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Abstract
We consider the problem of variable selection for the ultrahigh-dimensional linear

regression model, allowing the number of covariates pn to grow exponentially with n. As-
suming the true model to be sparse, we propose a set of priors suitable for this regime.
In the ultrahigh-dimensional setting, the selection of the unique true model among all the
2pn possible ones involves prohibitive computation. To cope with this, a two-stage model
selection algorithm is proposed. In the first stage, an efficient screening algorithm is em-
ployed to find a good dn-dimensional model, where dn ≪ n. In the next stage, an explicit
model search algorithm is employed on the space of all submodels of the first-stage-selected
model. Theoretical investigations justify the two-stage procedure. It is demonstrated that
the first-stage screening is expected to select a supermodel of the true model, consequently,
the second-stage algorithm identifies the true model with probability tending to one. This
procedure is computationally efficient, simple and intuitive. We validate the competitive
performance of the proposed algorithm with a variety of simulated and real data sets, and
compare with several frequentist as well as Bayesian methods.
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1. Introduction

Variable selection in ultrahigh-dimensional regression setup has become a flourishing
area in the contemporary research, due to increasing availability of data in various fields
like genetics, finance, machine learning. Consider, for example, in genome-wide association
studies (GWAS), where a phenotype is measured for a panel of individuals and a large
number of single nucleotide polymorphisms (SNPs) are genotyped for each individual. The
goal is to identify SNPs that are statistically associated with the phenotype. Sparsity has
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frequently been identified as an underlying feature for such data sets, where among a large
number of covariates (SNPs) only a small subset are actually important.

Several variable selection methods have been proposed for high-dimensional data in
both the frequentist and the Bayesian paradigms. Two predominant classes of methods in
frequentist paradigm are penalized likelihood methods and screening based methods. Penal-
ized likelihood methods includes Least Absolute Shrinkage and Selection Operator (LASSO)
and its variants like the elastic net of Zou and Hastie (2005), the group LASSO of Yuan and
Lin (2006) and the adaptive LASSO of Zou (2006), etc., while the screening based methods
include sure independence screening (SIS) of Fan and Lv (2008), iterative SIS (ISIS) of Fan
and Song (2010), forward selection-based screening of Wang (2009), nonparametric indepen-
dence screening (NIS) of Fan et al. (2011), iterative varying-coefficient screening (IVIS) of
Song et al. (2014), etc. For a comprehensive review of frequestist variable selection method,
see Bühlmann and van de Geer (2011).

In situations with extreme sparsity LASSO-type estimates are outperformed by testing-
based subset selection methods (see, for example (Tibshirani, 1996, Section 11)), and tend
to overfit. On the other hand, screening based methods focus on marginal association of
covariates with the response, and therefore fail to capture the joint structure of the covari-
ates. As a result these methods suffer under presence of multicollinearity, which is almost
inenviable in high-dimensional scenario.

In the Bayesian literature, popular methods include the empirical Bayes variable
selection (see George and Foster (2000)), where a mixture of testing and optimization is
employed to identify the optimal model, fully testing-based methods like spike and slab
variable selection (see Ishwaran and Rao (2005)), and optimization and thresholding-based
shrinkage prior methods for variable selection like Bayesian LASSO (see Park and Casella
(2008)). Among recent developments, the methods of Bondell and Reich (2012), Liang et al.
(2013), Song and Liang (2015) and Castillo et al. (2015) use the idea of penalized credible
regions to accomplish variable selection in the ultrahigh-dimensional setting.

Among notable theoretical developments, Castillo et al. (2015) proved results related
to the posterior consistency for regression parameters, while Liang et al. (2013) have shown
the equivalence of posterior consistency and model selection consistency under appropri-
ate sparsity assumptions. Narisetty and He (2014) claim to prove the ‘strongest selection
consistency result’ using the spike and slab prior under under the log pn = o(n) setting.

Although the optimization based methods are fast and easily implementable to high-
dimensional framework, strong selection consistency property is usually not investigated for
these methods. Strong selection consistency, requiring posterior probability of the true model
stochastically converging to one, has been shown in Narisetty and He (2014), however, for
implementation they rely on the stochastic search variable selection (SSVS) algorithm which
is not scalable in high-dimensional situations.

Neighborhood search based SSVS algorithms for the optimal model search are rou-
tine for small values of pn and n, but the resulting computations are quite intensive for
higher dimensions due to a large number of possible models. Several authors have developed
methods to cope with the high-dimensionality, e.g., Shin et al. (2018) proposed a simpli-
fied shotgun stochastic search and screening algorithm that employs a variable screening to
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reduce neighborhood size in the SSVS algorithm, Li et al. (2023) have proposed a highly
scalable model-based screening method to explore model space efficiently.

In this paper, we propose a Bayesian method for variable selection and examine its
properties both theoretically and numerically, under sparsity assumption. Considering the
popular Zellner’s gn-prior (Zellner, 1986) framework, we propose a prior setup suitable for the
ultrahigh-dimensional situation. The proposed set of priors has the advantage of generating
closed form expressions of the marginals, which makes the resultant method as tractable as
the simple information criterion based methods like AIC or BIC.

In a pn ≫ n setting, the size of the model space becomes gigantic and a simple SSVS
algorithm can not identify the true model in a finite time. To cope with this situation, we
present a two-stage model selection procedure based on an initial screening. The first stage
algorithm is intended to select a good dn-dimensional model, where dn ≪ n. Under the
sparsity assumption, the posterior probability of the class of dn-dimensional supermodels of
the true model uniformly dominates that of of all dn-dimensional models. Motivated by this
result, we first employ a model search algorithm on the space of all dn-dimensional models.
Given an initial model, the algorithm transits to the neighboring dn-dimensional model with
the highest posterior probability. Due to the uniform dominance of the class of supermodels
and the less challenging goal of selecting any model in this class, the first-stage algorithm
selects a dn-dimensional supermodel quite efficiently while taking care of joint structure of
the covariates, unlike the other screening methods which rely on marginal information.

In the second stage, an SSVS algorithm is employed to search the space of submodels
of the first-stage-selected model. Given that a supermodel of the true model is selected at the
first stage, the second stage algorithm identifies the true model quite efficiently as dn ≪ n.
The proposed two-stage algorithm is fast and intuitive. Its good performance is supported
by theoretical results under the log pn = O(n) settings. To the best of our knowledge, this
is the first work on exponential growth of covariates with sample size. The performance of
the algorithm is validated extensively with ample simulated and real data sets.

In Section 2, the prior setup and the maximum-a-posteriori (MAP) approach are
described. In Section 3, the two-stage algorithm is introduced. Section 4 contains the
theoretical results justifying the proposed two-stage algorithm. In Sections 5 and 6, the per-
formance of the proposed algorithm is validated using simulated and real data sets. Section
7 contains concluding remarks. Proofs of all the theoretical results are provided in Section A.

2. The proposed prior setup and the MAP approach

Consider n data points, each consisting of pn centered regressors {x1,i, x2,i, . . . , xpn,i}
and a centered response yi with i = 1, 2, . . . , n. The vector of response yn is modeled as

yn = Xnβ + en, (1)

where Xn is the n × pn design matrix, β = (β1, β2, . . . , βpn)′ is the vector of regression
parameters and en is the vector of random errors. For simplicity, we assume that the design
matrix Xn is non-stochastic and en ∼ N(0, σ2In).

The space of all models that can be formed by taking at least one covariate is denoted
by G, and indexed by γ. Here, γ ∈ G is a subset of {1, . . . , pn} of size pn(γ) (1 ≤ pn(γ) ≤
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pn), indicating the index set of the covariates corresponding to the model Mγ. Under Mγ,
we assume yn = Xγβγ + en, where Xγ is a sub-matrix of Xn consisting of the pn(γ) columns
specified by γ and βγ is the corresponding vector of regression coefficients. We consider the
problem of selecting the sparsest model Mγ with γ ∈ G that best explains the data.

In a Bayesian approach, each model Mγ is assigned a prior probability and the cor-
responding set of parameters θγ = (β0, βγ, σ2)′ involved in Mγ, is also assigned a prior
distribution. Given prior probability P (Mγ) on Mγ and conditional prior density p(θγ|Mγ)
on θγ under Mγ, one computes the posterior probability of each model as follows

P (Mγ|yn) = P (Mγ)mγ(yn)∑
γ∈G P (Mγ)mγ(yn) , where mγ(yn) =

�
p(yn|θγ, Mγ)p(θγ|Mγ)dθγ

is the marginal likelihood and p(yn|θγ, Mγ) is the density of yn under Mγ. We consider the
maximum a-posteriori (MAP) approach which selects the model γ⋆ in G with the highest
posterior probability as the optimal model.

Throughout this paper, we have considered the following notations and conventions.
For two numbers a and b, the notations a ∨ b and a ∧ b denote max{a, b} and min{a, b},
respectively. For two sequences of real numbers {an} and {bn}, an ≲ bn indicates either
an/bn → 0 or an ≤ cbn for all sufficiently large n, and some constant 0 < c < ∞. Further, if
an ≳ bn and bn ≲ an, then we write an ∼ bn. For any square matrix A, λmax(A) and λmin(A)
are the highest and the lowest non-zero eigenvalues of A. For two square matrices A and
B of the same order, A ≤ B means that B − A is positive semidefinite. A model Mγ with
dimension pn(γ) < n is said to be of full-rank if rank(X ′

γXγ) = pn(γ).

2.1. Prior specification and posterior probability

Each model Mγ with γ ∈ G is assigned Bernoulli prior P (Mγ) = qpn(γ)
n (1 − qn)pn−pn(γ)

with qn = 1/pn. Given a model Mγ, we consider a conjugate prior on βγ as

βγ|σ2, Mγ ∼ N(0, gnσ2Ipn(γ)),

where gn is a hyperparameter. We impose the popular Jeffreys prior π(σ2) ∝ 1/σ2 on σ2.

The Bernoulli prior is widely used as a model prior probability because of its property
of penalizing the models of large dimensions. The choice qn = 1/pn has previously been
considered by Narisetty and He (2014). This prior is particularly useful for sparse regression
models, as it assigns 1/pn weight to each covariate. Thus, the prior probability of a model
increases pn times if one covariate is dropped.

Use of the inverse-gamma prior for error variance is fairly conventional in the literature
(see, e.g., George and Mcculloch (1993)). The Jeffreys prior is the limit of inverse-gamma,
as both the hyperparameters in the inverse-gamma prior approach zero. The property of
invariance under reparametrization makes it suitable as a prior on scale parameter.
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For the proposed set of priors, the posterior probability of the model Mγ is

P (Mγ|yn) ∝
(

1
pn − 1

)pn(γ) ∣∣∣I + gnX ′
γXγ

∣∣∣−1/2 (
R2⋆

γ

)−n/2
, (2)

where R2⋆
γ = y′

n

{
In − Xγ

(
Ipn(γ)/gn + X ′

γXγ

)−1
X ′

γ

}
yn.

Our prior choices are simple. Except the choice of gn, the set of priors is completely
specified. Rather than providing a specific choice of gn, we indicate the optimal order of gn

through theoretical consistency results. The availability of the analytic form of the posterior
probability generated by the proposed prior setup (in (2)) makes it easily implementable.

3. Implementation in ultrahigh-dimensional settings

Our model selection procedure is simple as it chooses the model with the highest
posterior probability in the model space G, i.e., the MAP model. However, identifying the
MAP model is a challenging task in an ultrahigh-dimensional settings. As pn = exp{O(n)},
it is impossible to evaluate all the 2pn − 1 models in G, even for small values of n. For
instance, if n = 5, the cardinality of G can be as large as exp(45). Thus, we need to develop
a screening algorithm to discard a large set of unimportant covariates initially. Following
the implementation of the screening algorithm, ideally, we will be left with a smaller set of
covariates which includes all the covariates involved in the MAP model. Then, an exhaustive
model search algorithm can be employed in the second stage to find the MAP model. We
describe the proposed two-stage algorithm in detail below.

Proposed two-stage algorithm. The proposed two-stage algorithm is based on the spar-
sity assumption, which states that among the large number of available predictors an in-
significant fraction of predictors is actually useful. Consequently, the dimension of the MAP
model is small. Now, let dn be a moderately large number, for instance dn ∼ log n. The first
step of the two-stage algorithm is devoted towards finding a good model of dimension dn.
As the number of useful predictors is small, it is expected that the dn-dimensional optimal
model chosen in first stage includes all the predictors of the MAP model. Towards finding
a dn-dimensional good model, a neighborhood-based search algorithm is employed on the
space of all dn-dimensional models. Below, we describe the algorithm.

Stage 1: Screening: The objective of the screening algorithm is to choose a dn-dimensional
model with high posterior probability. Given the choice of dn, we employ the following steps
to achieve this.

1. Initialization. Choose a model, say Mγ0 , of dimension dn, where γ0 ⊆ {1, . . . , p} is the
index set of the predictors in Mγ0 .

2. Evaluation. Fix r ∈ γ0. Define
k⋆ = argmaxl∈{1,...,pn}\γ0mγ0∪{l}\{r}(yn), and u = I

(
mγ0∪{k⋆}\{j}(yn) > mγ0(yn)

)
where I(A) is the indicator of the event A. If u = 1, then replace xr by xk⋆ in γ0. If
u = 0, then keep γ0 unaltered.
Repeat step 2 unless all the components in γ0 are evaluated.

3. Replication. Repeat Step 2 N(≥ 1) times.
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In Step 2, we replace the covariates of Mγ0 with the best possible inactive covariates of Mγ0 ,
provided the posterior probabilities increase by the replacements. To obtain the best result,
instead of starting with any dn dimensional model, one may choose the covariates of the
initial model Mγ0 by a forward regression method.

Finally, we argue that with a good initial model Mγ0 the choice of N in Step 3
is expected to be small. We provide the following three intuitive reasons for that: (i) In
the screening stage the objective is to arrive at any dn-dimensional model which contains
the MAP-covariates. This is a much easier task than searching for the MAP model. (ii)
Under reasonable assumptions, the posterior probability of the class of dn-dimensional models
containing the useful covariates, say G1,d, uniformly dominates the space of all dn-dimensional
models (see Section 4). As the screening algorithm transits to a higher posterior probability
model at each move, the complementary class of G1,d, having combined posterior probability
close to zero, is stepped aside by the algorithm soon. (iii) Unlike other forward or marginal
screening algorithms, the proposed algorithm compares the dn-dimensional models only.
Thus, in one hand the variable dimensional search problem is reduced to a fixed dimensional
one, on the other hand the joint structures of the covariates are taken care of.

Stage 2: Model selection: Suppose that the first-stage screening algorithm selects the
model Mγ⋆ . In the next stage, we aim to find the highest-posterior probability model among
the 2dn −1 models formed by the dn covariates present in Mγ⋆ . Towards that, we employ the
reversible jump MCMC (RJMCMC) algorithm described in Chipman et al. (2001, Section
3.5), which induces a Markov chain C with the class of all submodels of Mγ⋆ as the state
space, say G⋆. The stationary distribution of C is the posterior probability distribution of
the models restricted to G⋆. Thus, if the covariates of the MAP model of G is present in
γ⋆, then the MAP model lies in G⋆, and the second stage algorithm reaches the MAP model
quite easily, as the cardinality of G⋆ is fairly small.

Remark 1: In practice, the choice of dn can be as small as possible provided it is larger
than the cardinality of the MAP model. A smaller choice of dn results in faster execution
of both the algorithms. The complexity of the first stage screening algorithm is at most of
order O(Ndnpn). Even if one considers all the 2dn −1 competing models in G⋆ for comparison
in the second stage, the complexity of the second stage algorithm would be at most O(nd3

n),
if dn ∼ log n. Thus the total complexity of the two-stage algorithm is o(pr

n) for any r > 1.

Remark 2: As in the second stage, one could also employ an MCMC algorithm in the first
stage. In each iteration, the algorithm would choose a proposal model from the swap-
neighborhood of the current model and transit to the same according to a Metropolis-
Hastings transition function based on the posterior probabilities of the proposal and current
models. The algorithm would induce a Markov chain C1 in the state space Gd = {Mγ :
pn(γ) = dn} that would have the posterior probability distribution restricted to Gd as the
stationary distribution. After convergence, it would select model from the high-probability
posterior region, i.e., the region of supermodels. However, we avoid taking that path as the
proposed screening algorithm is much faster as we will see in the numerical section.

4. Model selection consistency

We consider a frequentist validation approach to theoretically justify the performance
of the proposed two-stage algorithm. Towards that, we assume existence of a unique data
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generating model, termed as the true model (Mγc), in the model space G. Under Mγc ,
yn = µn + en = Xγcβγc + en, where µn is the expectation of yn given Xn. The dimension of
Mγc , denoted by p(γc), is assumed to be small and free of n. The objective of this section is
to show that the two-stage algorithm selects the true model with probability tending to one.

Recall that, the first stage screening algorithm explores the class of all dn-dimensional
models Gd, and at each move it transits to a higher posterior probability model. Thus, it
is expected that after sufficient number of moves the algorithm selects a high posterior
probability model in Gd. The following subsection (Section 4.1) shows that the posterior
probability of the class of all dn-dimensional supermodels of the true model Mγc , namely, G1,d,
uniformly dominates Gd, with probability tending to one. Thus, with probability tending to
one, the high posterior probability model chosen in the first stage will be a supermodel of Mγc .

In the next stage, we search within the class of all sub-models of the selected model
in first stage. As dn (∼ log n) is small, the second stage RJMCMC algorithm converges
to the stationary distribution in finite time. In this case, the stationary distribution is
the distribution of posterior probabilities restricted to the sub-models of first stage selected
model. Section 4.2 shows that, provided a supermodel of Mγc is selected at first stage,
the restricted posterior distribution converges to a degenerate distribution having non-zero
probability mass at Mγc only, with probability tending to one. Thus, selection of true model
is guaranteed with probability tending to one.

Assumptions: Below, we list the assumptions under which our theoretical results hold.

(A1) The number of regressors pn = exp{b0n
r} with 0 < r ≤ 1 and b0 > 0 is free of n.

(A2) The true model Mγc is unique and its dimension, p(γc), is free of n. Let µn = Xγcβγc

be the true mean of yn, then µ′
nµn = O(n).

(A3) Let τmax and τmin be two positive constants, S be any subset of {1, . . . , pn} of cardinality
|S| ≲ log n and XS be the submatrix of Xn with the columns corresponding to S. Then,

n−1τmin ≤ infS λmin (n−1X ′
SXS) ≤ supS λmax (n−1X ′

SXS) ≤ nτmax.

(A4) Let ∆0 = {δn1−s} ∨ {4σ2p(γc) log pn} for some δ > 0 and 0 < s < 1/2 − ξ with
0 < ξ < 1/2, G0 = {γ ∈ G : Mγc ⊈ Mγ, pn(γ) ≲ log n} and Pn(γ) be the projection
matrix onto the span of Xγ. Then, for all sufficiently large n, we have

infγ∈G0 µ′
n(I − Pn(γ))µn > ∆0.

Assumption (A1) provides the rate of growth of pn as a function of n, allowing exponential
growth of pn with respect to n. Assumption (A2) provides the sparsity structure of the true
model. Assumption (A3) provides a restriction of the eigenstructure of small dimensional
models. By (A3), all models of dimension O(log n) are of full-rank, although the bounds on
the eigenvalues are quite permissive. Assumption (A4) is commonly termed as an identifia-
bility condition for model selection. The quantity µ′

n(I −Pn(γ))µn may be interpreted as the
Kullback-Leibler (KL) divergence of the distribution of yn under the model Mγ and Mγc . By
Moreno et al. (2015, Lemma 3), limn→∞{µ′

n(I −Pn(γ))µn}/n is strictly positive for any non-
supermodel of Mγc . (A3) additionally assumes a uniform lower bound for µ′

n(I − Pn(γ))µn

over non-supermodels of small dimension, and fixed a threshold value for the case with
log pn ∼ b0n. When log pn = b0n

1−r with r > 0 the condition is satisfied trivially.
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4.1. Consistency of the first-stage screening

Let Gd, G1,d and G2,d denote the classes of dn-dimensional models, supermodels and
non-supermodels of Mγc , respectively. Define P (Mγ | Gd, yn) as the posterior probability
distribution of the models restricted to Gd. The following theorem shows that for any model
γ ∈ Gd, the posterior probability of γ ∈ G1,d uniformly dominates that of γ ∈ G2,d, i.e.,

P (γ ∈ G1,d | Gd, yn) → 1, (3)

with probability tending to one, as pn → ∞. This implies that the posterior probability
distribution P (Mγ | Gd, yn) restricted to Gd, assigns nearly 0 probability to G2,d.

Theorem 1: Consider the model stated in (1) with pn satisfying (A1) and the prior setup
discussed in Section 2.1. Suppose there exists a true model Mγc satisfying (A2) which
generates yn, and let G1,d and G2,d be the classes of dn-dimensional supermodels and non-
supermodels of Mγc . Then, under the assumptions (A3) and (A4) and provided gn ≳ n,
the following statements hold with a probability at least 1 − exp{−c1n

ξ}, where ξ is as in
assumption (A4) and c1 > 0 is some constant free on n.

A. For some constant c2 > 0 and any ϵ > 0,

sup
γ1∈G1,d,γ2∈G2,d

P (Mγ2 |Gd, yn)
P (Mγ1 |Gd, yn) ≤ c2n

dn exp{−∆0(1 − ϵ)/(2σ2)}.

B. For some constant c3 > 0 and any ϵ > 0,∑
γ2∈G2,d

P (Mγ2|Gd, yn)∑
γ1∈G1,d

P (Mγ1|Gd, yn) ≤ c3n
dnp−(1−2ϵ)p(γc)

n .

C. For any γ ∈ Gd, P (γ ∈ G1,d | Gd, yn) → 1 with probability tending to one, as n → ∞.

In stage 1, the screening algorithm searches for a high-posterior probability model
in the restricted model space Gd. By part A of Theorem 1, the posterior probability of the
class of models in G1,d uniformly dominates that of G2,d. Thus, the proposed sequence of
O(Ndnpn) moves in the first-stage algorithm, wherein each move selects a higher posterior
probability model, is expected to reach a model in G1,d.

4.2. Consistency of the second-stage selection

As argued in the previous sub-section, the model Mγ⋆ selected in the first stage
screening is expected to be a dn-dimensional supermodel of Mγc . In the second stage, the
RJMCMC algorithm employed explores the class of the all submodels of Mγ⋆ , say G⋆. After a
sufficient number of iterations, the algorithm selects models as per the posterior distribution
restricted to G⋆. The next theorem shows that, if Mγ⋆ is any supermodel of Mγc , then the
posterior distribution restricted to G⋆ limits to a degenerate distribution having non zero
probability mass at Mγc , with probability tending to one. Therefore, provided Mγ⋆ is any
supermodel of Mγc , the second stage algorithm selects Mγc with probability tending to one.
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Theorem 2: Consider the model stated in (1) with pn satisfying (A1), and the prior setup
discussed in Section 2.1 with gn ∼ pδ

n with some 0 < δ < 2. Suppose there exists a true
model Mγc satisfying (A2), which generates yn. Let Mγ⋆ be a dn-dimensional supermodel of
Mγc , G⋆ = {Mγ : γ ⊆ γ⋆} be the class of all sub-models of Mγ⋆ , and P (Mγ | G⋆, yn) be the
posterior probability of models restricted to G⋆. Then, under assumptions (A3)-(A4), with
a probability at least 1 − cp−c0

n − exp{−cnξ}, where c0 < δ/2 and c > 0 are two constants,
ξ > 0 is as in (A4), and δ > 0 is as stated in the choice of gn, we have

inf
γ⋆∈G1,d

P (Mγc | G⋆, yn) ≥

1 + cnp(γc)+1
(

p2ϵ
n

gn

)1/2

+ c

(
n

√
gn

p1−2ϵ
n

)p(γc)
−1

for any ϵ < δ/2. Consequently, infγ⋆∈G1,d
P (Mγc | yn, G⋆) → 1, with probability tending to 1.

Theorem 2 states that, provided the first stage algorithm selects any supermodel of
Mγc , the second stage algorithm selects the true model with probability tending to one.

4.3. Consistency of the two-stage procedure

Finally, we argue that the two stage procedure selects the true model with probability
tending to one. Towards that, define P2(·|yn) as the probability distribution of the models
after the second stage. Let Mγ⋆ be the dn-dimensional model selected in the first stage, and
G⋆ = {Mγ : γ ⊆ γ⋆} be the class of all sub-models of Mγ⋆ . Then,

P2(Mγ|yn) = ∑
γ⋆∈Gd

P (Mγ|G⋆, yn)P (Mγ⋆|Gd, yn),

if in the first stage a model is selected randomly as per the posterior distribution restricted
to Gd, and in the second stage a model is selected randomly as per the posterior distribution
restricted to G⋆. The next theorem shows, with probability tending to one, P2(Mγc |yn) → 1.

Theorem 3: Consider the model stated in (1) with pn satisfying (A1), and the prior setup
discussed in Section 2.1 with gn ∼ pδ

n with some 0 < δ < 2. Suppose there exists a true
model Mγc satisfying (A2), which generates yn. Further, suppose that a two stage procedure
is employed to identify the true model, wherein the first stage selects a dn-dimensional model
Mγ⋆ randomly as per the posterior distribution (2) restricted to Gd (class of d-dimensional
models), and the second stage selects a model randomly from the posterior distribution (2)
restricted to the sub-models of Mγ⋆ (i.e., G⋆). Let P2(· | yn) be the probability distribution of
the models selected at the end of the two-stage procedure then under assumptions (A3)-(A4),
P2(Mγc |yn) → 1 as n → ∞, with probability tending to one.

Remark 3: The choice of the only hyperparameter gn in the prior setup is not specified.
However, from the above theoretical developments, we obtain an optimal range of gn value
required for consistency of the two-stage procedure. Theorem 1 holds for any gn satisfying
gn ≳ n, while Theorems 2 and 3 requires gn ∼ pδ

n with 0 < δ < 2. These provide a vast range
of plausible choices of gn. For practical purposes some sensitivity analysis would be useful.

5. Simulation study

We now study the performance of the proposed two-stage variable selection procedure
using a wide variety of simulated data sets. Under different simulation schemes, we present
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the proportion of times a variable selection algorithm selects the true model.

Our method: Our model selection algorithm is completely described in Section 3,
except for the choices of gn, dn and N . The choice of dn is taken to be [n/4] in each case. In
the first stage, we choose gn = npn and in the second stage, we choose gn = d2

n. Note that,
the theoretical condition on gn in Theorems 2 and 3 come from the consideration of the two-
stages together. However, practically, the task of the second stage is find the MAP model
among the 2dn − 1 models formed by dn covariates. Therefore, informed by Fernández et al.
(2001), the benchmark prior gn = max{n, d2

n} is considered in the second stage. Finally,
in the first-stage N = 10 iterations are considered, and in the second-stage, the RJMCMC
algorithm is iterated 6000 times, with a burning period of 3000 iterations. The post-burning
most visited model is considered as the optimal model.

Other methods: Among the frequentist variable selection methods, we consider three
approaches based on iterative sure independence screening (ISIS). An initial set of vari-
ables is first selected by ISIS, and then a penalized regression step is carried out using the
least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute devi-
ation (SCAD), or minimax concave penalty (MCP, Zhang (2010)) with the regularization
parameter tuned using the BIC. These three methods are termed as ISIS-LASSO-BIC, ISIS-
SCAD-BIC and ISIS-MCP-BIC. Among the Bayesian competitors, we consider two methods
based on Bayesian credible region (BCR joint and BCR marginal, Bondell and Reich (2012))
and Bayesian shrinking and diffusing prior (BASAD, Narisetty and He (2014)). We have
used R codes for all the methods. For ISIS, we have implemented codes from the R package
SIS. The R codes for BCR are obtained from the first author’s website, while the first author
of Narisetty and He (2014) kindly shared the codes for BASAD with us. Further, we have
implemented the approximate version of BASAD to reduce the computing time.

Simulation setup. We consider two values for n, namely, 50 and 100. For n = 50,
we choose pn = 100 and 500, while for n = 100 we choose pn = 500, 1000 and 2000. The
model yn = µn + en is considered as the true model, where µn = Xγcβγc . The vector βγc

is assumed to be sparse, i.e., p(γc) ≪ pn, and these p(γc) components are chosen randomly
from the set of all covariates. When pn ≤ 500, we set p(γc) = 5, while p(γc) = 10 is set for
higher values of pn. All the p(γc) values of βγc are taken to be equal to 2.

Each data row xi of the design matrix Xn = (x1, . . . , xn)′ is assumed to follow the
Gaussian distribution with mean 0 and covariance Σpn for i = 1, . . . , n. The covariance
structure of Σpn = ((σij)) for 1 ≤ i, j ≤ pn is taken to be of the following four types:

Case 1. (Identity) Σpn = I, i.e., there is no correlation among the covariates.

Case 2. (Block dependence) Σpn has a block covariance setting, where the active covariates
have common correlation ρ1 = 0.25, the inactive covariates have common correlation ρ2 =
0.75 and each pair of active and inactive covariate has correlation ρ3 = 0.50. This is an
interesting co-variance structure as it attributes different correlations depending on whether
the covariate is important, or not (also see Narisetty and He (2014)).

Case 3. (Equi-correlation) Σpn = 0.5I+0.511′, where 1 is the pn-dimensional vector of ones.
This exhibits a strong dependence structure uniformly among the covariates.

Case 4. (Auto-regressive) Here, we take σii = 1 for 1 ≤ i ≤ pn, and σij = 0.9|i−j| for
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1 ≤ i ̸= j ≤ pn. With the increase in distance, the correlation decreases here.

Although theoretically we consider only Gaussian errors, in simulation studies, we
consider two errors distributions, namely, the Gaussian and the heavy-tailed t distribution
with 2 degrees of freedom. In the tables below, we report the proportion of times each method
selects the true model in 100 random iterations. Additionally, we report the proportion of
times our first-stage screening algorithm chooses a supermodel of the true model.

Simulation results. Tables 1 and 2 contain the results corresponding to n = 50 and
n = 100, respectively. We notice that the covariance structure in Case 2 becomes singular
for pn ≥ 1000, and therefore, we have restricted Case 2 to pn ≤ 500.

Table 1: Proportion of times true model is selected by each
method for n = 50

Gaussian error
Methods Case 1 Case 2 Case 3 Case 4
↓ pn → 100 500 100 500 100 500 100 500

ISIS-SCAD-BIC 0.65 0.42 0.05 0.00 0.46 0.19 0.66 0.38
ISIS-MCP-BIC 0.44 0.23 0.02 0.00 0.12 0.04 0.50 0.24

BCR 0.26 0.00 0.45 0.00 0.15 0.00 0.22 0.00
BASAD 0.93 0.50 0.82 0.07 0.82 0.55 0.92 0.49
Proposed 0.99 0.84 0.72 0.09 0.96 0.80 1.00 0.87

Proposed (Step 1) 1.00 0.85 0.77 0.09 0.96 0.81 1.00 0.87
t2 error

Case 1 Case 2 Case 3 Case 4
Methods ↓ pn → 100 500 100 500 100 500 100 500
ISIS-SCAD-BIC 0.33 0.34 0.02 0.00 0.28 0.21 0.33 0.29
ISIS-MCP-BIC 0.26 0.26 0.02 0.00 0.20 0.17 0.27 0.26

BCR 0.15 0.01 0.29 0.00 0.12 0.00 0.20 0.00
BASAD 0.69 0.30 0.55 0.09 0.61 0.38 0.69 0.37
Proposed 0.69 0.60 0.54 0.08 0.66 0.53 0.72 0.59

Proposed (Step 1) 0.83 0.67 0.65 0.08 0.77 0.56 0.84 0.65

Among the three frequentist methods based on ISIS, we have reported the results for
SCAD and MCP only, as ISIS-LASSO-BIC is outperformed by these two methods. For the
other two methods, SCAD has shown uniformly better performance than MCP (see Table
1). For BCR, we observe that the joint version leads to singularity in several iterations in
the simulation settings. Therefore, we have reported results for the more stable marginal
version only. It is also clear from Tables 1 and 2 that ISIS is affected drastically when
the dependence structure varies among the different sets of covariates. For example, for
n = 100, ISIS-SCAD-BIC leads to the best performance under independence (Case 1) when
pn = 2000. However, it fails to identify the true model in a single instance under block-
diagonal covariance structure (Case 2). This is due to the fact that ISIS relies on marginal
information, and ignores the joint structure of the covariates.

Generally, the Bayesian methods turn out to be more robust than frequentist ap-
proaches. Among the Bayesian methods, BASAD and the proposed method clearly out-
perform BCR for all the cases. However, the performance of BASAD falls drastically for
higher values of pn. For example, when pn = 2000, BASAD fails completely, irrespective
of the underlying covariance structure. Note that BASAD needs to compute the inverse of
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Table 2: Proportion of times true model is selected by each method for
n = 100

Gaussian error
Methods ↓ Case 1 Case 2 Case 3 Case 4

pn → 500 1000 2000 500 500 1000 2000 500 1000 2000
ISIS-SCAD-BIC 0.85 0.39 0.28 0.00 0.64 0.18 0.02 0.84 0.43 0.25
ISIS-MCP-BIC 0.66 0.25 0.16 0.00 0.11 0.01 0.00 0.62 0.24 0.11
BCR 0.38 0.00 0.00 0.39 0.14 0.00 0.00 0.24 0.00 0.00
BASAD 0.93 0.19 0.00 0.92 0.93 0.36 0.00 0.98 0.27 0.00
Proposed 0.98 0.95 0.66 0.97 1.00 0.92 0.31 1.00 0.92 0.27
Proposed (Step 1) 1.00 0.96 0.66 0.97 1.00 0.92 0.31 1.00 0.93 0.57

t2 error
Methods ↓ Case 1 Case 2 Case 3 Case 4

pn → 500 1000 2000 500 500 1000 2000 500 1000 2000
ISIS-SCAD-BIC 0.44 0.41 0.32 0.00 0.39 0.29 0.30 0.45 0.36 0.30
ISIS-MCP-BIC 0.38 0.39 0.29 0.00 0.24 0.23 0.28 0.40 0.33 0.27
BCR 0.26 0.00 0.00 0.23 0.09 0.00 0.00 0.21 0.00 0.00
BASAD 0.91 0.06 0.00 0.75 0.78 0.19 0.00 0.88 0.12 0.00
Proposed 0.93 0.70 0.21 0.84 0.85 0.60 0.39 0.78 0.70 0.39
Proposed (Step 1) 0.96 0.70 0.48 0.87 0.95 0.60 0.39 0.78 0.71 0.40

the covariance matrix for each model, which is computationally prohibitive for such high-
dimensional data. To resolve this problem, they use a block covariance structure to simplify
some of the matrix computations and this might be one of the reasons behind its poor per-
formance. The strength of our proposed method is re-iterated from the simulation study,
especially for higher values of pn. Notably, there is a systematic improvement of the proposed
method over BASAD when we move from pn = 100 to pn ≥ 500, especially under cases 1, 3
and 4, for both the error distributions.

The performance of the first-stage screening algorithm is noteworthy. Except for the
high-dimension-low-sample size situation with high correlation, i.e., for n = 50, pn = 500 in
Case 2, this algorithm selects the true model for a high-proportion of times in all other cases.

To check the sensitivity of our method to the value of βγc , we perform a further
simulation study. We consider Case 1 (Σpn = I) with the Gaussian error distribution for
n = 100; and two choices of βγc . First, a set of equi-spaced values of βγc in the range [1, 2]
and next in the range [2, 3]. An increment of 0.2 is taken for pn = 500 so that we have
p(γc) = 6, and an increment of 0.1 is taken for pn = 1000 and 2000 so that p(γc) = 11. The
results are summarized in Table 3 below.

Table 3: Proportion of times true model is selected
by each method for n = 100

Methods ↓ βγc
= (1.0, 1.2, . . . , 2)′ βγc

= (2.0, 2.1, . . . , 3)′

pn → 500 1000 2000 500 1000 2000
ISIS-SCAD-BIC 0.66 0.40 0.24 0.82 0.47 0.33
ISIS-MCP-BIC 0.63 0.26 0.00 0.68 0.27 0.19

BCR 0.14 0.00 0.00 0.24 0.00 0.00
BASAD 0.99 0.14 0.00 0.98 0.28 0.00
Proposed 1.00 0.93 0.87 1.00 0.94 0.76

Proposed (Step 1) 1.00 0.93 0.87 1.00 0.94 0.76
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Good performance of the proposed method is further re-iterated from the numerical
results of Table 3. Also, it is observed that the method is not much sensitive to the level of
signal strength, as long as the minimal signal strength is not negligible.

6. Real data analysis

6.1. Metabolic quantitative trait loci experiment

The first example is related to a metabolic quantitative trait loci experiment which
links single nucleotide polymorphisms (SNPs) data to metabolomics data. The predictors
come from a GWAS study of the candidate genes for alanine amino-transferase enzyme
elevation in the liver along with the mass spectroscopy metabolomics data. A total of
10000 SNPs are pre-selected as candidate predictors, and the number of subjects included
in the data set is 50. The genotype of each SNP is coded as 0, 1 and 2 for homozygous
rare, heterozygous, and homozygous common allele, respectively. A particular metabolite
bin that discriminates well between the disease status of the clinical trial’s participants is
selected as the response variable.

The SAM approach of Song and Liang (2015) selected two SNPs, rs17041311 and
rs17392161. The first SNP has the same genotype as the SNP rs7896824, while the second
SNP shares the same genotype with eleven other SNPs. We implement our proposed method
by starting with dn = 5 till dn = 50 (which is the maximum possible value of dn). From our
analysis, the proposed method identifies all the SNPs (two from the first group, and all the
twelve from the second group) from dn = 25 onwards. We further observe that the proposed
method consistently identifies a new set of SNPs consists of rs6704330 and rs12744386. This
is a novel set of SNPs which were not detected in the earlier study, and further investigation
may establish their association with the metabolite under study.

For the sake of comparison, we implement all the competing methods from our sim-
ulations in Section 5. We first fix a value of the model size (dn), and then a model selection
method is used to obtain a dn-dimensional subset of the predictor variables. To assess the
relative performance of these methods, we compute both the mean and the median square
errors based on leave-one-out cross-validation (LOOCV). For all the methods, values of the
mean square errors turn out to be quite high. Therefore, we use the median square errors for
comparison. For increasing values of dn, Figure 1 below gives us an idea about the overall
performance of each of these methods. Clearly, BASAD yields the lowest median square of
errors, while the performance for our proposal is the second best.

6.2. Polymerase chain reaction

This data is related to a polymerase chain reaction. A total of n = 60 samples, with
31 female and 29 male mice, are used to monitor the expression levels of pn = 22575 genes.
Some physiological phenotypes, including numbers of phosphoenolpyruvate carboxykinase,
glycerol-3-phosphate acyltransferase, and stearoyl-CoA desaturase 1 are measured by quan-
titative real-time polymerase chain reaction. The relationship between the gene expression
level (perdictor) and phosphoenolpyruvate carboxykinase (response) is of interest in this
data. The gene expression data is standardized before the statistical analysis. To analyze
this data, we repeat the same procedure as in Section 6.1 above.
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Figure 1: Comparison of the different methods using median square errors

Figure 2: Comparison of the different methods using median square errors

Both BASAD and BCR could not be implemented for this data due to memory
overflow for this data. Figure 2 gives us the overall picture of the performance of the other
methods, and they all yield quite low median square errors. Clearly, ISIS-MCP leads to the
lowest overall errors, and the proposed method performs marginally better than ISIS-SCAD
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for dn = 15 to 35. However, the maximum difference in errors of the proposed method with
both methods based on ISIS is less than 0.11 over all values of dn.

7. Concluding remarks

This paper addresses the variable selection problem in ultrahigh-dimensional linear
regression settings. A new methodology for variable selection based on Zellner’s g-prior is
developed, taking into account the key features of the ultrahigh-dimensional regression set-
tings, such as sparsity and multicollinearity, and adapting it accordingly. Variable selection
in ultrahigh dimensions poses significant challenges due to the exponential growth of the
model space with the number of covariates. Despite its various advantages, the predominant
Bayesian variable selection procedure, the maximum a-posteriori (MAP) approach, becomes
impractical in this context due to the vast model space. To address this problem, we propose
a two-stepped model selection procedure that incorporates an initial screening.

While the idea of screening out unimportant covariates in the initial stage is not
new, existing screening algorithms typically rely on marginal utilities and overlook the joint
structure of the covariates. Our proposed screening algorithm takes the joint structure of
the covariates into account, demonstrating greater efficiency and robustness across various
correlation structures, as evidenced by our numerical results. In the second stage, we conduct
a thorough model search within the class of submodels of the first-stage-selected model.
Notably, we establish the strong selection consistency property of our two-stage algorithm
theoretically under exponential growth of pn with n. To our knowledge, this is the first
selection consistency result addressing the exponential growth of pn with n.

We conclude this section with some future directions. The effectiveness of our pro-
posed two-stage procedure is heavily dependent on the sparsity assumption of the optimal
model. While sparsity is commonly observed in high-dimensional regression, it is essential to
expedite the search for the MAP model in denser cases as well. Relevantly, the choice of dn

is a critical factor in our method. A smaller dn can enhance the speed and efficiency of both
algorithms but may also lead to exclusion of important covariates. Thus, it is necessary to
develop a mechanism for determining the optimal choice of dn based on the data at hand.
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A. ANNEXURE

This section contains the proof of all the theorems. In all the proofs, the notation c
is used as a generic symbol for constants. In many situations, the existence of a constant,
rather than the value, is important. In such cases, the constant is denoted by c. Thus, all
constants denoted by c are not necessarily the same.

A.1. Auxiliary results

In this section, we present auxiliary results which are used in proving the main results.

Lemma 1: Let Mγ, γ ∈ G and Mγ′ be two models with dimensions pn(γ) and pn(γ′),
where pn(γ), pn(γ′) ≲ log n. Further, suppose τmin ≤ λmin(A) ≤ λmax(A) ≤ n2τmax for some
τmin > 0 and τmax > 0 (free of n) for both matrices A = X ′

γXγ and A = X ′
γ′Xγ′ . Then,

∣∣∣I + gnX ′
γXγ

∣∣∣−1

∣∣∣I + gnX ′
γ′Xγ′

∣∣∣−1 =

∣∣∣I + gnX ′
γ′Xγ′

∣∣∣∣∣∣I + gnX ′
γXγ

∣∣∣ ≤ (1 + ϵ)
(

τmax

τmin ∧ 1

)pn(γ)∨pn(γ′)
n2pn(γ′)gpn(γ′)−pn(γ)

n ,

for any ϵ > 0, when gn ≳ n.

Proof: The j-th largest eigenvalue of any square matrix of the form I + A are 1 + λj(A),
where λj(A) is the j-th largest eigenvalue of A. Further, both X ′

γXγ and X ′
γ′Xγ′ are non-

negative definite. Therefore, the highest eigenvalue of I + gnX ′
γ′Xγ′ is 1 + gnn2τmax and the

lowest eigenvalue of I + gnX ′
γXγ is 1 + τmin. By the trivial bound λd

min(A) ≤ |A| ≤ λd
max(A),

where d is the dimension of A, we get∣∣∣I + gnX ′
γ′Xγ′

∣∣∣∣∣∣I + gnX ′
γXγ

∣∣∣ ≤ (1 + gnn2τmax)pn(γ′)

(1 + gnτmin)pn(γ)

= n2pn(γ′)gpn(γ′)−pn(γ)
n τ pn(γ′)

max τ
−pn(γ)
min

{1 + 1/(gnn2τmax)}pn(γ′)

{1 + 1/(gnτmin)}pn(γ)

≤ (1 + ϵ)
(

τmax

τmin ∧ 1

)pn(γ)∨pn(γ′)
n2pn(γ′)gpn(γ′)−pn(γ)

n ,

for any ϵ > 0 whenever gn ≳ n. The last inequality is due to the fact that both terms
(1 + gnn2τmax)pn(γ′) and (1 + gnτmin)pn(γ) converges to one as n → ∞ if gn ≳ n.

Lemma 2: Let Mγ be a full-rank model, R2⋆
γ = y′

n

{
In − Xγ

(
Ipn(γ)/gn + X ′

γXγ

)−1
X ′

γ

}
yn,

and R2
γ = y′

n {In − Pn(γ)} yn, where Pn(γ) = Xγ(X ′
γXγ)−1X ′

γ is the projection matrix on the
column space of Xγ. Then, under the assumptions (A2)-(A3), the following statements hold.

(a) R2⋆
γ ≥ R2

γ, and for any model Mγ satisfying (A3), supγ R2⋆
γ − R2

γ ≤ cn/(1 + gnτmin) for
some appropriate constant c > 0 with probability at least 1 − exp{−n},

(b) For any ϵ > 0, there exists an appropriate constant c > 0 such that R2
γc

> n(1 + ϵ)σ2,
and R2

γc
< n(1 − ϵ)σ2, with probability at least 1 − exp{−cn}.
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Proof: Part(a). Observe that Ipn(γ)/gn+X ′
γXγ ≥ X ′

γXγ, and so, In−Xγ

(
Ipn(γ)/gn + X ′

γXγ

)−1

X ′
γ ≥ In − Pn(γ), which proves R2

γ ≤ R2⋆
γ .

To see the other side, observe that under (A3), and uniformly over any model Mγ

Xγ

(
Ipn(γ)/gn + X ′

γXγ

)−1
X ′

γ = Xγ

(
X ′

γXγ

)−1/2
[
Ipn(γ) +

(
X ′

γXγ

)−1
/gn

]−1 (
X ′

γXγ

)−1/2
X ′

γ

≥ {1 + 1/(gnτmin)}−1 Pn(γ)

as λmax

(
Ipn(γ) +

(
X ′

γXγ

)−1
/gn

)
≤ 1 + 1/(gnτmin). Therefore,

sup
γ:pn(γ)≲log n

R2⋆
γ − R2

γ ≤ sup
γ:pn(γ)≲log n

y′
n

[
In − {1 + 1/(gnτmin)}−1 Pn(γ) − In + Pn(γ)

]
yn

= sup
γ:pn(γ)≲log n

1
1 + gnτmin

y′
nPn(γ)yn ≤ 1

1 + gnτmin
y′

nyn.

Now, y′
nyn ≤ 2∥µn∥2 + 2∥en∥2. By assumption (A2), ∥µn∥2 = O(n) and as ∥en∥2 ∼

σ2χ2
n, from Laurent and Massart (2000), we have ∥en∥2 ≤ 6nσ2 with probability at least

1 − exp{−n}. Therefore, with probability at least 1 − exp{−n}, R2⋆
γ − R2

γ ≤ cn/(1 + gnτmin)
for some appropriate constant c > 0.

Part(b). The random variable e′
n(I −Pn(γc))en/σ2 follows a χ2 distribution with (n−p(γc))

degrees of freedom. By (Laurent and Massart, 2000, Lemma 1), we have

P (R2
γc

> n(1 + ϵ)σ2) = P (y′
n(I − Pn(γc))yn > n(1 + ϵ)σ2)

= P
(
e′

n(I − Pn(γc))en > n(1 + ϵ)σ2
)

≤ exp
{

−c
(nϵ + p(γc))2

(n − p(γc))

}
≤ exp{−cn},

for some c > 0. Thus, the first part of the result follows. The proof of the second part
follows similarly from (Laurent and Massart, 2000, Lemma 1).

Lemma 3: Let yn = µn + en with en ∼ N(0, σ2I) and µ′
nµn = O(n). For any 0.5 < k < 1

and ϵ > 0, there exists a constant c > 0 such that n−k|µ′
nen| < ϵ with probability at least

1 − exp{−cn2k−1}

Proof: The random variable µ′
nen is distributed as a centered normal distribution with

variance σ2∥µn∥2. Therefore, we get

P
(
|µ′

nen| ≥ ϵnk
)

≤ exp{−cn2k/∥µn∥2} (4)

for an appropriate constant c > 0 depending on ϵ. By assumption (A2), ∥µn∥2 = O(n).
Therefore, the quantity on the right-hand side of the above expression is bounded above by
exp{−cn2k−1} for some c > 0. Thus, the result follows.
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A.2. Main results

A.2.1.Proof of Theorem 1

Proof: [Part A.] By (2), the ratio of posterior probabilities is

sup
γ1∈G1,d,γ2∈G2,d

P (Mγ2|Gd, yn)
P (Mγ1|Gd, yn) = sup

γ1∈G1,d,γ2∈G2,d

P (Mγ2 |yn)
P (Mγ1|yn)

= sup
γ1∈G1,d,γ2∈G2,d

∣∣∣I + gnX ′
γ1Xγ1

∣∣∣1/2

∣∣∣I + gnX ′
γ2Xγ2

∣∣∣1/2

(
R⋆2

γ1

R⋆2
γ2

)n/2

. (5)

By assumption (A3) and Lemma 1

sup
γ1∈G1,d,γ2∈G2,d

∣∣∣I + gnX ′
γ1Xγ1

∣∣∣1/2

∣∣∣I + gnX ′
γ2Xγ2

∣∣∣1/2 ≤ 2
(

τmax

τmin ∧ 1

)dn/2
ndn . (6)

Next, we write the last part in the RHS of (5) as follows:

sup
γ1∈G1,d,γ2∈G2,d

(
R⋆2

γ1

R⋆2
γ2

)n/2

≤ sup
γ1∈G1,d

(
R⋆2

γ1

R2
γ1

)n/2

sup
γ1∈G1,d

(
R2

γ1

R2
γc

)n/2

sup
γ2∈G2,d

(
R2

γc

R2
γ2

)n/2

sup
γ2∈G2,d

(
R2

γ2

R⋆2
γ2

)n/2

. (7)

We consider each term of the RHS of the above expression consecutively. By Lemma 2

sup
γ1∈G1,d

(
R⋆2

γ1

R2
γ1

)n/2

= sup
γ1∈G1,d

(
1 +

R⋆2
γ1 − R2

γ1

R2
γ1

)n/2

≤ sup
γ1∈G1,d

(
1 +

R⋆2
γ1 − R2

γ1

R2
γc

)n/2

≤
(

1 + c

1 + gnτmin

)n/2

, (8)

with probability at least 1 − exp{−n} for some c > 0. Consider the second term of (7)

sup
γ1∈G1,d

(
R2

γ1

R2
γc

)n/2

= sup
γ1∈G1,d

(
1 −

R2
γc

− Rγ1

Rγc

)n/2

≤ 1,

by the fact that R2
γc

− Rγ1 = y′
n (Pn(γ1) − Pn(γc)) yn ≥ 0 as γc ⊆ γ1 and consequently,

Pn(γ1) − Pn(γc) is non-negative definite matrix.

Next, consider the third expression of (7). The ratio

inf
γ2∈G2,d

(
R2

γ2

R2
γc

)n/2

= inf
γ2∈G2,d

(
1 +

R2
γ2 − R2

γc

R2
γc

)n/2

. (9)
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Now, by assumption (A4)
R2

γ2 − R2
γc

= µ′
n {I − Pn(γ2)} µn + e′

n {Pn(γc) − Pn(γ2)} en + 2µ′
n {I − Pn(γ2)} en

≥ µ′
n {I − Pn(γ2)} µn − 2µ′

nPn(γ2)en

≥ ∆0 − 2 |µ′
nen| ,

uniformly over G2,d as G2,d ⊆ G0, with probability one. By the choice of ∆0 in (A4) and
Lemma 3, we have |µ′

nen| = o (∆0) with probability at least 1 − exp{−cnξ} for ξ > 0 as in
(A4) and some c > 0. Thus, from (9), by the above derivations,

inf
γ2∈G2,d

(
1 +

R2
γ2 − R2

γc

R2
γc

)n/2

≥
(

1 + ∆0 {1 + o(1)}
nσ2(1 + ϵ)

)n/2

≳ exp
{
∆0(1 − ϵ)/(2σ2)

}
,

for any ϵ > 0. Finally, it can be verified by examining the definitions of R2
γ and R2⋆

γc
that the

last part of RHS of (7) is bounded above by 1. Thus, combining all the above facts we get,
for any ϵ > 0, and with probability at least 1 − exp{−cnξ} for some c > 0,

sup
γ1∈G1,d,γ2∈G2,d

(
R⋆2

γ1

R⋆2
γ2

)n/2

≤
(

1 + c

1 + gnτmin

)n/2

exp{−∆0(1 − ϵ)/(2σ2)}

and

sup
γ1∈G1,d,γ2∈G2,d

P (Mγ2|Gd, yn)
P (Mγ1|Gd, yn)

≤ 2
(

τmax

τmin ∧ 1

)dn/2
ndn

(
1 + c

1 + gnτmin

)n/2

exp{−∆0(1 − ϵ)/(2σ2)}

≤ cndn exp{−∆0(1 − ϵ)/(2σ2)} → 0,

for an appropriate constant c > 0. This completes the proof of part A.

[Part B.] Observe that, by choice of δ0 in (A4)∑
γ2∈G2,d

P (Mγ2|Gd, yn)∑
γ1∈G1,d

P (Mγ1|Gd, yn) ≤ sup
γ1∈G1,d,γ2∈G2,d

P (Mγ2 |yn)
P (Mγ1 |yn)

|G2,d|
|G1,d|

≤ cndn exp{−∆0(1 − ϵ)/(2σ2)}

(
pn

d

)
(

pn−p(γc)
d−p(γc)

)
≤ cndnpp(γc)

n exp{−2(1 − ϵ)p(γc) log pn}
≤ cndnp−(1−2ϵ)p(γc)

n

with probability at least 1 − exp{−cnξ} for some c > 0, and for any ϵ > 0.

[Part C.] Observe that P (γ ∈ Gd | Gd, yn) = 1. Therefore,
1 = P (γ ∈ G1,d | Gd, yn) + P (γ ∈ G2,d | Gd, yn)

= P (γ ∈ G1,d | Gd, yn)
{

1 + P (γ ∈ G2,d | Gd, yn)
P (γ ∈ G1,d | Gd, yn)

}

= P (γ ∈ G1,d | Gd, yn)
{

1 +
∑

γ2∈G2,d
P (Mγ2|Gd, yn)∑

γ1∈G1,d
P (Mγ1|Gd, yn)

}

≤ P (γ ∈ G1,d | Gd, yn)
{
1 + cndnp−(1−2ϵ)p(γc)

n

}
,
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with probability at least 1 − exp{−cnξ} from part B. Observe that from (A1) and the choice
of dn ∼ log n, the sequence ndnp−(1−2ϵ)p(γc)

n → 0, as pn → ∞. Further, as n → ∞, the
probability 1 − exp{−cnξ} converges to one. This completes the proof.

A.3. Proof of Theorem 2

Proof: Recall that, P (Mγc | yn, G⋆) is the posterior probability of the model Mγc , restricted
to the class G⋆. We will first provide an uniform probabilistic upper bound to P (Mγc | yn, G⋆)
for any fixed γ⋆ such that γc ∈ γ⋆. Observe that

P (Mγc | G⋆, yn) =

1 +
∑

γ⊆γ⋆,γ ̸=γc

P (Mγ | yn)
P (Mγc | yn)


−1

.

The ratio of posterior probabilities of any model to the true model is given by

P (Mγ|yn)
P (Mγc|yn) =

(
1

pn − 1

)pn(γ)−p(γc) (R2⋆
γc

R2⋆
γ

)n/2
∣∣∣I + gnX ′

γc
Xγc

∣∣∣1/2

∣∣∣I + gnX ′
γXγ

∣∣∣1/2 . (10)

We split G into two subclasses as follows:

(i) Supermodel of the true model, G⋆
1 = {γ : Mγc ⊂ Mγ} ∩ G⋆.

(ii) Non-supermodels, G⋆
2 = {γ : Mγc ⊈ Mγ} ∩ G⋆.

Case I: Super-models (γ ∈ G⋆
1) First, we obtain a uniform upper bound for the ratio of

the posterior probabilities of any model Mγ and Mγc , given in (10). Note that

R2⋆
γ

R2⋆
γc

=
R2⋆

γ

R2
γ

R2
γ

R2
γc

R2
γc

R2⋆
γc

≥
(

1 − ϵ

n(1 + ϵ)

)
R2

γ

R2
γc

(11)

by Lemma 3 and R2⋆
γ ≥ R2

γ, and with probability at least 1 − exp{−cn} for some c > 0.

Next, consider that for any ϵ > 0 and R = 2(1 + ϵ), we have

P

[
sup

γ⋆∈G1,d

sup
γc⊆γ⊆γ⋆

(
R2

γc
− R2

γ

)
< Rσ2{pn(γ) − p(γc)} log pn

]

= P

[
sup

{γ:γc⊆γ,|γ|≤dn}

(
R2

γc
− R2

γ

)
< Rσ2{pn(γ) − p(γc)} log pn

]
. (12)

The last equality holds due to the equality of the sets

{γ : γc ⊆ γ, |γ| ≤ dn} = {γ : γc ⊆ γ ⊆ γ⋆, γ⋆ ∈ G1,d}.
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Next, observe that the right-hand side (RHS) of (12) is bounded above by
∑

{γ:γc⊆γ,|γ|≤dn}
P
[(

R2
γc

− R2
γ

)
< Rσ2{pn(γ) − p(γc)} log pn

]

≤
dn−p(γc)∑

pn(γ)−p(γc)=1

(
pn − p(γc)

pn(γ) − p(γc)

)
exp {−R{pn(γ) − p(γc)} log pn/2}

≤
dn−p(γc)∑

pn(γ)−p(γc)=1
(pn − p(γc))pn(γ)−p(γc)p−R{pn(γ)−p(γc)}/2

n

≤ (dn − p(γc))p−ϵ
n → 0, (13)

where ϵ > 0 be any constant. Therefore, with probability at least 1 − cp−ϵ
n for any ϵ > 0 and

an appropriate c > 0, the following holds uniformly over {γ : γc ⊆ γ ⊆ γ⋆, γ⋆ ∈ G1,d}

(
R2⋆

γc

R2⋆
γ

)n/2

≤ (1 + ϵ)
(

1 − R(pn(γ) − p(γc)) log pn

n(1 − ϵ)

)−n/2

≲ (1 + ϵ)p(1+ϵ)(pn(γ)−p(γc))
n .

Again, by Lemma 1 and assumptions (A2)-(A3) we have
∣∣∣I + gnX ′

γXγ

∣∣∣−1/2

∣∣∣I + gnX ′
γc

Xγc

∣∣∣−1/2 ≤ cg−(pn(γ)−p(γc))/2
n np(γc),

where c > 0 is some appropriate constant. Therefore, summing the ratio of posterior prob-
abilities over Mγ ∈ G⋆

1 , we have

∑
γ∈G⋆

1

p(Mγ|yn)
p(Mγc |yn) ≤ np(γc) ∑

γ∈G⋆
1

cp(1+ϵ)(pn(γ)−p(γc))
n

{√
gn(pn − 1)}pn(γ)−p(γc)

≤
dn−p(γc)∑

pn(γ)−p(γc)=1

(
dn − p(γc)

pn(γ) − p(γc)

)
np(γc)c

(
p2ϵ

n

gn

)(pn(γ)−p(γc))/2

≤ c2dn−p(γc)np(γc)
(

p2ϵ
n

gn

)1/2

≤ c2dn−p(γc)np(γc)
(

p2ϵ
n

gn

)1/2

≤ cnp(γc)+1
(

p2ϵ
n

gn

)1/2

for any ϵ > 0 and a suitable choice of c > 0. When we choose ϵ < δ/3, we get that the above
expression converges to 0, as pn → ∞.

Case II: Non-super models (γ ∈ G⋆
2) We split R2⋆

γ /R2⋆
γc

as before in (11). Observe that

R2
γ − R2

γc
= y′

n(Pn(γc) − Pn(γ))yn

= µ′
n(Pn(γc) − Pn(γ))µn + 2µ′

n(Pn(γc) − Pn(γ))en + e′
n(Pn(γc) − Pn(γ))en

≥ µ′
n(Pn(γc) − Pn(γ))µn − 2|µ′

nen|.



508
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

MINERVA MUKHOPADHYAY AND SUBHAJIT DUTTA [Vol. 22, No. 3

Note that µ′
n(Pn(γc) − Pn(γ))µn = µ′

n(I − Pn(γ))µn > ∆0 uniformly over the class of all
small dimensional non-supermodels by assumption (A4). Further, by Lemma 3, we get
|µ′

nen| = o (∆0) with probability at least 1−exp{−cnξ} for ξ > 0 as in (A4) and some c > 0.
Combining all these facts and using (A4), we have with probability at least 1 − exp{−cnξ}

sup
γ⋆∈G1,d

sup
γ∈G⋆

2

(
R2⋆

γ

R2⋆
γc

)−n/2

≤ (1 + ϵ)
(

1 + (1 − ϵ) ∆0

nσ2

)−n/2

≲ (1 + ϵ) exp
{
−(1 − ϵ)∆0/2σ2

}
.

Further, from Lemma 1, the ratio of determinants in the last term of (10) is less than
c
(
n

√
gnτmax

)p(γc)
for an appropriately chosen c > 0. Therefore,

sup
γ⋆∈G1,d

∑
γ∈G⋆

2

p(Mγ|yn)
p(Mγc|yn) ≤ c (npn

√
gnτmax)p(γc) exp

{
−(1 − ϵ) ∆0

2σ2

}
dn∑

q=1

(
dn

q

)
1

(pn − 1)q

≤ c

(
n

√
gn

p1−2ϵ
n

)p(γc)

, (14)

for any ϵ > 0, with probability at least 1−exp{−cnξ} for ξ > 0 as in (A4), and uniformly over
γ⋆ ∈ G1,d. Combining the above facts, we get, with probability at least 1−cp−c0

n −exp{−cnξ},
where c0 ≪ δ/2 and ξ > 0 is as in (A4),

inf
γ⋆∈G1,d

P (Mγc | yn, G⋆) ≥

1 + cnp(γc)+1
(

p2ϵ
n

gn

)1/2

+ c

(
n

√
gn

p1−2ϵ
n

)p(γc)
−1

for some ϵ ≪ δ/2, where δ is as in the choice of gn. For the choice of gn taken in Theorem
2, the above expression converges to 1 as pn → ∞.

A.4. Proof of Theorem 3

Proof: Observe that

P2(Mγc |yn) =
∑

γ⋆∈Gd

P2(Mγc , Mγ⋆|yn) =
∑

γ⋆∈Gd

P (Mγc |yn, G⋆)P1(Mγ⋆|yn)

=
∑

γ⋆∈G1,d

P (Mγc |yn, G⋆)P1(Mγ⋆ |yn) +
∑

γ⋆∈G2,d

P (Mγc|yn, G⋆)P1(Mγ⋆|yn),

where Mγ⋆ is the model chosen in the first stage. Observe that P (Mγc |yn, G⋆) = 0 if γ⋆ ∈ G2,d,
i.e., if the model chosen in the first stage is a non-supermodel. Therefore,

P2(Mγc |yn) =
∑

γ⋆∈G1,d

P (Mγc |yn, G⋆)P1(Mγ⋆ |yn)

≥ inf
γ⋆∈A1,d

P (Mγc | yn, G⋆)
[
1 +

∑
γ⋆∈G2,d

P1(Mγ⋆|yn)∑
γ⋆∈G1,d

P1(Mγ⋆|yn)

]−1

≥

1 + cnp(γc)+1
(

p2ϵ
n

gn

)1/2

+ c

(
n

√
gn

p1−2ϵ
n

)p(γc)
−1 [

1 + c3n
dn/2p−(1−2ϵ)p(γc)

n

]−1
,

with a probability at least 1 − cp−c0
n − 2 exp{−cnξ}, where c0 ≪ δ/2 and ξ > 0 is as in (A4).

Thus, P2(Mγc |yn) → 1 with probability tending to 1.
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