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Abstract
This paper introduces several methodologies that solve the inverse problem of recover-

ing a multivariate sample from subsets of its associated marginal and joint integer moments.
These results rely in part on their univariate counterpart, which is examined in some de-
tail. It is also explained that some of them also apply to complex-valued data sets. Several
illustrative examples are presented.
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1. Introduction

Evidently, one can readily evaluate sample moments from a given data set. The
problem being considered herein, which consists of retrieving a sample of multivariate ob-
servations from certain of its marginal and joint sample moments, can be regarded as an
inverse problem.

Inverse problems generally involve determining certain causes from some effects. They
currently constitute a rich field of research. For instance, they appear in the Mathematics
Subject Classification index in connection with quantum theory, optics, harmonic analysis,
trigonometry, linear operators, and electromagnetic theory. Inverse problems of various
nature have, for example, also found applications in geophysics (Zhdanov, 2015), acoustics
(Klyuchinskiy et al. 2020), image processing (Zou et al. 2021), astronomy (Escárate et al.
2023), system identification (Blanken and Oomen, 2020), language processing (Nakanishi,
2024), machine learning (Koffer et al. 2023), signal processing (Giovannelli and Idier, 2015)
and tomography (Mohamad-Djafari, 2013).

The results introduced in this paper imply that a certain number of marginal and joint
moments actually hold all the information that is contained in a given data set since the latter
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can be entirely retrieved from the former. Accordingly, such moments constitute sufficient
statistics. To some extent, this remark provides a justification for making use of moment-
based statistical methodologies such as the density function estimation techniques advocated
in Provost and Zheng (2015), Provost and Ha (2016), Jin et al. (2016), Zareamoghaddam
et al. (2017), Kang et al. (2019), Provost et al. (2020) and Provost and Zang (2024).

The problem of recovering a univariate sample of size n from its first n moments is
considered in Section 2 where the applicability of the result is discussed. The case of bivariate
observations and their sample moments is addressed in Section 3 where generalizations to
complex-valued and multivariate data sets are explored. All the results and their extensions
are illustrated by means of numerical examples. Lastly, some concluding remarks are offered
in Section 4.

2. A theorem relating a univariate data set to its moments

In this section, we state a result that was established in Provost et al. (2020), explain
that it holds in the complex domain, and discuss related considerations. Two numerical
examples are provided as well.

Theorem 1: A data set of size n can be recovered from the first n moments of the sample.
The proof of this result is given in the Appendix for the sake of completeness. The following
example illustrates the steps to follow when applying Theorem 1.

Example 1: Let n = 5 and the sample be {1.2, 3.4, 6.7, 8.1, 11.9}. The moments of orders
zero to five are 1, 6.26, 53.022, 511.6790, 5301.7767, 57492.260726 and, for j = 0, 1, 2, 3, 4, 5,
the ej’s as defined in the Appendix, are 1, 31.3, 357.29, 1814.543, 3910.731, 2634.91704. Ac-
cording to equation (1), the resulting polynomial is then −2634.91704+3910.731 x−1814.543 x2

+357.29 x3 − 31.3 x4 + x5, its five roots being {1.2, 3.4, 6.7, 8.1, 11.9}.

We note that the proof of Theorem 1 remains valid in the complex domain. It should
also be observed that any loss of precision can be avoided by making use of fractions.

Example 2: Let n = 3 and the sample be {2.4 + 5.1 i, 6.7 − 9.5 i, 11.8 + 1.4 i}, that
is, {12

5 + 51 i
10 , 67

10 − 19 i
2 , 59

5 + 7 i
5 } in fractional form. The moments of orders zero, one, two

and three are 1, 209
30 − i, 2389

100 − 1163 i
50 , and −56531

1500 + 38517 i
1000 , and for j = 0, 1, 2, 3, the ej’s

as defined in the Appendix are 1, 209
10 − 3 i, 17807

100 − 2781 i
100 , 93192

125 + 56127 i
250 . The polynomial,

x3 −
(

209
10 − 3 i

)
x2 +

(
17807
100 − 2781 i

100

)
x −

(
93192
125 + 56127 i

250

)
, is then obtained from equation (1)

and, as expected, its three roots are {12
5 + 51 i

10 , 67
10 − 19 i

2 , 59
5 + 7 i

5 }.

Since there exists a one-to-one correspondence between the observations and their
associated empirical distribution function, the following corollary to Theorem 1 holds.

Corollary 1: Given a simple random sample of size n from a continuous distribution, its
empirical distribution function Fn is uniquely specified by the first n sample moments.

In light of the strong law of large numbers, for every fixed x, the empirical distribution
function Fn(x) will converge almost surely to the underlying distribution function F (x).
Moreover, given a simple random sample of size n, the Glivenko-Cantelli theorem states
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that
sup
x∈ℜ

|Fn(x) − F (x)|

tends to zero almost surely, and that the convergence of Fn(x) to F (x) is uniform. However,
as was aptly pointed out by Ric̆ardas Zitikis, a colleague of the first author, a contradiction
would ensue if one were to let n tend to infinity in Corollary 1 as this result would then
imply that, given the integer moments of a random variable, its distribution could be specified
uniquely. This is clearly not the case since there exists distinct distributions whose integer
moments are all identical.

Consider for example the following density functions:

f1(x) = 1
4e−

√
|x|, x ∈ ℜ,

and
f2(x) = 1

4e−
√

|x|
(

cos(
√

|x|) + 1
)
, x ∈ ℜ,

which are plotted in Figure 1.
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Figure 1: Plots of f1(x) and f2(x) on a logarithmic scale for −200 < x < 200

Although these two distributions are clearly distinct, their kth moment,

m1(k) = 1
2

(
(−1)k + 1

)
Γ(2k + 2)

and
m2(k) = 1

2
(
(−1)k + 1

)
Γ(2k + 2)

(
1 − sin(k π/2)

2k+2

)
,

happen to coincide for k = 0, 1, 2, . . . .

To summarize, in the limit, Fn can specify the underlying population distribution
function. However, as previously illustrated, a population distribution function F may not
be uniquely specified by an infinite sequence of its integer moments. Thus, Corollary 1
cannot be extended beyond finite values of n.

It should also be pointed out that moment-based methodologies lend themselves to
the modeling of massive data sets since only a moderate number of moments are needed to
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apply such techniques, as opposed to other approaches such as those based on likelihoods
for which all the observations are required. Actually, ample information can generally be
secured from a fairly limited number of moments, whereas each data point contains an equal
amount of information that is inversely proportional to the sample size. Moreover, once a
new set of observations, {xn1+1, . . . , xn}, becomes available in addition to an initial dataset,
{x1, . . . , xn1}, there is no need to make use of each of the n1 original data points to compute
the moments since the hth updated moment will then be (n1mh +

n∑
i=n1+1

xh
i )/n where mh

denotes the hth sample moment as evaluated from the initial data set.

3. On recovering multivariate samples from their moments

The four propositions introduced in this section enable one to retrieve bivariate sets of
observations from some of their marginal and joint moments—or those of their component-
wise ranks, the observations on each variable being assumed to be distinct. It is explained
that each of the proposed methodologies also apply to multivariate data sets and that two
of them hold in the complex domain. Several numerical examples are provided.

Proposition 1: A bivariate sample {(x1, y1), . . . , (xn, yn)} can be retrieved from the first n
marginal moments of the first variable, that is,

m1,0, . . . , mn−1,0, mn,0,

in conjunction with the following bivariate sample moments:

m0,1, m1,1, . . . , mn−1,1,

where mj,k denotes the moment of orders j and k, which is equal to ∑n
i=1 xj

i yk
i /n.

Proof: In light of Theorem 1, the observations on the first variable, namely, x1, . . . , xn

can be retrieved from the given marginal moments. The remainder of the proof relies on a
representation of the joint moments that involves a Vandermonde matrix.

It is assumed that the following joint moments are known:

mj,1 = 1
n

n∑
1=1

x j
i yi, j = 0, . . . , n − 1.

This system of equations can be equivalently expressed as follows:

1
n


1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n... ... . . . ...

xn−1
1 xn−1

2 · · · xn−1
n




y1
y2
y3
...

yn

 =


m0,1
m1,1
m2,1

...
mn−1,1


where the above matrix is a Vandermonde matrix, which is nonsingular since the xi’s are
assumed to be nonidentical. Note that the vector of yj’s which is the unique solution of this
linear system, enables one to pair each of them appropriately with the corresponding xi.
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Remark 1: Given the definition of mj,k, it is apparent that the order of the n bivariate
sample points is immaterial. Thus, in applications, it suffices to set a certain order for the
xi’s, and the yj’s to be associated with these xi’s will be properly ordered in the solution
vector of the linear system.

Additionally, we note that the 2n moments that are specified in Proposition 1 are
jointly sufficient statistics, since they provide enough information to recover the entire bi-
variate sample of ordered observations—which, incidentally, requires 3n − 1 pieces of infor-
mation, namely, the observations on each variable and the ranks of n − 1 observations on
the second component relative to those on the first.

Example 3: Let the sample be {(1, 7), (2, 2), (5, 3)}. Given the marginal moments on the
first variable, one can determine that the observations on the first variable are 1, 2 and
5. Additionally, let the joint moments of orders (0,1), (1,1) and (2,1), that is, m0,1 = 4
m1,1 = 26/3 and m2,1 = 30, be available. The solution of the following system, which is
(7,2,3), yields the values of the yj’s to be associated with the xi’s:

1
3

 1 1 1
1 2 5
12 22 52


 y1

y2
y3

 =

 4
26/3
30

 .

As is the case for univariate observations, complex-valued bivariate or multivariate
observations can also be recovered. This can be readily achieved by initially implementing
Theorem 1 and then, solving a linear system of equations involving complex values.

Example 4: Let {(2.4+5.1 i, 7.3−1.8 i), (6.7−9.5 i, 2.2), (11.8+1.4 i, 9.8 i)} be the sample
to recover. Note that if the first three marginal moments of the first variables are given,
one can retrieve the three observations on the first component, which happens to be the
univariate data set utilized in Example 2. Now, assume that the joint moments of orders
(0,1), (1,1) and (2,1), namely, m0,1 = 19/6 + (8 i)/3, m1,1 = 231/25 + (851 i)/20 and m2,1 =
−(105469/600) + (640219 i)/1500 are available. As expected, the solution of the linear
system,

1
3

 1 1 1
12/5 + 51 i/10 67/10 − 19 i/2 59/5 + 7 i/5

−81/4 + 612 i/25 −1134/25 − 1273 i/10 3432/25 + 826 i/25


 y1

y2
y3



=

 19/6 + 8 i/3
231/25 + 851 i/20

−105469/600 + 640219 i/1500


is {y1, y3, y4} = {73/10 − (9 i)/5, 11/5, (49 i)/5}.

A trivariate observation vector (xi, yi, zi), i = 1, . . . , n, can be similarly recovered if,
in addition to the the first n marginal moments of the first variable from which the xi’s can
be specified, one knows m0,1,0, m1,1,0, . . . , mn−1,1,0 which will yield the yj’s associated with the
xi’s, as well as m0,0,1, . . . , m0,n−1,1 which will then yield the zk’s associated with the yj’s. By
proceeding in like fashion, Proposition 1 can extended to sets of multivariate observations.
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Example 5: Let the sample be {(2, 4, 6), (7, 3, 1), (5, 6, 3)}. Given the marginal moments on
the first variable, we can determine that the observations on that variable are 2, 5 and 7 and,
in light of Remark 1, we may let {x1, x2, x3} = {2, 7, 5} (or any other permutation thereof).
The joint moments of orders (0,1,0), (1,1,0) and (2,1,0) are m0,1,0 = 13/3 m1,1,0 = 59/3 and
m2,1,0 = 313/3, and the joint moments of orders (0,0,1), (0,1,1) and (0,2,1) are m0,0,1 = 10/3
m0,1,1 = 15 and m0,2,1 = 71. The solutions of the systems of equations,

1
3

 1 1 1
2 7 5
22 72 52


 y1

y2
y3

 =

 13/3
59/3
313/3


and

1
3

 1 1 1
4 3 6
42 32 62


 z1

z2
z3

 =

 10/3
15
71

 ,

yield the values of the yj’s to be paired with the xi’s, that is, {y1, y2, y3} = {4, 3, 6}, and
then those of the zk’s to be paired with the yj’s namely, {z1, z2, z3} = {6, 1, 3}).

Proposition 1 can also be extended as follows: Given the marginal moments of the first
variable up to order n, any additional set of n joint moments that does not include any of the
first variable marginal moments can be utilized to recover the sample. The resulting system
of equations can be solved by making use of an array of computing packages. This flexibility
in the selection of joint moments also applies in the case of multivariate observations.

Example 6: Let the sample be {(2, 4), (5, 6), (7, 3)}. Given the first three marginal moments
on the first variable which are {14/3, 26, 476/3}, it can be determined from Theorem 1 that
the observations on that variable are 2, 5 and 7. Now, assume that the joint moments
of orders (0,1), (1,2) and (2,3), namely, m0,1 = 13/3, m1,2 = 275/3 and m2,3 = 6979/3
are available. It then suffices to solve of system, {y1 + y2 + y3 = 13, 2y2

1 + 5y2
2 + 7y2

3 =
275, 4y3

1 + 25y3
2 + 49y3

3 = 6979} to obtain the corresponding values for the second variable,
that is, (4,6,3).

Proposition 2: A bivariate sample of size n can be retrieved from the first n marginal sam-
ple moments of each variable, that is, mi,0, i = 1, . . . , n, and m0,j, j = 1, . . . , n, where mi,j

denotes the sample moment of orders i and j, in conjunction with the ranks of the observa-
tions within each variable—or equivalently those of the corresponding pseudo-observations.

Pseudo-observations are the component-wise ranks of the data points divided by n.
Note that all the pseudo-observations originating from a given sample can be secured from
the associated empirical copula, as originally defined by Deheuvels (1979).

Proof: As previously explained, the data on each variable can be retrieved from the marginal
moments by appealing to Theorem 1. Then, given the ranks of the observations on each
variable, the observations can be appropriately paired.

Example 7: Let the original sample be {(1,7), (2,2), (5,3)}. First, it can be determined
from the first three marginal moments of each variable that the observations on the first
and second variables are respectively {1, 2 ,5}, and {2, 3, 7}. If in addition, it is known
that the ranks of the observations on each component are [r1, s1] = [1, 3], [r2, s2] = [2, 1] and



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

MULTIVARIATE DATA FROM JOINT SAMPLE MOMENTS 477

[r3, s3] = [3, 2], then, it can readily be determined that the sample points are (1,7), (2,2)
and (5,3).

This approach can be directly extended to sets of multivariate observations.

Example 8: Consider the following sample of trivariate observations: {(2, 5, 7), (3, 4,
8),(1, 3, 6)}. Given the first three marginal moments of each of the three variables, it can
be determined from Theorem 1 that the observations on the first, second and third com-
ponents are {1, 2, 3}, {3, 4, 5} and {6, 7, 8}, respectively. If it is also known that the
ranks of these component-wise observations are [r1, s1, t1] = [2, 3, 2], [r2, s2, t2] = [3, 2, 3],
and [r3, s3, t3] = [1, 1, 1], it can then be readily determined that the sample points are (2, 5,
7), (3, 4, 8) and (1, 3, 6).

Proposition 3: A random sample of size n arising from a continuous bivariate distribution
can be retrieved from the first n marginal moments of each variable, that is, mi,0, i = 1, . . . , n
and m0,j, i, j = 1, . . . , n, in conjunction with the joint moments, m∗

0,1, . . . , m∗
n−1,1, of the

ranks of the observations.

Proof: In light of Theorem 1, the observations on each variable, namely, x1, . . . , xn, and
y1, . . . , yn, can be recovered from the marginal moments. The remainder of the proof relies
on a representation of the joint moments of the ranks that involves a Vandermonde matrix.
Let again ri and si denote the ranks of the observations with respect to the first and second
variables. By assumption, the joint moments, m∗

0,1, . . . , m∗
n−1,1, of the ranks are known with,

in general,

m∗
j,k = 1

n

n∑
i=1

s j
i r k

i , j = 0, . . . , n − 1.

Note that m∗
0,1 = (n + 1)/2. This system of equations can be equivalently expressed as

follows:

1
n


1 1 · · · 1
r1 r2 · · · rn

r2
1 r2

2 · · · r2
n... ... . . . ...

rn−1
1 rn−1

2 · · · rn−1
n




s1
s2
s3
...

sn

 =



m∗
0,1

m∗
1,1

m∗
2,1
...

m∗
n−1,1


where the above matrix is a Vandermonde matrix, which is nonsingular since the ri’s are
distinct. Note that the unique solution of this linear system will yield s1, . . . , sn, and associate
each of them appropriately with the corresponding ri, which will enable one to correctly pair
the known xi’s and yj’s.

Remark 2: Given the definition of m∗
j,k, it is apparent that the order of the n bivariate

sample points does not matter, since the pair of ranks corresponding to a given bivariate
observation will remain unchanged. Thus, in applications, it suffices to set a certain order for
the ri’s, and the sj’s to be associated with these ri’s will be properly ordered in the solution
vector of the linear system.

Example 9: Let the sample be {(1, 7), (2, 2), (5, 3)}. Given the marginal moments on each
variable, one can retrieve the observations on the first variables, namely, 1, 2 and 5, as well
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as the observations on the second variables which are 2, 3 and 7. It now remains to pair
them using Proposition 3. We have to determine the second component of the following
paired ranks: [r1, s1] = [1, 3], [r2, s2] = [2, 1] and [r3, s3] = [3, 2], that is, [s1, s2, s3] = [3, 1, 2].
The joint moments of the ranks of orders (0,1), (1,1) and (2,1) are m∗

0,1 = 2, m∗
1,1 = 11/3 and

m∗
2,1 = 25/3, respectively. Solving the following system will yield the ranks of the second

component, that is, [3,1,2], and enable one to correctly pair the data points:

1
3

 1 1 1
1 2 3
12 22 32


 s1

s2
s3

 =

 2
11/3
25/3

 .

This result can be generalized to the multivariate case by proceeding as in the gen-
eralization of the Proposition 1, except that in this case, the joint moments of the ranks
are utilized in addition to the marginal sample moments of each variable. As well, joint
moments of the ranks other than those specified in Proposition 3 can be utilized as was done
in Example 6 in conjunction with certain joint moments of the observations.

Example 10: Let the sample be {(2, 4, 6), (7, 3, 1), (5, 6, 3)}. Given the marginal moments
on each variable, one can retrieve the observations on the first, second and third variables,
that is, {2, 5, 7}, {3, 4, 6}, and {1, 3, 6}, respectively. We then have to determine the ranks
of the entries in second and third components, namely, [s1, s2, s3] = [2, 1, 3] and [t1, t2, t2] =
[3, 1, 2] and end up with the following set of ranks: [r1, s1, t1] = [1, 2, 3], [r2, s2, t2] = [3, 1, 1],
and [r3, s3, t3] = [2, 3, 2], which enables us to retrieve the original data set.

The joint moments of the ranks of orders (0,1,0), (1,1,0) and (2,1,0) are m∗
0,1,0 = 2,

m∗
1,1,0 = 11/3 and m∗

2,1,0 = 23/3, respectively. Let the given joint moments of the ranks of
orders (0,0,1), (0,1,1) and (0,2,1) be m∗

0,0,1 = 2, m∗
0,1,1 = 13/3 and m∗

0,2,1 = 31/3, respectively.

We started off with r1 = 1, r2 = 3 and r3 = 2; however, as per Remark 2, any
permutation thereof will lead to the data set with its trivariate observations appearing in a
different order. Thus, we first solve the following linear system, which will yield the ranks
of the second component entries, that is, [2,1,3]:

1
3

 1 1 1
1 3 2
12 32 22


 s1

s2
s3

 =

 2
11/3
23/3

 .

The solution of the linear system that follows will then yield the ranks of the third component
entries, which are [3,1,2]:

1
3

 1 1 1
2 1 3
22 12 32


 t1

t2
t3

 =

 2
13/3
31/3

 .

Proposition 4: A bivariate sample of size n can be retrieved on the basis of the first n
marginal sample moments of each variable in conjunction with any single additional joint
sample moment that does not involve moments of order zero.
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Proof: On applying Theorem 1, the set of observations on each variable can be determined
from the marginal moments. Then, given the ordered observations on the first variable, there
will be a unique permutation of the observations on the second variable that will yield the
given joint moment.

This assumes that the observations have been recorded with sufficient precision.

Example 11: Consider the sample S = {(1, 7), (2, 2), (5, 3)}. Given the marginal moments
of each variables, it can be determined that the first and second component values will re-
spectively be {1,2,5} and {2,3,7}. Assuming for instance that, it is known that the joint
moment m1,1 = 26/3, and, for instance, setting the the observations on the first component
in increasing order, that is, 1,2,5, we are seeking the permutation of {2,3,7} among the 6
possible ones that will yield the same joint moment of orders 1 and 1. This process will lead
to the identification of the correct bivariate data points that constitute the sample S. The
6 possible pairs of observations and their joint moment of order (1,1) are:

{(1, 7), (2, 3), (5, 2)} ⇒ m1,1 = 23/3
{(1, 7), (2, 2), (5, 3)} ⇒ m1,1 = 26/3
{(1, 2), (2, 7), (5, 3)} ⇒ m1,1 = 31/3
{(1, 2), (2, 3), (5, 7)} ⇒ m1,1 = 43/3
{(1, 3), (2, 2), (5, 7)} ⇒ m1,1 = 42/3
{(1, 3), (2, 7), (5, 2)} ⇒ m1,1 = 27/3.

Accordingly, we select the bold-faced set as the original sample since its joint moment of
order (1,1) coincides with that of S.

Proposition 4 which, incidentally, is implementable in the case of moderately sized
samples, can readily be extended to sets of multivariate observations.

Example 12: Consider the sample S = {(2, 4, 6), (7, 3, 1), (5, 6, 3)}. Given the first three
marginal moments of each variable, it can be determined that the observations on the first,
second and third components are {2,5,7}, {3,4,6}, and {1,3,6}, respectively. Assuming for
instance that, it is known that the joint moment m1,1,1 = 53, and setting the observations
on the first component in increasing order, that is, {2, 5, 7}, we are seeking the permutation
of {3, 4, 6} and that of {1, 3, 6} that will yield the same joint moment. This will enable us
to identify the correct triplet of trivariate observations comprising S. The 36 possible sets
of observations and their joint moments of order (1,1,1) are:

{(2, 3, 1), (5, 4, 3), (7, 6, 6)} ⇒ m1,1,1 = 106,
{(2, 3, 1), (5, 4, 6), (7, 6, 3)} ⇒ m1,1,1 = 84,
{(2, 3, 3), (5, 4, 1), (7, 6, 6)} ⇒ m1,1,1 = 290

3 ,
{(2, 3, 3), (5, 4, 6), (7, 6, 1)} ⇒ m1,1,1 = 60,
{(2, 3, 6), (5, 4, 1), (7, 6, 3)} ⇒ m1,1,1 = 182

3 ,
{(2, 3, 6), (5, 4, 3), (7, 6, 1)} ⇒ m1,1,1 = 46,
{(2, 3, 1), (5, 6, 3), (7, 4, 6)} ⇒ m1,1,1 = 88,
{(2, 3, 1), (5, 6, 6), (7, 4, 3)} ⇒ m1,1,1 = 90,
{(2, 3, 3), (5, 6, 1), (7, 4, 6)} ⇒ m1,1,1 = 72,
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{(2, 3, 3), (5, 6, 6), (7, 4, 1)} ⇒ m1,1,1 = 226
3 ,

{(2, 3, 6), (5, 6, 1), (7, 4, 3)} ⇒ m1,1,1 = 50,
{(2, 3, 6), (5, 6, 3), (7, 4, 1)} ⇒ m1,1,1 = 154

3 ,
{(2, 4, 1), (5, 3, 3), (7, 6, 6)} ⇒ m1,1,1 = 305

3 ,
{(2, 4, 1), (5, 3, 6), (7, 6, 3)} ⇒ m1,1,1 = 224

3 ,
{(2, 4, 3), (5, 3, 1), (7, 6, 6)} ⇒ m1,1,1 = 97,
{(2, 4, 3), (5, 3, 6), (7, 6, 1)} ⇒ m1,1,1 = 52,
{(2, 4, 6), (5, 3, 1), (7, 6, 3)} ⇒ m1,1,1 = 63,
{(2, 4, 6), (5, 3, 3), (7, 6, 1)} ⇒ m1,1,1 = 45,
{(2, 4, 1), (5, 6, 3), (7, 3, 6)} ⇒ m1,1,1 = 224

3 ,
{(2, 4, 1), (5, 6, 6), (7, 3, 3)} ⇒ m1,1,1 = 251

3 ,
{(2, 4, 3), (5, 6, 1), (7, 3, 6)} ⇒ m1,1,1 = 60,
{(2, 4, 3), (5, 6, 6), (7, 3, 1)} ⇒ m1,1,1 = 75,
{(2, 4, 6), (5, 6, 1), (7, 3, 3)} ⇒ m1,1,1 = 47,
{(2, 4, 6), (5, 6, 3), (7, 3, 1)} ⇒ m1,1,1 = 53,
{(2, 6, 1), (5, 3, 3), (7, 4, 6)} ⇒ m1,1,1 = 75,
{(2, 6, 1), (5, 3, 6), (7, 4, 3)} ⇒ m1,1,1 = 62,
{(2, 6, 3), (5, 3, 1), (7, 4, 6)} ⇒ m1,1,1 = 73,
{(2, 6, 3), (5, 3, 6), (7, 4, 1)} ⇒ m1,1,1 = 154

3 ,
{(2, 6, 6), (5, 3, 1), (7, 4, 3)} ⇒ m1,1,1 = 57,
{(2, 6, 6), (5, 3, 3), (7, 4, 1)} ⇒ m1,1,1 = 145

3 ,
{(2, 6, 1), (5, 4, 3), (7, 3, 6)} ⇒ m1,1,1 = 66,
{(2, 6, 1), (5, 4, 6), (7, 3, 3)} ⇒ m1,1,1 = 65,
{(2, 6, 3), (5, 4, 1), (7, 3, 6)} ⇒ m1,1,1 = 182

3 ,
{(2, 6, 3), (5, 4, 6), (7, 3, 1)} ⇒ m1,1,1 = 59,
{(2, 6, 6), (5, 4, 1), (7, 3, 3)} ⇒ m1,1,1 = 155

3 ,
{(2, 6, 6), (5, 4, 3), (7, 3, 1)} ⇒ m1,1,1 = 51

Accordingly, we select the bold-faced set as the original sample since its joint moment of
order (1,1,1) coincides with that of S.

Proposition 4 can as well be extended to complex-valued samples.

Example 13: Consider the sample S={(5.4 + 6.1 i, 9 + 3.4 i), (6.7, 3.3 i), (8 i, 1.9)}. Given
the first three marginal moments of the first and second components, which are respec-
tively {121/30+(47 i)/10, −679/75+(549 i)/25, −5783/120−(68451 i)/1000} and {109/30+
(67 i)/30, 518/25 + (102 i)/5, 423739/3000+ (750959 i)/3000}, one can determine the three
entries in each of the two components as was done in Example 2 for the univariate case.
Now, assume that, additionally, m1,1=1393/150 + (11057 i)/300, is provided. On keeping
the observations on first component in a given order and permuting those of the second
component, only one of the six joint moments of orders 1 and 1 so obtained will equal m1,1,
the corresponding set of paired observations being those included in S.

4. Concluding remarks

Four methodologies were introduced for the purpose of recovering a multivariate data
set from certain of its associated marginal and joint moments as evaluated from the ob-
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servations or their component-wise ranks. In fact, two of them also hold in the complex
domain. For a given multivariate sample, the evaluation of the marginal and joint moments
is straightforward and constitutes a direct problem. As explained in the Introduction, the
results introduced in this paper actually solve the inverse problem consisting of recovering
the original observations on the basis of certain marginal and joint moments.

Interestingly, a parallel can be established between Proposition 2 which makes use of
a number of marginal moments and all the component-wise ranks of the observations—or,
equivalently, the pseudo-observations—to recover the entire sample, and Sklar’s theorem as
introduced by Sklar (1959), which states that a joint distribution can be expressed in terms
of the marginal distributions and a function that depends only on the pseudo-observations,
which is referred to as a copula. In fact, copulas completely account for the dependence
between the variables. Several nonparametric copula density estimation techniques were
recently proposed in Provost and Zang (2024). For an introduction to copulas and related
results, the reader is referred to Nelsen (2006). All the calculations were carried out with the
symbolic computing package Mathematica, the code being available from the first author
upon request.
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APPENDIX

Proof of Theorem 1

Let S = {x1, x2, . . . , xn} be a sample of size n and M = {m1, m2, . . . , mn} where mh =∑n
i=1 xh

i /n. According to the fundamental theorem of algebra, p(z) = a0 + a1z + · · · +
an−1z

n−1 + zn is uniquely defined by its coefficients ai’s and it is also uniquely specified by
its n roots xi’s for i = 1, . . . , n. Moreover, given S, the coefficients of p(x) can be expressed
in terms of the sequence of moments M via the Newton-Girard identity. Accordingly, a
given polynomial of degree n, say p(x), can be represented as follows:

n∏
i=1

(x − xi) =
n∑

k=0
(−1)n−k en−k xk, (1)

where e0 = 1 and

eℓ = n

ℓ

ℓ∑
h=1

(−1)h−1 eℓ−h mh, ℓ = 1, . . . , n. (2)

Thus, given the first n sample moments associated with S, a sample of size n, one can express
the right-hand side of (1) as a polynomial whose roots are precisely {x1, x2, . . . , xn}. This
establishes that S is uniquely specified by M.
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