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Abstract

The paper proposes a new metric SAVE for finding the best fitted unsaturated log-linear
model to describe the categorical data in a contingency table with m categorical variables.
Two kinds of extensions, standard and orthogonal, of an unsaturated log-linear model to
the saturated model are the foundation of SAVE. The performance of SAVE in terms of the
correct model parameter(s) detection is comparable with or even better than the commonly
used metrics: Deviance, AIC, and BIC, as demonstrated in simulation studies.
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1. Introduction

Let X1, . . . , Xm denote m categorical variables, Xi with Ii categories, i = 1, . . . ,m.
The n subjects selected in a study using a multinomial sample are cross-classified into
N = I1 × · · · × Im possible combinations on m categorical variables X1, . . . , Xm in a contin-
gency table. The wth combination is represented by (w1, . . . , wm), where wu is the level of
Xu; wu = 0, . . . , Iu − 1;u = 1, . . . ,m. The number of subjects for the wth combination is a
random variable Yw having the observed value yw and the expected value E(Yw) = µw = npw,
where pw and µw are unknown parameters. The µw is the cell mean and pw is the cell proba-
bility for the cell represented by the wth combination. We have Yw ≥ 0 and Y1+· · ·+YN = n,
p1 + · · ·+ pN = 1 and µ1 + · · ·+µN = n. Also, yw ≥ 0, w = 1, . . . , N , and y1 + · · ·+ yN = n.
The saturated log-linear model is

log(pw) = λ+δ1λ
X1
w1 +· · ·+δmλ

Xm
wm

+δ1δ2λ
X1X2
w1w2 +· · ·+δ1δ2δ3λ

X1X2X3
w1w2w3 +· · ·+δ1 . . . δmλ

X1...Xm
w1...wm

, (1)

where {λXi1 Xi2
wi1 wi2 }, {λ

Xi1 Xi2 Xi3
wi1 wi2 wi3 }, . . ., and λX1...Xm

w1...wm
, are the unknown association parameters.

The {λXi
wi
} are the unknown effect parameters. The λ is the unknown overall effect parameter.
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The δu, u = 1, . . . ,m, are

δu =
{

0 if wu = 0,
1 if wu 6= 0.

When at least one association parameter is zero or absent in the saturated model,
the model becomes an unsaturated model in presence of the overall effect and the effect
parameters. The unsaturated models considered in this paper consist of the overall effect, the
effect parameters, and one or more association parameters. When all association parameters
are absent in the unsaturated model, the categorical variables become mutually independent.
“In practice, unsaturated models are preferable since their fit smoothes the sample data and
has simpler interpretations” (page 341, Agresti (2013)). On the one hand, the over-fitted
saturated model is unnecessary, but on the other hand, an under-fitted unsaturated model
is deficient for describing the data. We propose a new method of finding the best fitted
unsaturated log-linear model using the association parameters absent in the model considered
but present in the saturated model. We compare the proposed method with the standard
measures such as AIC, BIC, and Deviance using the 100,000 realizations of simulated data.

In Section 2, we present two saturated representations of standard and orthogonal
extensions of unsaturated log-linear models. In Section 3, we explain the saturated repre-
sentations with two illustrative examples in Sections 3.1 and 3.2. The data on the use of
automobile seat-belt for lowering fatal injury is in Section 4. We propose the new metric,
SAVE, in Section 5. We compare the new metric with the other available metrics AIC, BIC,
and MDI in Section 5.1. Section 6 presents their performance comparison for the 100,000
simulated data from each of the six data-generating models. We conclude in Section 7 with
some remarks.

2. Two Saturated Representations : S1 and S2

Let p = (p1, . . . , pN)> be the column vector of expected counts for the N cells of
the contingency table, λ(1) (k1× 1) be the vector of the overall effect, the effect parameters,
and the one or more association parameters in an unsaturated model considered for fitting
to the collected data, and X1 (N × k1) be the model matrix generated from the indicator
variables for the parameters in λ(1)

1 . Let λ2 (k2× 1) be the vector of association parameters
that are absent in λ(1) and X2 (N × k2) be the model matrix generated from the indicator
variables for the parameters in λ2. In the saturated model (1), the parameters in both λ(1)

and λ2 are present. The unsaturated model consists of the parameters in λ(1) but not the
parameters in λ2. The matrix representation of the unsaturated model considered is

logp = X1λ
(1)
1 , (2)

where rank(X1) = k1. We consider two representations of the saturated model. The first
representation is the standard saturated model and we denote it by S1. The second represen-
tation is the orthogonal extension of the assumed unsaturated model in (2) and it is denoted
by S2 (Klimova, Rudas and Dobra (2012), Klimova and Rudas (2016), Rudas (2018)). The
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standard representation S1 of the saturated log-linear model is

logp = X1λ
(1)
1 +X2λ2, (3)

where rank(X1, X2) = k1 + k2 = N .

Let D (N × k2) be a matrix which satisfies

rank(D) = k2,X
>
1 D = 0. (4)

The matrix D is not unique. A simple form of the matrix D satisfying (4) is

D = [IN −X1(X>1 X1)−1X>1 ]X2, (5)

where IN is the (N × N) identity matrix. Note that rank([IN − X1(X>1 X1)−1X>1 ]) =
N − k1 = k2 = rank(X2) = rank(D). From (5), it can be seen

Dλ2 = [IN −X1(X>1 X1)−1X>1 ]X2λ2,

X2λ2 = Dλ2 +X1(X>1 X1)−1X>1 X2λ2.
(6)

Let
λ

(2)
1 = λ

(1)
1 + (X>1 X1)−1X>1 X2λ2. (7)

The orthogonal saturated extension of the unsaturated model in (2), S2, is obtained from
(3) and (7) as

logp = X1λ
(1)
1 +X2λ2

= X1λ
(1)
1 +Dλ2 +X1(X>1 X1)−1X>1 X2λ2

= X1
(
λ

(1)
1 + (X>1 X1)−1X>1 X2λ2

)
+Dλ2

= X1λ
(2)
1 +Dλ2.

(8)

From (4) and (8), it follows that

λ
(2)
1 = (X>1 X1)−1X>1 logp

λ2 = (D>D)−1D>logp.
(9)

Klimova, Rudas and Dobra (2012), Klimova and Rudas (2016), Rudas (2018) defined
two kinds of relational models, dual and non-dual. For a dual representation of a relational
model, we have D>logp = 0. In other words, from (9), λ2 = 0. Hence, the unsaturated
model in (2) has a dual representation. On the other hand, for a non-dual representation
of a relational model, we have D>logp 6= 0. Therefore, the saturated model in (3) has a
non-dual representation.
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3. Examples

3.1. Example 1

For a 2 × 2 × 2 contingency table and the unsaturated model in (2) with three inde-
pendent categorical variables X1, X2 and X3, we have m = 3, N = 8, k1 = k2 = 4. Table 1
presents the cell representations.

Table 1: The cell representations for Example 1

Number Combination Probability
w (w1, w2, w3) pw

1 (0, 0, 0) p1
2 (0, 0, 1) p2
3 (0, 1, 0) p3
4 (0, 1, 1) p4
5 (1, 0, 0) p5
6 (1, 0, 1) p6
7 (1, 1, 0) p7
8 (1, 1, 1) p8

The matrices X1 and X2 are

X1 =



1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1


,X2 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1


, (10)

and the vectors λ(1)
1 and λ2 in (3) are

λ
(1)
1 = (λ, λX1

1 , λX2
1 , λX3

1 )>,λ2 = (λX1X2
11 , λX1X3

11 , λX2X3
11 , λX1X2X3

111 )>. (11)
Two D matrices, D(1) and D(2) in (12), are obtained by using (5) and (10). The last column
of D(1) is not orthogonal to its first three columns. The first three columns of D(1) are
mutually orthogonal. The first three columns of D(2) are the same as the corresponding
columns in D(1). The four columns of D(2) are mutually orthonormal. Thus, D>(2)D(2) = I4.

D(1) = (1/4)



1 1 1 1
1 −1 −1 0
−1 1 −1 0
−1 −1 1 −1
−1 −1 1 0
−1 1 −1 −1

1 −1 −1 −1
1 1 1 2


,D(2) = (1/8)



1 1 1 1
1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 1
−1 −1 1 −1
−1 1 −1 1

1 −1 −1 1
1 1 1 −1


. (12)
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For a dual relational model by using the expression of D(2) in (12) for D, we find

(i). log
(
p1p2p7p8

p3p4p5p6

)
= 0, (ii). log

(
p1p3p6p8

p2p4p5p7

)
= 0,

(iii). log
(
p1p4p5p8

p2p3p6p7

)
= 0, (iv). log

(
p1p4p6p7

p2p3p5p8

)
= 0.

(13)

From the equations (iii) and (iv) in (13), it can be seen

(i). log
(
p1p4

p2p3

)
= 0, (ii). log

(
p5p8

p6p7

)
= 0. (14)

In Table 1, we observe that X1 = 0 for w = 1, 2, 3, 4 and X1 = 1 for w = 5, 6, 7, 8. The
equation (i) in (14) implies the conditional independence between the categorical variables
X2 and X3 given X1 = 0. The equation (ii) in (14) implies the conditional independence
between X2 and X3 given X1 = 1.

From the equations (i) and (iv) in (13), we observe

(i). log
(
p1p6

p2p5

)
= 0, (ii). log

(
p4p7

p3p8

)
= 0. (15)

In Table 1, we observe that X2 = 0 for w = 1, 2, 5, 6 and X2 = 1 for w = 3, 4, 7, 8. The
equation (i) in (15) implies the conditional independence between the categorical variables
X1 and X3 given X2 = 0. The equation (ii) in (15) implies the conditional independence
between X1 and X3 given X2 = 1.

From the equations (i) and (iv) in (13), we find

(i). log
(
p1p7

p3p5

)
= 0, (ii). log

(
p2p8

p4p6

)
= 0. (16)

In Table 1, we observe that X3 = 0 for w = 1, 3, 5, 7 and X3 = 1 for w = 2, 4, 6, 8. The
equation (i) in (16) implies the conditional independence between the categorical variables
X1 and X2 given X3 = 0. The equation (ii) in (16) implies the conditional independence
between X1 and X2 given X3 = 1.

3.2. Example 2

For a 3× 2 contingency table and the unsaturated model in (2) with two independent
categorical variables X1 and X2, we have m = 2, N = 6, k1 = 4, k2 = 2. Table 2 presents
the cell representations.

The matrices X1 and X2 are

X1 =



1 0 0 0
1 0 0 1
1 1 0 0
1 1 0 1
1 0 1 0
1 0 1 1


,X2 =



0 0
0 0
0 0
1 0
0 0
0 1


, (17)
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Table 2: The cell representations for Example 2

Number Combination Probability
w (w1, w2) pw

1 (0, 0) p1
2 (0, 1) p2
3 (1, 0) p3
4 (1, 1) p4
5 (2, 0) p5
6 (2, 1) p6

and the vectors λ(1)
1 and λ2 in (3) are

λ
(1)
1 = (λ, λX1

1 , λX1
2 , λX2

1 )>,λ2 = (λX1X2
11 , λX1X2

21 )>. (18)

The matrices D(1) and D(2) in (19) are obtained by using (5) and (17). The two columns
of D(1) are not mutually orthogonal. The two columns of D(2) are mutually orthonormal.
Thus, D>(2)D(2) = I2.

D(1) = (1/6)



1 1
−1 −1
−2 1

2 −1
1 −2
−1 2


,D(2) =



1 1
−1 −1
−2 0

2 0
1 −1
−1 1


[
(1/2
√

3) 0
0 (1/2)

]
. (19)

For a dual relational model by using the expression of D(2) in (19) for D, we find

(i). log
(
p1p5

p2p6

)
= 2× log

(
p3

p4

)
, (ii). log

(
p1p6

p2p5

)
= 0. (20)

4. A Real Data

A research investigation started with a question (Agresti (2013)): Does seat-belt use
in automobiles reduce injury? The collected data in Table 4 were on the injury outcomes
of 68,694 passengers in autos and light trucks involved in accidents one year in the state of
Maine, USA. Three factors each at two levels displayed in Table 3 were three categorical
variables (m = 3) for the Table 4 data.

For the vectors λ(1)
1 and λ2 in (3) as

λ
(1)
1 = (λ, λX1

1 , λX2
1 , λX3

1 , λX1X3
11 , λX2X3

11 )>,λ2 = (λX1X2
11 , λX1X2X3

111 )>, (21)
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Table 3: Three factors and their levels

Factors/ Xi Levels
Categories 0 1

Location X1 Urban Rural
Seat-belt use X2 No Yes
Injury X3 No Yes

Table 4: The number of subjects yw

w X1, X2, X3 yw

1 000 17,668
2 001 1,808
3 010 22,556
4 011 1,139
5 100 9,369
6 101 2,057
7 110 12,827
8 111 1,270

the matrices X1 and X2 in (3), and D in (5) are

X1 =



1 0 0 0 0 0
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 1
1 1 0 0 0 0
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 1 1 1


,X2 =



0 0
0 0
0 0
0 0
0 0
0 0
1 0
1 1


,D =



0.25 0.00
0.25 0.25
−0.25 0.00
−0.25 −0.25
−0.25 0.00
−0.25 −0.25

0.25 0.00
0.25 0.25


. (22)

5. SAVE - A New Model Selection Criterion

For the saturated log-linear model S1 in (3), assume

X =
[
X1 X2

]
=
[
X11 X12
X21 X22

]
, (23)

where the matrix X11(k1 × k1) has rank k1 and X>1 X2 6= 0. Recall from (2) and (3) that
rank(X1) = k1 and rank(X)= k1 + k2 = N .

For the saturated log-linear model S2 in (8), assume

X∗ =
[
X1 D

]
=
[
X11 D1
X21 D2

]
, (24)
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where rank(X∗) = k1 + k2 = N . Recall from (4) that rank(D) = k2 and X>1 D = 0.
Let P be an (N ×N) lower-diagonal matrix

P =
[

Ik1 0
−X21X

−1
11 Ik2

]
. (25)

Pre-multiplying the matrices X in (23) and X∗ in (24) by P in (25)

PX =
[
X11 X12
0 X22 −X21X

−1
11 X12

]
,PX∗ =

[
X11 D1
0 D2 −X21X

−1
11 D1

]
. (26)

Let λ̂(1)
1 be the estimator of λ(1)

1 and λ̂(1)
2 of λ2, for S1 in (3). Let λ̂(2)

1 be the estimator of
λ

(2)
1 and λ̂(2)

2 of λ2, for S2 in (8). From (8) and (26), it can be seen that

X11λ̂
(1)
1 +X12λ̂

(1)
2 = X11λ̂

(2)
1 +D1λ̂

(2)
2 ,

(X22 −X21X
−1
11 X12)λ̂(1)

2 = (D2 −X21X
−1
11 D1)λ̂(2)

2 .
(27)

Clearly from (27),

λ̂
(1)
2 = (X22 −X21X

−1
11 X12)−1(D2 −X21X

−1
11 D1)λ̂(2)

2 ,

λ̂
(2)
1 − λ̂

(1)
1 = X−1

11 (X12λ̂
(1)
2 −D1λ̂

(2)
2 ).

(28)

Theorem 1: For two matrices, X in (23) in the standard representation S1 of the saturated
log-linear model in (3) and X∗ in (24) in the orthogonal extension representation S2 of the
saturated log-linear model in (5), the estimators λ̂(1)

1 of λ(1)
1 and λ̂(1)

2 of λ2 for S1 in (3), λ̂(2)
1

of λ(2)
1 and λ̂(2)

2 of λ2 for S2 in (8), satisfy
(i) λ̂(2)

2 = λ̂
(1)
2 if (X22 −X21X

−1
11 X12) = (D2 −X21X

−1
11 D1),

(ii) λ̂(2)
1 = λ̂

(1)
1 if and only if X12λ̂

(1)
2 = D1λ̂

(2)
2 .

Proof: The proof follows from (28).

Theorem 2: For the orthogonal extension representation S2 of the saturated log-linear
model in (8), the matrix D is not unique but Dλ̂(2)

2 is unique.
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Proof: From (3), (8), (9), and the condition X>1 D = 0 in (4),

logp̂ = X1λ̂
(1)
1 +X2λ̂

(1)
2

= X1λ̂
(2)
1 +Dλ̂(2)

2 ,

λ̂
(2)
2 = (D>D)−1D>X2λ̂

(2)
2

= (D>D)−1D>logp̂,

λ̂
(2)
1 = (X>1 X1)−1X>1 logp̂,

Dλ̂
(2)
2 = logµ̂−X1λ̂

(2)
1

= [IN −X1(X>1 X1)−1X>1 ]logp̂.

(29)

The right hand side ofDλ̂(2)
2 in (29) depends only onX1 and p̂ but notD since the elements

of p̂ are yw/n, w = 1, . . . , N . Hence, Dλ̂(2)
2 is unique.

Theorem 3: The sum of the elements in Dλ̂(2)
2 is zero.

Proof: Since the first column of X1 is an (N × 1) column vector jN = (1, 1, . . . , 1)> with
the elements equal to one, it follows from (4) that j>ND = 0 and therefore, j>NDλ

(2)
2 = 0.

In other words, the sum of elements of Dλ̂(2)
2 is zero.

It follows from Theorem 3 that the non-zero elements ofDλ̂(2)
2 are either positive or negative.

Moreover, the sum of the positive elements is negative of the sum of the negative values. A
new model comparison criterion is proposed as

SAVE = The sum of the absolute values of the elements in Dλ̂(2)
2

= 2× The sum of the positive elements in Dλ̂(2)
2 .

(30)

for comparing a class of unsaturated log-linear models. Smaller the value of SAVE for a
model means the better fit to describe the data. The unsaturated model having the smallest
value of SAVE means the elements of Dλ̂(2)

2 are overall individually small. In other words,
the unsaturated model provides the closest fitted values of pw to their corresponding ob-
served values yw/n, for w = 1, . . . , N .

5.1. Comparison of unsaturated models fitted to the seat-belt use data

Table 5 compares the seven unsaturated models in fitting to the Section 4 data using the
four criterion functions: AIC, BIC, MDI, and SAVE. From now on, λX1

1 , λX2
1 , λX3

1 , λX1X2
11 , λX1X3

11 ,
λX2X3

11 , and λX1X2X3
111 are denoted by λ1, λ2, λ3, λ12, λ13, λ23, and λ123, respectively.
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Table 5: The comparison of seven unsaturated log-linear models

Model AIC BIC MDI SAVE
1 λ123 = 0 99.14 99.69 85.14 0.09
2 λ23 = λ123 = 0 878.96 879.43 866.96 1.50
3 λ13 = λ123 = 0 830.53 831.01 818.53 1.44
4 λ12 = λ123 = 0 111.70 112.18 99.70 0.09
5 λ13 = λ23 = λ123 = 0 1596.57 1596.96 1586.57 1.51
6 λ12 = λ23 = λ123 = 0 877.73 878.13 867.73 1.50
7 λ12 = λ13 = λ123 = 0 829.31 829.71 819.31 1.47

The criterion functions AIC and BIC (Akaike (1973), Schwarz (1978)), Konishi and
Kitagawa (2008)) penalize the bigger model, while the Minimum Discrimination Information
(MDI) (Kullback and Leibler (1951), Kullback (1959), Csiszár (1975), Gokhale and Kullback
(1978), Haberman (1984), Kullback, Keegel, and Kullback (2013)) and SAVE do not. The
best-fitted model having the smallest values of all four criterion functions is the model with
λ123 = 0. The second-best model under all four criterion functions, is the model having
λ12 = λ123 = 0, which means the conditional independence between X1 and X2 given X3.
The proposed criterion function SAVE does not discriminate visibly between the top two
models by the other three criterion functions numerically for the data considered.

6. A Performance Evaluation Simulation Study for a 2×2×2 Contingency Table

The 100,000 multinomial random samples are generated from the six log-linear models
satisfying (1) for a 2 × 2 × 2 contingency table. The eight λ values for the data generating
six models are given in Table 6 so that the sum of pw, w = 1, . . . , 8, is 1. The pw values are
displayed in Table 7.

Table 6: The λ parameters of the six data generating models

Parameters M1 M2 M3 M4 M5 M6
λ -2.4654 -4.3262 -1.3008 -2.0844 -0.7839 -3.9759
λ1 -1.6094 0.5000 -1.6094 0.5000 -1.6094 -1.6094
λ2 -0.9163 -0.9163 -0.9163 -0.9163 -0.9163 -0.9163
λ3 -1.2040 -1.2040 -1.2040 -1.2040 -1.2040 -1.2040
λ12 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
λ13 3.2834 3.2834 0.0500 0.0500 0.0150 3.2834
λ23 2.3434 2.3434 2.3434 2.3434 0.0200 2.3434
λ123 0.0300 0.0300 0.0300 0.0300 0.0300 1.9738

Table 8 displays the unsaturated models fitted to the 100,000 datasets generated using each
model in Table 6. The best-fitted models satisfy the criterion functions Deviance, AIC, BIC,
and SAVE.
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The number or proportion of times a parameter appearing or not-appearing in the
best-fitted models is a measure of correct detection. For the data generating six models in
Table 6, the values of λ12 are identical, smallest, and close to zero. Hence, smaller the num-
ber or proportion of times λ12 appearing in the best-fitted models is better and larger the
number or proportion of times λ12 not-appearing in the best fitted models is better, are two
equivalent measures of correct detection. Table 9 provides the comparison between Deviance
Statistic/AIC/BIC and SAVE in terms of the number of times λ12 does not appear in the
best fitted models of three groups (g = 1, 2, 3 in Table 8) to 100,000 datasets generated by
the six models (Mi, i = 1, . . . , 6, in Table 7). Table 9 demonstrates that the number of times
λ12 does not appear in the best fitted models using the criterion function SAVE, is greater
than or equal to the corresponding number which is the common value of the criterion func-
tions Deviance, AIC, and BIC. In other words, the new criterion function SAVE makes the
correct detection more frequently than the three popular criterion functions: Deviance, AIC,
and BIC.

Table 7: The cell probabilities pw of the six data generating models

w M1 M2 M3 M4 M5 M6
(0,0,0) 0.0850 0.0132 0.2803 0.1244 0.4566 0.0188
(0,0,1) 0.0255 0.0040 0.0841 0.0373 0.1370 0.0056
(0,1,0) 0.0340 0.0053 0.1121 0.0498 0.1826 0.0075
(0,1,1) 0.1062 0.0165 0.3504 0.1555 0.0559 0.0235
(1,0,0) 0.0170 0.0218 0.0561 0.2051 0.0913 0.0038
(1,0,1) 0.1360 0.1743 0.0177 0.0647 0.0278 0.0300
(1,1,0) 0.0069 0.0088 0.0227 0.0829 0.0369 0.0015
(1,1,1) 0.5895 0.7561 0.0767 0.2825 0.0118 0.9094

For the data generating six models M1, . . . ,M6, the values of λ13 are equal and largest
among the association parameters for M1, M2, and M6. Therefore, larger the number of
times λ13 appearing in the best fitted models is better. Table 10 presents the comparison
between Deviance Statistic/AIC/BIC and SAVE with respect to the number of times λ13
appears in the best fitted models of three groups(g = 1, 2, 3 in Table 8) to 100,000 datasets
generated by M1, M2, and M6. The SAVE makes the correct detection more frequently
than Deviance/AIC/BIC for the datasets generated by M1 in the group g = 1 and for the
datasets generated by M6 in the group g = 2. The performances are equal for the other
cases in Table 10. The Deviance/AIC/BIC makes the correct detection more frequently than
SAVE for the datasets generated by M2 in the group g = 1. Overall, SAVE performs better
than Deviance/AIC/BIC.

7. Concluding Remarks

We constructed the new metric SAVE from the standard and orthogonal extensions of
the unsaturated models. The construction process is simple and meaningful. We made the
comparison of the metric SAVE with its competitors Deviance, AIC, and BIC. The SAVE



428 SUBIR GHOSH AND A. CHOWDHURY [Vol. 19, No. 1

Table 8: The fitted models for k = 1, 2, and 3

g h The fitted The common λ The other λ The λ
Model g.h parameters present parameters present parameters absent

1 1 1.1 λ, λ1, λ2, λ3 λ123 λ12, λ13, λ23
2 1.2 λ, λ1, λ2, λ3 λ12 λ123, λ13, λ23
3 1.3 λ, λ1, λ2, λ3 λ13 λ123, λ12, λ23
4 1.4 λ, λ1, λ2, λ3 λ23 λ123, λ13, λ12

2 1 2.1 λ, λ1, λ2, λ3 λ123, λ23 λ12, λ13
2 2.2 λ, λ1, λ2, λ3 λ123, λ13 λ12, λ23
3 2.3 λ, λ1, λ2, λ3 λ123, λ12 λ13, λ23
4 2.4 λ, λ1, λ2, λ3 λ12, λ13 λ123, λ23
5 2.5 λ, λ1, λ2, λ3 λ12, λ23 λ123, λ13
6 2.6 λ, λ1, λ2, λ3 λ13, λ23 λ123, λ12

3 1 3.1 λ, λ1, λ2, λ3 λ123, λ13, λ23 λ12
2 3.2 λ, λ1, λ2, λ3 λ123, λ12, λ23 λ13
3 3.3 λ, λ1, λ2, λ3 λ123, λ13, λ12 λ23
4 3.4 λ, λ1, λ2, λ3 λ12, λ13, λ23 λ123

Table 9: The number of best fitted unsaturated models without λ12

g Data Deviance/ SAVE g Data Deviance/ SAVE
generated by AIC/BIC generated by AIC/BIC

1 M1 100,000 100,000 2 M1 100,000 100,000
M2 100,000 100,000 M2 100,000 100,000
M3 100,000 100,000 M3 97,211 98,658
M4 100,000 100,000 M4 94,223 96,230
M5 100,000 100,000 M5 56,993 62,540
M6 100,000 100,000 M6 99,987 100,000

3 M1 51,143 62,773
M2 55,043 58,533
M3 46,476 55,344
M4 40,095 49,677
M5 27,104 32,107
M6 100,000 100,000

Table 10: The number of best fitted unsaturated models including λ13

g Data Deviance/ SAVE g Data Deviance/ SAVE
generated by AIC/BIC generated by AIC/BIC

1 M1 0 36,684 2 M1 100,000 100,000
M2 100,000 29, 153 M2 100,000 100,000
M6 100,000 100,000 M6 99,987 100,000

3 M1 100,000 100,000
M2 100,000 100,000
M6 100,000 100,000
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performed as well as or even better than Deviance, AIC, and BIC. We compared them in
terms of the correct identification of parameters of unsaturated log-linear models.
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