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Abstract 

A-optimality refers to the design that minimizes the sum of variances of the estimators 
of all parameters in a model. By virtue of the Cramer-Rao bound, for a vector-parameter of 𝑘 
components, 𝑘" times the trace of the inverse of the information matrix for the parameters 
serves as a lower bound for the sum of variances of the estimators and the bound is attained 
asymptotically. Hence, asymptotically, A-optimality is achieved by maximizing the trace of 
the inverse of the information matrix. For a binary response experiment with a logit model, 
the asymptotic solution is known to be a two-point design which is point symmetric but not 
weight symmetric. For nonlinear models, Cramer-Rao bound may be crude for finite samples 
and hence the asymptotic solution may be different from the design that minimizes the sum 
of variances. Here we explore the validity of the asymptotic solution by directly minimizing 
the sum of variances using numerical methods in the space of all 2-points designs as well as 
more restrictive design spaces. We demonstrate that even in a restrictive search space of point 
symmetric designs, the theoretical solution is half as efficient for a sample size of 100. 
Further improvement is achieved by relaxing the restriction of the solution being point 
symmetric. 

Key words: A-optimality; Dose-response model; Information matrix; Logistic regression 
model. 
 

1.  Introduction 

Optimal designs are a class of experimental designs that are optimal with respect to 
some statistical criterion. The context is to provide estimators of unknown model parameters 
and the optimality criteria seek to maximize or minimize some meaningful statistical 
functions relevant to the model and criteria. Traditionally, optimality-criteria are functionals 
of the eigenvalues of the information matrix. Much of the literature on optimal design rests 
on asymptotic properties of various optimality criteria. We refer to Pukelsheim (1993) for 
description of different optimality criteria.  

 Dose-response models have been extensively studied in the optimal design literature 
(Hedayat et. al. 1997). Logistic or logit models and probit models are among the popular 
ones. In this paper, we focus on optimality for a logistic linear regression model [Abdelbasit 
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and Plackett (1983), Biederman et. al. (2006), Ford et. al. (1992), Minkin (1987), Sitter and 
Wu (1993), Yang and Stufken (2009)]. Among the well-known and commonly used 
optimality criteria, A-optimality is perhaps the most intuitive. Consider a binary response 𝑦$ 
resulting from a non-stochastic dose level 𝑥. Assume that 𝑦$ takes the values 0 and 1 and the 
probability that  𝑦$ takes the value 1 is given by 

𝑃(𝑦$ = 1) = 	 (1 + 𝑒.(/01$)).2    (1) 

where 𝛼 and 𝛽	are unknown and 𝛽 > 0,without loss of generality. A-optimality criterion is 
simply minimizing the sum of variances of the parameter estimates in the model. For this 
two-parameter logistic model, the A-optimality criterion seeks to minimize 𝑉𝑎𝑟(𝛼;) +
𝑉𝑎𝑟<𝛽=>. It is mathematically challenging to directly optimize the sum of the variances for a 
theoretical solution. Instead, investigators have exploited the Cramer-Rao bound, which 
presents a lower bound on the sum of variances of unbiased estimators, indicating that the 
variance of any such estimator is at least as high as the inverse of the Fisher information. 
Specifically, in the current context, the lower bound is the trace of the inverse of the 
information matrix. In other words, 

						𝑉𝑎𝑟<𝛼;) + 𝑉𝑎𝑟(𝛽=> ≥ ∑ 𝜉C
DE(FGHIJ)

<20DE(FGHIJ)>
K (1 + 𝑥C")/|𝑰(𝜶,𝜷)|Q

CR2 ,                 (2) 

where ∑𝜉C = 1 and  
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T.               (3) 

By minimizing the trace of the inverse of the information matrix, instead of 𝑉𝑎𝑟(𝛼;) +
𝑉𝑎𝑟<𝛽=>, it is possible to obtain a theoretical solution. The solution to the A-optimal design 
was first postulated by Mathew and Sinha (2001) under restricted conditions and later 
established conclusively by Yang (2008). In this context, it should be noted that a major 
challenge in determining an optimal design for nonlinear models is that it actually depends on 
the unknown parameters. This presents a conundrum: one is looking for the design with the 
goal of optimizing the estimation of the unknown parameters, and yet one must know the true 
values of the parameters to find the best design. This problem has been addressed previously 
by Nandy and Nandy (2015) and is not the focus of the current article.  

However, the Cramer-Rao bound is strict for finite samples and equality is only attained 
asymptotically. Hence, the A-optimal solution obtained by minimizing the trace of the inverse 
of the information matrix is only approximate. For non-linear models, the Cramer-Rao bound 
may be crude with small samples and hence the asymptotic solution can be different from the 
design that minimizes the sum of variances of the estimates. For finite samples, it is of great 
importance to examine the differences between the asymptotic and exact solutions. Keeping 
this in mind, the objective of this article is to focus on A-optimality criterion in a non-linear 
model, specifically the two-parameter logistic regression model noted in (1) and study its 
finite sample properties. 
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2.  Methods 

2.1.  Theoretical asymptotic solution 

The theoretical asymptotic solution for the A-optimal design has been shown to be a 
two-point design that is point-symmetric but not weight symmetric (Yang 2008). 
Specifically, the design is given by  

𝑑∗ = {(𝑥2∗, 𝜉2∗), (𝑥"∗, 𝜉"∗)} where 𝑥2∗ =
(.Y∗./)

1
, 𝑥"∗ =

(Y∗./)
1

;  

𝜉2∗ = 𝜉Y∗,	/,1, 		𝜉"∗ = 1 − 𝜉2∗where  𝜉Y,	/,1 =
[(1K0(Y0/)K)

[(1K0(Y0/)K)0[(1K0(Y./)K)
 

and 𝑐∗ > 0 is the only positive solution of the equation  

   YK./K.1K

[(1K0(Y0/)K)0[(1K0(Y./)K)
= 1 + Y(2.D])

20D]
.      (4) 

2.2.  Exact numerical solution using simulation 

We now describe the simulation methodology for obtaining empirically A-optimal 
designs. It should be noted that in our chosen parametrization, the variance of 𝛽=depends 
heavilyon the chosen scale of measurement of𝑥, whereas the variance of 𝛼; does not, since it 
isunit-free. Hence the A-optimal solution is not scale-invariant, and the scale can be 
chosenarbitrarily to modify the optimal design points. This is a serious weakness of the 
criterionin the context of logistic regression model. In order to circumvent the arbitrariness of 
the solutions based on the chosen scale, we fix a scale for which 𝛽 = 1. For the sake of 
brevity, we describe the process for 𝛼 = 1. The methods outlined here can be easily applied 
to any other values of the parameters by appropriate rescaling and shift. In principle, for a 
given finite sample size, it is possible to find the true A-optimal design in the full unrestricted 
design space. However, the computational time can be prohibitively expensive. So, the search 
is conducted in the space of two-point designs, lifting the restriction of point symmetry. This 
sheds light on how much improvement a restricted search can offer over the asymptotic A-
optimal design solution.  

In order to facilitate simpler and faster solutions within the restricted search space of 
two-point designs, we impose different types of additional restrictions as described below. 

i. First, we fix the symmetric design points by the doses determined from the theoretical 
solution, and then search for a weight (𝜉2) that minimizes the A-optimality criterion, 
i.e., the sum of variances of the estimates. Note that ∑𝜉C = 1 and 𝜉C 's represent the 
relative frequencies (𝑛C/𝑛)'s for a given total sample size of 𝑛. 

ii. Next, we fix the weight (𝜉2) to the theoretical solution, and then search for point-
symmetric doses (𝑥2, 𝑥") that minimize the sum of variances of the estimates. 

iii. We then conduct an exhaustive grid search in the restricted space of two-point, point 
symmetric designs. 

iv. Finally, we complete the investigation by relaxing the point symmetry restriction and 
conduct an exhaustive grid search in the space of all two-point designs. 

It should be noted that even with the additional restrictions, the performance will not be any 
worse than the theoretical A-optimal design, since the theoretical solution resides within the 
restricted search spaces. 
 



 RAJESH RANJAN NANDY, SRICHAND JASTI, KARABI NANDY [Vol. 18, No. 2 386 

2.3.  Simulation details 

Simulations for sample sizes varying from 20 to 1000 were conducted for each of the 
cases considered. For case (i) in 2.2, we used the theoretical A-optimal design points as 
obtained from equation 4 and then searched for the weight that minimizes the A-optimality 
criterion. Hence, the dosage values are 𝑥2 =

Y∗./
1

 and 𝑥" =
.Y∗./
1

, where 𝑐∗ is the theoretical 
A-optimal design point as obtained from equation 4. For each pair (𝑥2, 𝑥"), the sample 
weight 𝜉2, i.e. the proportion of the total sample allocated to 𝑥2, was varied with the 
remainder being allocated to 𝑥". For a given sample size	𝑛 and a weight 𝜉2, 𝑛2 = 	 𝜉2 ∗ 𝑛 
random Bernoulli responses were generated at dosage 𝑥2, with probability of success  𝑝2 =

2

20`ab	(.20]
∗EF
H )

. Similarly, 𝑛" = 	1 − 𝑛2random Bernoulli responses were generated at dosage 

𝑥" with probability of success 𝑝" =
2

20`ab	(.20E]
∗EF
H )

. A logistic regression model was fit to 

the resulting dataset of 𝑛	(= 𝑛2 +	𝑛"	)	Bernoulli responses at design points 𝑥2 and 𝑥". The 
corresponding estimates of  𝛼 and 𝛽	are obtained and (𝑉𝑎𝑟(𝛼;) + 	𝑉𝑎𝑟<𝛽=>) calculated by 
repeating this process 10,000 times from which an empirical estimate for the A-optimality 
criterion is obtained for a given sample size and design. The final optimal design was chosen 
to be the one that minimized this criterion. 

For case (ii) in 2.2, the weight 𝜉2 was determined from the theoretical A-optimal design 
in equation 4, and 𝑐 was allowed to vary in the design space of point-symmetric designs. The 
optimal 𝑐 and corresponding design points 𝑥2 and 𝑥"are obtained by repeating the procedure 
for case (i). For case (iii), we generalize the process by also allowing sample weight 𝜉2 to 
vary. Finally, we relax the assumption of point-symmetry and conduct a search in a much 
larger space, where the design points 𝑥2 and 𝑥"are also allowed to vary freely. The 
optimization problems are solved using a grid search, with a search space set up for c ranging 
from 0.1 to 2.0 in 0.05 increments. For 𝜉2, the range is setup to be 0.1 to 0.9 in 0.04 
increments. 

2.4.  Computational detail 

The programming is completed in R software (R-Project.org, v 3.3.1) using the 
“doParallel” package to conduct simultaneous simulations on all cores of a hyper-threaded 
quad-core computer. Efficiencies are obtained during the simulations by minimizing the 
number of calls to built-in functions. For example, instead of going through the linear process 
of generating a sample of size ‘n’, conducting a logistic regression, saving the parameter 
estimates, and then generating another dataset, all the datasets (e.g. 10,000 ×n size matrix) 
are generated in one call and the logistic regression model is applied to each dataset and 
parameters saved, resulting in 10,000 fewer calls to the “rbinom” function to generate the 
random sample. 

3.  Results 

3.1.  Performance of the theoretical A-optimal design 

As noted earlier, the Cramer-Rao bound is a lower bound for the true sum of the 
variances of the estimates. We first compare the true sum of the variances of the estimates for 
finite samples with the Cramer-Rao bound to assess how far off the asymptotic design is from 
true A-optimality. With α and β set to 1, the theoretical design points are calculated to be:	
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𝒙𝟏(low dose) = –2.482 and 𝒙𝟐	(high dose) = 0.482 and optimal weights are 0.71 and 0.29 
respectively. In Table 1, we have summarized the results. It is clear that we need a sample 
size of at least 300 to attain the bound. For sample sizes of 100 or less, the true sum of 
variances is much higher than the best case. 
 

Table 1: Comparison of theoretical versus empirical A-optimal design solutions 
 

Sample size (n) 𝒄𝑨∗  𝝃𝟏 𝐴klm = 𝑻𝒓(𝒊𝒏𝒗(𝑰))/𝒏 𝑨𝒐𝒑𝒕∗  
20 1.482 0.71 0.54 29.15 
40 1.482 0.71 0.27 4.84 
60 1.482 0.71 0.18 1.31 
80 1.482 0.71 0.14 0.57 

100 1.482 0.71 0.11 0.25 
300 1.482 0.71 0.04 0.04 
1000 1.482 0.71 0.01 0.01 

Note:𝒄𝑨∗  is the theoretical solution 𝒄∗in (4) and 𝐴klm∗  is the A-optimality criterion (i.e., sum of 
the variances of the parameter estimates) for the chosen design points. 
 

3.2.  Performance of various finite samples designs compared to theoretical A-optimal 
design 

To compare the performances, we define an improvement (or loss) in efficiency for 
each design as 

𝐸 =
𝐴wDxyYz∗ − 𝐴klm∗

𝐴klm∗ ∗ 100% 

where, 𝐴wDxyYz∗  is the minimum value of the A-optimality criterion for the restricted design 
space. In Tables 2-5, we summarize the performances of the four finite sample designs 
described in 2.2 with 𝐴klm, the A-optimality criterion for the theoretical A-optimal design. 
 

Table 2: Optimal proportion 𝒘𝟏 (𝑐 is fixed) at various sample sizes and gain in 
efficiency 
 

Sample size (n) 𝒄𝑨∗  𝝃𝒔𝒆𝒂𝒓𝒄𝒉∗  𝑨𝒔𝒆𝒂𝒓𝒄𝒉∗  E (%) 
20 1.482 0.87 25.00 14.25 
40 1.482 0.59 3.85 20.52 
60 1.482 0.59 0.62 52.78 
80 1.482 0.51 0.26 55.32 
100 1.482 0.59 0.14 43.72 
300 1.482 0.71 0.04 0.00 

1000 1.482 0.71 0.01 0.00 
Note:𝝃𝒔𝒆𝒂𝒓𝒄𝒉∗ is the weight at the left design point for which the minimum value of the A-
optimality criterion is attained, as shown in 𝐴wDxyYz∗ . 
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Table 3: Optimal design point 𝑐 (𝝃𝟏is fixed) at various sample sizes and gain in 
efficiency 
 

Sample size (n) 𝒄𝑨 𝝃𝟏 𝑨𝒔𝒆𝒂𝒓𝒄𝒉∗  E (%) 
20 1 0.71 17.88 38.68 
40 0.95 0.71 1.95 59.74 
60 0.65 0.71 0.49 62.53 
80 0.95 0.71 0.21 63.35 
100 1.25 0.71 0.14 42.11 
300 1.50 0.71 0.04 0.00 

1000 1.55 0.71 0.01 0.00 
Note:𝒄𝑨 is the right design point that minimizes the A-optimality criterion, 𝑨𝒔𝒆𝒂𝒓𝒄𝒉∗ . 

 
Table 4: A-optimal design in the restricted class of point symmetric designs 
 

Sample Size 
(n) 

𝒄𝑨 𝝃𝟏 𝑨𝒔𝒆𝒂𝒓𝒄𝒉∗  E (%) 

20 0.5 0.55 12.94 56 
40 0.7 0.55 0.68 86 
60 1.15 0.51 0.29 78 
80 1.15 0.59 0.17 70 

100 1.3 0.63 0.13 48 
300 1.45 0.67 0.04 0 
1000 1.45 0.71 0.01 0 

 
We can achieve improvements, ranging from 50% to 90%, depending on the sample size. 

 
Table 5: A-optimal design in the class of two-point designs without any additional 
restrictions 

Sample Size (n) 𝒙𝟏 𝒙𝟐 𝝃𝟏 𝑨𝒔𝒆𝒂𝒓𝒄𝒉∗  E (%) 
20 –3.0 –0.1 0.87 10.27 65 
40 –1.5 –0.1 0.59 0.60 88 
60 –1.7 0.3 0.59 0.25 81 
80 –1.8 0.6 0.67 0.16 72 

100 –1.9 0.5 0.67 0.12 50 
300 –2.3 0.5 0.67 0.04 0 
1000 –2.3 0.6 0.71 0.01 0 

 
We find further efficiency by relaxing the symmetry requirement, although the improvement 
is limited and is only significant at the smallest sample sizes 
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Figure 1: Comparison of the theoretical versus direct minimization in point symmetric 
design space 
 

In this graph, each segment relates to sample sizes 40, 60, 80 and 100. We can see that as the 
sample size increases, the distance between the theoretical solution of the A-optimality 
criterion and the solution via direct minimization decreases. 
 

4.  Discussion 

 Even though we have clearly established that the asymptotic result is inadequate for a 
sample size of 100 or less, the fundamental reason for the widespread use of asymptotic result 
in small sample designs is the lack of a theoretical solution. In fact, it is impractical to find 
the true A-optimal design numerically by searching the entire space of designs. Instead, we 
obtained the optimal solutions numerically in several restricted design spaces and assessed 
the improvements over the asymptotic solution. 

In the restricted space of all 2-point designs only (without any additional restriction), 
the optimal solution offers an improvement of up to 88%. The Cramer-Rao bound is attained 
with a sample size of only 100, whereas the theoretical solution needs approximately 300 
samples to reach the Cramer-Rao bound. Hence, even the optimal solution obtained from a 
restricted design space can offer a vast improvement over the theoretical solution. 

If we impose the additional restriction of point symmetry in the design space (weights 
unrestricted), the optimal solution offers an improvement of up to 86%. Hence, even with the 
addition of a further restriction of point symmetry in the design space, we observe a vast 
improvement over the theoretical solution. 
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To gain computational efficiency, if in addition we fix the weights of the 2-point design 
to match the weights of the theoretical solution, the optimal solution still offers an 
improvement of up to 63%. On the other hand, if we fix the symmetric design points to match 
the theoretical solution, the optimal solution offers an improvement of up to 55%. 
Nonetheless, irrespective of which design space is chosen, the improvement over the 
theoretical solution is remarkable. It is also evident from the results that there is a trade-off 
between computational efficiency and the performance.  

If higher performance is a priority, it is preferable to use the point symmetric design, as 
the performance is very close to the entire 2-point design space but with a much higher 
computational efficiency. In fact, it can be easily observed in Figure 1 that the optimal 
solution in the point-symmetric design space is quite different from the theoretical solution 
for smaller sample sizes. As expected, as sample size grows, the two solutions tend to 
converge.  

If computational efficiency is the priority, it is preferable to use the point symmetric 
design with fixed weight, as the performance is better than the point symmetric design with 
fixed weight with similar computational efficiency. 

From a practitioner perspective, it may be prohibitive to perform a grid search to obtain 
the finite-sample optimal design. In a future communication, the authors will provide a 
comprehensive table for the finite sample A-optimal designs for different values of 𝛼 and 
sample sizes. It would suffice to have the table for 𝛽 = 1 only, since 𝛽	can and will be 
rescaled to 1. We will also address other important optimality problems; for example, the 
estimation of percentiles, median effective dose, etc. 

Finally, it should be noted that in Tables 2−5, the gain inefficiency increases and then 
decreases with increased sample size. This may appear counter-intuitive as we expect a 
monotonic behavior with increased sample sizes. However, it can be explained by the fact 
that when sample size is very small, we frequently encounter singularity issues in a logistic 
regression framework. This results in a lack of efficiency in terms of A-optimality criterion. 
 

5.  Limitations and Conclusions 

There are two main limitations of the work. First, we have been unable to provide a 
theoretical solution to the finite sample problem. However, it is unclear if it is at all possible 
to obtain a theoretical solution to the problem. The second limitation is that our method does 
not provide A-optimal design for the entire unrestricted design space. However, the solution 
from the space of all 2-point designs is close to the true A-optimal solution for a relatively 
small sample size as evidenced by the A-optimality criterion values being close to the 
Cramer-Rao bound.  

The fundamental conclusion from this article is that the asymptotic theoretical A-
optimal solution for a logistic dose response performs poorly in minimizing the sum of 
variances of the parameters for small finite samples. To our knowledge, this is the first article 
studying the finite sample characteristics of A-optimality in a dose response model. This 
finding in of itself is quite significant as it is customary to use the asymptotic theoretical 
solution in the finite sample case. 
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