M(S). For example, if (S,AS) is a polish
space then with Prokhorov metric (dM) we can put weak convergence on M(S).

Till this point we have not considered any aspect of Big Data par se. Our aim is to
build the ideology of Big Data analytics on this sample space structure. Identification of
the realized data with an empirical measure on some sample space gives a broader ground
to work on. In a Big Data set up, we hardly have any control on the generation of data.
Thus unlike in classical statistical theory, where mostly we want to build better experimental
designs to apply statistical methods, be it standard or novel, here we want to construct an
algorithm that would work with the data generation process. This difference in approaches
is subtle but central to how these two ideologies differ.

The problem approach: Main goal of Big Data analytics is to extract information from
the data, which is equivalent to getting information from an element in Me(S). So we
assume that a satisfactory data collection and mapping architecture exists. To develop a
full framework, we introduce some definitions about functionality of data analysis. This is
necessary to avoid the cumbersome details and technicalities of a particular scenario.

Extracted information of a data analysis can be viewed as an element in the result space
(R). A problem approach (ρ) is a function from Me(S) to R. Based on this formulation of
problem approach we can consider two classes of problem approaches as follows.

Definition 1: Inference Problem: If the problem approach ρ can be extended to a strictly
larger subset of M(S) than Me(S), then such a problem or problem approach is called an
inference problem.

Definition 2: Mining Problem: If the problem approach ρ can only be defined onMe(S),
then such a problem or problem approach is called a mining problem.
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The usual examples of these two classes of problems are as follows. Parametric esti-
mation and testing problems fall under the class of inference problems where the subset of
M(S) under consideration is Me(S) along with the parameter models. Clustering problem
or outlier detection problem, on the other hand, are under the class of mining problems. In
later sections, we shall discuss both these classes of problem approaches and their solutions
in more details.

A technical assumption we need to have is that, one such problem approach is viable
if the map

ρ :
(
ρ−1(R), dM

)
−→

(
R, dR

)
(1)

is a continuous map, where dM and dR are appropriate metrics on respective spaces. A viable
problem approach (ρ) then ensures that the problem is consistent in the number of samples
and robust in the data points. This means that slight change in the data generation process
(M(S)) should not create substantial difference in the result (R). Here consistency indicates
the large sample property of converging results as the number of data points increases whereas
robustness indicates very little or not significant change in the results from two data sets
that are not too different from each other.

The existence of ρ has important implications both in statistical modelling with an
underlying stochastic data generation model and also in algorithm modelling with unknown
data mechanism (Breiman, 2001). We only emphasis that ρ should be judiciously chosen and
it has no conflict with the “two cultures” of statistical modelling (Breiman, 2001). However,
in any case, we assume that there is an underlying σ-field behind the data generation process,
be it known or unknown, and hence ρ is well defined. The existence of ρ is essential for
establishing the sound framework for Big Data analytics that we establish through two
theorems in the next section.

2.3. Big Data Algorithm

We now discuss various components of our proposed algorithmic structure of Big Data
analytics.

Partitioning: A naturally accepted strategy in analysing huge volume of data is to consider
small parts of data at a time. Our formulation for Big Data analytics formulates this method
of partitioning the data as a functional,

HL :Me(S) −→Me(S)× · · · ×Me(S) (L suchMe(S) s)
HL(m) = (m1,m2, . . . ,mL), (2)

such that (m1,m2, . . . ,mL) is related to m by,

supp(m) =
L
∪
i=1

supp(mi);

supp(mi) ∩ supp(mj) = ∅, 1 ≤ i 6= j ≤ L.
(3)

where supp(m) denotes the support set of m and ∅ denotes the empty set.
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For convenience we write supp(mi) =
(
x

(i)
1 , x

(i)
2 , . . . , x

(i)
ni

)
for each i. For a fixed data m

(or m ≡ X) we would be given a problem approach ρ. Then the divide and conquer strategy
would choose a partitioning functional HL.

But to reduce the error in result due to partitioning, the strategy is to repeat K(> 1)
times the partitioning; denote them by HL,1, HL,2, . . . , HL,K . This type of algorithm we call
as the partition-repetition algorithm. We now formulate this partition-repetition algorithm
in a comfortable manner.

Let HL be the set of all partitioning functionals HL. A σ-field AHL
can be defined

as the smallest σ-field on HL such that the functions fi,j(·) on
(
HL,AHL

)
to (S,AS) are

measurable for any choice of m ∈Me(S), where

fi,j
(
HL(m)

)
= x

(i)
j j = 1, 2, . . . , ni; i = 1, 2, . . . , L.

Then the strategy of analysing data of unmanageable size, in terms of volume, variety and
most importantly velocity, by partition-repetition algorithm can be understood as a probabil-
ity measure PHL

on the measurable space
(
HL,AHL

)
. More precisely {HL,1, HL,2, . . . , HL,K}

would be viewed as a random sample from the probability measure space
(
HL,AHL

, PHL

)
.

For simplicity of notation let us denote by ρL the map,

ρL : (m1, . . . ,mL) 7−→ (ρ(m1), . . . , ρ(mL)) for mi ∈Me(S);

for i = 1, 2, . . . , L. Then a single random sample HL from the probability distribution
PHL

provides us L results ρL
(
HL(m)

)
, which are L elements from R. With a random

sample HL,1, HL,2, . . . , HL,K from the distribution, the set of results we get using the problem
approach ρ is

{R∗k,l}k=1,2,...,K; l=1,2,...,L =
{
R∗k,1, R

∗
k,2, . . . , R

∗
k,L

}
k=1,2,...,K

=
{
ρL
(
HL,k(m)

)}
k=1,2,...,K

.

This framework also encompasses the case where rather than partitioning one chooses
to sub-sample. In that case we would get rid of the extra restriction in equation (3) on the
functional HL. Popular algorithms of Bootstrap and Bag-of-Little-Bootstraps (Kleiner et
al., 2014) are covered in this framework.

Combining: Next critical part of the algorithm is combining the results obtained above,{
R∗k,l

}
k=1,2,...,K; l=1,2,...,L

in order to arrive at a final result. Let CKL be the combining map that

takes all the results from the collection and gives the final result. The triplet
(
ρ, PHL

, CKL
)

can be called a solution to a Big Data problem.

Now it remains to understand the viability of the solution. We have put a stable
condition of continuity in equation (1) on problem approach ρ as a viable problem approach.
Proper behaviour of the pair

(
PHL

, CKL
)

would ensure an accurate solution to the problem
ρ for m.
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We focus on the case where CKL := C2
K ◦C1

L works in two stages. In the first stage C1
L

works on each partition (k) to collect the results

R∗k := C1
L

(
{R∗kl}l=1,2,...,L

)
for k = 1, 2, · · · , K.

This K-tuple is combined by C2
K . For a fixed data m when C1

L is a measurable map, the ran-
domness of {HL,1, HL,2, . . . , HL,K} makes the collection {R∗1, R∗2, . . . , R∗K} an independently
and identically distributed (i.i.d.) sample on the measure space

(
R,AR

)
. This formulation

of the solution
(
ρ, PHL

, C2
K ◦ C1

L

)
provides an opportunity to use rich statistical theory in

data analytics.

In the general case, the result space can be quite complicated (we shall give concrete
examples in later section). Rather than dealing with the space R itself it would be better to
work with real numbers. This is achieved by an evaluation function ev : R −→ RN for some
fixed N belonging to the set of natural integers. Then, viability of the choice of PHL

can be
understood using the evaluation function of the result space R. For a given data m and a
problem approach ρ, we call a partitioning probability measure PHL

to be viable under the
first stage combining operator C1

L if,
�
ev ◦ C1

L

(
ρL(HL(m))

)
dPHL

= ev ◦ ρ(m). (4)

This condition means that the probability measure PHL
and the combining method C1

L

are compatible with each other for the problem ρ. If we do infinitely many repetitions
of our partition-repetition based algorithm, the combining method C1

L will give equivalent
performance as the one we would have got if we could apply ρ on the data m.

The second stage of combining method C2
K operates on the collection of first stage

result by combining R∗1, R∗2, . . . , R∗K to get the solution

R∗∗K := C2
K

(
{R∗k}k=1,2,...,K

)
.

Now the viability of C2
K is based on the comparison of R∗∗K with ρ(m) = R∗ (say). Here we

present the soundness of the algorithm of partitioning and combining through the following
theorem.

Theorem 1: For a Big Data solution
(
ρ, PHL

, C2
K ◦ C1

L

)
, if PHL

is a viable partitioning
method under combining method C1

L (i.e., equation (4) is satisfied) and convergence in ev
is equivalent to that of in R, then there exists a second stage combining method C2

K , such
that R∗∗K −→ R∗ almost surely in PHL

.

Proof: Define C2
K on R×R× · · · × R (K times) as follows,

C2
K(R1, R2, . . . , RK) := arg min

{Rk}k=1,2,...,K

∣∣∣∣∣∣ev ◦Ri − ev ◦R∗
∣∣∣∣∣∣.

Let us use the notations Yk = ev ◦ R∗k, ZK = ev ◦ R∗∗K and µ = ev ◦ R∗. Since {R∗k}k≥1 is
an i.i.d. sample, by strong law of large numbers as equation (4) holds, for all ε > 0 with
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PR := PHL
◦ C1−1

L ◦ ev−1,

PR

(
∪∞k0=1 ∩K≥k0

(∣∣∣∣∣∣∣∣ 1
K

K∑
k=1

Yk − µ
∣∣∣∣∣∣∣∣ < ε

))
= 0.

Now using the fact that ||∑K
k=1 Yk/K − µ|| ≥ ||ZK − µ|| and definition of C2

K , the above
holds with ∑K

k=1 Yk/K replaced by ZK . Since convergence in (R, dR) is equivalent to that
in
(
ev ◦ R, || · ||

)
, rest of the argument follows as by assumption convergence in (R, dR) is

equivalent to that in
(
ev ◦ R, || · ||

)
.

The theorem above deals with the volume aspect of Big Data. It says that even if
the data is unmanageable to be processed practically, we can adopt partition-repetition
approach to get a good solution. It is also not passed our attention that the number of
combination rules may be more than two, but the final convergence of results requires some
more assumptions and strong theorems in the dependence set up.

Next we also need to answer the question which is more of classical statistical in nature.
If the velocity of the data provides us more and more information of specific form, is the
partition-repetition algorithm able to extract that information? The following theorem tells
us if that is the case, we would be able to choose a partitioning measure and a sequence of
combining methods that gives the final result.

Theorem 2: Let {mn}n≥1 ∈Me(S) and m ∈ domain of ρ. Suppose the problem approach
ρ is viable on its domain and mn −→ m. If conditions of Theorem 1 hold for the sequence
of solutions

(
ρ, PHL,n, C

2
K,n ◦C1

L,n

)
, then there exists a sequence of integers {kn : n ≥ 1} and

a PHL
such that, for n ≥ 1, PHL,n is absolutely continuous with respect to PHL

with∣∣∣∣∣∣∣∣ev ◦ C2
kn,n ◦ C

1
L,n

{
ρL(HL,k(mn)

)}
k=1,2,...,K

− ev ◦ ρ(m)
∣∣∣∣∣∣∣∣ −→ 0,

as n→∞ almost surely in PR.

Proof: Define PHL
(·) = ∑∞

n=1 PHL,n(·)/2n. Let us denote,

R∗∗K,n = C2
K,n ◦ C1

L,n

({
ρL
(
HL,k(mn)

)}
k=1,2,...,K

)
.

Then for every ε(> 0), by Theorem 1 and equation (1) there exists a sequence {kn(ε) : n ≥ 1}
and N ≥ 1 such that for all n ≥ N ,∣∣∣∣∣∣ev ◦R∗∗kn(ε),n − ev ◦ ρ(m)

∣∣∣∣∣∣ < ε

2n ,

almost surely in PR,n = PHL,n ◦ C1−1
L,n ◦ ev−1. Choosing ε as rationals, result follows from

Cantor’s diagonal argument.

Both these results are of existential nature rather than being instructive for practice.
Although little abstract in their formulation, these theorems form the basis of the methods
that would be applied in practice. Study on combining methods is not new to statistics. This
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framework enforces the importance of various combining methods along with partitioning
methods in the light of Big Data analytics.

The power of this kind of theory is that we do not put any hard and fast regularity
condition on the data or the data generation process. Theorem 2 only requires that the data
collected eventually amounts to some specific information.

3. Illustrative Examples

An analyst’s job and a statistician’s work differ in a crucial way. An analyst is more
concerned with how to extract information from the data available. This work is referred
to as number crunching. A statistician is concerned about the quality of the extracted
information sometimes taking for granted the effort of extracting the information. In a Big
Data scenario where importance of analyst’s job comes more into the limelight, a statistician
could provide support by accepting some compromise on their ideology. In this section we
illustrate the formulation developed above through some standard data analytic problems.

We first consider a few problems where the solution ρ(mn) can be calculated without
any error from partitioning based algorithm. Here we specify by subscript n the size of the
data. In these examples it is enough to consider PHL

to be some degenerate probability
distribution of convenience and we only require a single sample (K = 1) from it.

Calculating sample mean: Here PHL
can be any distribution that partitions the data

into manageable balanced pieces. Then for ρ(mn) := (
�
x dmn, n) the combining method

shall be,
C1
L({(x̄i, ni)}i=1,2,...,L) =

(∑
i nix̄i∑
i ni

,
∑
i

ni

)
.

A little tweak in these definitions allows us to calculate many other descriptive statistics like
weighted means, dispersion measures and also some robust measures for central tendency.

Sorting: To get a Big Data solution to the sorting problem we can define a partitioning
PHL

as a degenerate distribution such that it divides the data mn into L parts based on a
sequence bound0 < bound1 < · · · < boundL as,

boundi−1 ≤ {x(i)
j } < boundi for i = 1, 2, · · · , L.

The choice of the sequence {boundi} should be such that the individual parts are of man-
ageable sizes. With ρ providing us with a sorted array, the combining stage should simply
concatenate the ordered parts, i.e.,

C1
L({R∗l }l=1,2,...,L) := (R∗1, R∗2, · · · , R∗L).

Similar solutions of the above type are obvious for problems like searching, calculating
extreme statistics (x(1), x(n)), constructing a histogram etc. Most of the time these simple
problems are only intermediate steps towards more challenging problems of data analytics.

Some solutions to more standard problems of Big Data analytics are discussed in brief
below. First few examples are inference problems while the later ones are mining problems.
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We assume that the data are cleaned and dressed for the purpose at hand. We avoid
discussing the technical aspects of implementing these algorithms in practice, though in
a few examples we shall provide references to available literature that has more focus on
detailed analysis of the algorithms.

Estimation: The problems of modelling (nonparametric, parametric, time series or even
Bayesian) come under the radar of inference problem. Based on the requirements of the
solution (e.g., unbiasedness, minimum variance, consistency) there would be different Big
Data solutions to the problem approach ρ. Many of the times it suffices to consider PHL

as a
random partitioning measure of the data, although while considering spatial and/or temporal
data more clever partitioning measure would be required to satisfy viability condition like
equation (4).

Let us consider the problem of finding maximum likelihood estimate for a parameter
based on some algorithm (say, Expectation-Maximization algorithm or Newton-Raphson or
Fisher’s Scoring etc.). The scenario is that, we have a statistical model in mind where
the number of parameters is fixed. Then partitioning the data simply breaks the objective
function (log-likelihood function) into L parts. Consequently an intuitive choice of the
combining method CKL would be whichever of the results from partitions maximizes the
whole objective function. Although this method does not ensure the MLE for the data, but
in practice we are hardly concerned about theoretical properties like efficiency; the estimate
found by this method is acceptable.

Testing: Consider a test function ρ that provides p-value for testing H0 against H1. Then
based on random partitioning of the data into balanced parts, a conservative combining
algorithm (Tippett, 1931) for the corresponding solution can be

R∗k := C1
L

(
{R∗lk}l=1,2,...,L

)
= min

l=1,2,...,L
R∗lk, for k = 1, 2, . . . , K,

and
R∗∗ := C2

K

(
{R∗k}k=1,2,...,K

)
= median{R∗k}k=1,2,...,K .

A large part of recent statistical methods literature focuses on the regime of p >> n.
Even when the data is not formally a Big data, because it does not inherit the various
characteristics discussed in the introduction, the data set can be in this regime; for example,
genome sequencing data. Note that the above discussion also encompasses the scenario when
p >> n. Depending on the testing problem, if we get a p-value or a test statistic for each
partitioned dataset, the solution is immediate in the proposed framework. It is valuable to
consider specific problems in this regime in depth as they can be helpful to solve important
problems in the relevant fields. But data sets solely of the p >> n variety arguably represent
a small part of Big data as we consider here.

Variable Selection: The context in which variable selection problem has been addressed
in recent literature is sometimes too idealistic for Big Data paradigm, although there are
some promising methods. The data generation process is assumed to provide information on
a set of response variables and a fixed set of regressors. We might be interested in a subset
of these variables which have effect on the responses. The quality of the selected variables
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can be assessed by proportions of the variables wrongly selected. In a situation where
assumption of homoscedastic uncorrelated linear model is valid, Barbar and Candes (2015)
proposed a method to select variables with a control on the proportion of falsely discovered
variables. This method is no doubt computationally heavy. The partition-repetition
philosophy can be used to adapt this algorithm to achieve the same goal in current context.

If the data generation process is well controlled, the above inference problems and
solutions make sense. Some recent works are available in the area of regression (Battey
et al., 2015; Chen and Xie, 2014) focusing on divide and conquer methods. Unfortunately
spurious correlations, noisy data etc. are very common in Big Data perspective. In that
case these naive solutions can be hugely mis-representative of the actual truth. Data mining
problems are more relevant in such a scenario. In a mining problem we are interested in the
data itself without having to make any modelling assumption. Possible Big Data solutions
to a few mining problems are discussed below.

Clustering: An elaborate and critical discussion on clustering problem in view of Big Data
analytics can be found in recent article by the authors (Karmakar and Mukhopadhyay, 2016;
Karmakar et al., 2019). Karmakar and Mukhopadhyay (2016) provide a detailed example
illustrating how the proposed framework fits to the class of Big Data clustering problems
where it (a) demonstrates existence and evaluation of the required quantities and (b) proves
validity of the final result. In brief, the combing method would identify the unique clusters
from the set {R∗lk}l=1,2,...,L based on a decision function that tells us to combine two results
when they seem to form a single data cloud. The second stage is to make stable clusters
based on some measure from the K sets of clusterings {R∗k}k=1,2,...,K .

Outliers Detection: Based on a random partitioning measure PHL
and a problem approach

ρ that separates the outliers (mo
n) and the data (md

n) section, (i.e., ρ(mn) := (md
n,m

o
n)), the

combining method C1
L would check the structure of the outliers from the individual parts

and get the outliers from the whole part. The method should check if outliers from one part
belongs to the data section of some other part and also if outliers from all the parts together
form some data section. Second stage of combining would then pick out the stable outliers
from all repetitions.

Ramaswamy et al. (2000) discuss another Big Data solution to this mining problem
based on a different partitioning method based on clustering the data and van Stein et al.
(2016) propose local subspace-based solution to outlier detection problem, which applies a
combining strategy using global neighbourhoods. These methods can be viewed as special
cases of our proposed framework.

Classification: First we consider the k-Nearest Neighbor classifier, where ρ finds the k
nearest neighbours of a test data point (x) as,

ρ(mn) := ((x(i), d(x, x(i)))i=1,2,...,k)

such that d(x, x(1)) ≤ · · · ≤ d(x, x(k))
≤ min{d(x, xi);xi ∈ X \ {x(1), x(2), . . . , x(k)}}.

Based on any partitioning PHL
, then the problem is exactly solvable in a single repetition

with a combining operator that picks the k data points nearest to x among the L×k points.
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Subsequently the classifier is contracted on a second algorithm that simply checks for the
maximum number of representatives in these k data points from each of the classes.

Another celebrated class of classifiers is decision trees. A relevant combining operator
of decision trees based on partition of the data is proposed by Hall et al. (1998).

4. Discussion

Data is the lubricant that drives the machinery of statistics. It is no longer a topic of
debate that the way data is generated and collected in modern times is drastically different
from what statisticians are used to deal with. Statistics should adapt to this change and
thereby assist the masses of data analytic work.

The main contribution of this article is suggesting a basis of statistical theory for
present day data analytic works. In composing the theory we have tried to stay true to
the practical nature of a data science job. This formulation proposes a divide and conquer
algorithm (either partition-repetition or subsampling method). More importantly it respects
the fact that more often than not we have no control on the data generation process. We have
also tried to encompass all possible data analytic problems. A range of such data analytic
problems are discussed in perspective of our formulation.

5. Conclusion

Successful use of statistical theory in data analysis would require understanding the
field of ‘Big Data’. Rather than being insistent on developing methods and elaborate theo-
ries based on idealistic assumptions, we have kept their applicability in mind. Our proposed
framework encompasses statistical analyses of majority of problems in view of complex char-
acteristics of Big Data and can be extended further keeping its compatibility with modern
advances in computational world.
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