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Abstract 
 

Data on human systems biology are being generated at a rapid pace due to technological 
advances in not only high-throughput, but also high-resolution, platforms. Increasing 
availability of single cell omic data have motivated complex experiments with the intention to 
gain deeper insights into complex biological systems such as those involved in the development 
of organisms. Individual, technological and biological sources of heterogeneity of outcomes 
that are observed among the different populations of cells that are sampled in such experiments 
require robust analysis. We describe our Linear Combination Test (LCT) methodology, and 
briefly review its applications to binary, multivariate continuous and longitudinal outcomes in 
a wide range of omic studies. It allows us to test hypothesis not just about the role of single 
genes in discrete outcomes, but of large sets of genes in multivariate continuous outcomes, 
which are representative of dynamic biological phenomena such as embryogenesis, 
degenerative diseases, etc. LCT, which uses a shrinkage covariance matrix estimator, has been 
shown to be effective at a small computational cost in both simulated omic studies and real-life 
biomedical applications. In this study, we applied LCT to analyze a new collection of stem cell 
gene signatures associated with single cell RNA-Seq data measured during human 
preimplantation embryonic development. 
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1. Introduction 
 

In early microarray data analysis, individual genes that were differentially expressed 
across 2 or more classes or conditions were identified using traditional statistical methods such 
as the 𝑡-test, ANOVA, etc., Drăghici (2012). Then, the most significant genes were selected 
based on a predefined threshold and validated for biological patterns. However, given the 
heterogeneity of gene expression levels, biological interpretation of the results was sensitive to 
the choice of the threshold, and this subjectivity remains an important concern in such analysis 
of individual genes. In order to overcome this problem, Gene Set Analysis (GSA) uses existing 
experimentally obtained knowledge of genes and their pathways to test for significant 
regulation of sets of multiple genes (called genesets) instead of individual genes. Since the 
genes within such genesets share a common biological function, considering the correlations 
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within each set is a key aspect of a sound GSA method. However, it was shown by Tsai and 
Chen (2009) that many of the known GSA methods, e.g., Wang et al. (2011), Dinu et al. (2007), 
Goeman et al. (2004), Mansmann and Meister (2005), Kong et al. (2006), Subramanian (2005), 
Efron and Tibshirani (2007), were affected by large type II errors. Another important limitation 
of many GSA methods is that they can only accommodate binary outcomes, such as disease 
versus control. Our method, Linear Combination Test (LCT) is a GSA method that was 
designed to address these limitations by taking into account correlations across genes and 
outcomes, and dealing with binary, univariate or multivariate continuous outcomes, measured 
either at a single point in time or at multiple time points, and therefore, allow us to analyze a 
wider range of studies involving complex study designs (Wang et al. 2014). 

 
Single cell omic studies have become increasingly popular over the past decade, due to their 

powerful ability to profile from a panel of selected few dozen genes up to the entire 
transcriptome of a large number of individual cells in parallel. A typical example of a basic 
experiment on single-cell analysis (SCA) of gene expression is described in Figure 1 due to 
Kalisky et al. (2018). SCA involves experiments on individual cells that are typically isolated 
from a biological sample and then physically separated from each other and assayed upon DNA 
amplification. For each cell, the expressions of genes (or their products such as proteins) are 
measured using different well-established (or newly emerging) omic platforms such as RNA 
sequencing as reviewed by Lafzi (2018), Dal Molin (2019), Kalisky (2018). In the resulting 
data, the single cells could be considered as samples that are assumed independent and hence 
possibly affected by different sources of variation among the expression-levels of even the 
same genes.  

 
The large volume of data measured by single cell omic studies calls for sound statistical and 

computational analysis methods. Various methods at the individual gene level, have been 
reviewed by Andrews et al. (2021). While most of such methods are focused on differential 
expression of individual genes between cells representing (generally two) different states, here 
we reason that an analysis using sets of genes, i.e., GSA, has important advantages over the 
individual gene level analysis when applied to single cell omic studies. The stochasticity of 
expression levels of the same genes in individual cells could be due to different factors ranging 
from biological (e.g., the cell cycle phase of a particular cell) to technical (e.g., missing data). 
While specific genes may not show consistent expression across single cells, if we consider 
testing the differential expression of not one gene at a time but multiple genes together that are 
known to belong to a carefully selected geneset, then our LCT method is more likely than 
traditional approaches to detect the regulation of a functional process or biological pathway 
that is significantly associated with the outcomes of a given SCA experiment.  

 
Interestingly, LCT allows multivariate and continuous outcomes that could be more 

realistic representations of single cell level stochasticity of behaviors than univariate and 
discrete class labels as used in traditional studies of bulk samples. For such reasons, LCT can 
provide an overall more robust analytical approach for SCA experiments. In addition, LCT 
type I error, power and computational efficiency were compared to top GSA methods in 
simulations and real data analysis studies (Wang et al., 2014). LCT type I error and power were 
comparable to MANOVA-GSA (Tsai and Chen 2009), and superior to SAM-GS (Dinu et al., 
2007), especially at higher magnitudes of the correlations values across sets of genes, which is 
a common scenario in GSA. LCT was superior to both methods in terms of computational 
efficiency. LCT performed better than GSEA in a simulation study presented by Khodayari et 
al. (2018). However, we would like to point out that GSEA uses information from genes 
exterior to a pre-defined set or pathway. Based on methodological considerations, Goeman and 
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Buhlmann (2007) discourage comparing methods involving only genes belonging to the pre-
defined set to methods involving genes outside the pre-defined set, as these two categories are 
conceptually different, and they are testing different hypotheses. 

 
GSA focuses on analysis of biological pathways, or genesets sharing a common 

biological function.  Well-known examples of such collections of pre-defined, often expert-
curated, genesets include The Cancer Genome Atlas (TCGA), Tomczak et al. (2015); Gene 
Expression Omnibus (GEO), Edgar et al. (2002); Kyoto Encyclopedia of Genes and Genomes 
(KEGG), Kanehisa et al. (2000); BioCarta, Nishimura et al. (2001); Molecular Signature 
Database (MSigDB), Liberzon et al. (2015). The use of a carefully selected collection of 
genesets relevant to the outcomes of interest is a key aspect in GSA. In this study, we compiled 
a new, large collection of genesets that were reported by several past embryonic stem cell gene 
expression experiments, and used them to test their association with different stages of early 
human embryonic development. The remaining of this paper consists of a presentation of the 
LCT methodology, followed by its application to single cell embryonic genome-wide 
expression (RNA-Seq) data. We will also discuss various extensions of LCT, including its 
applications beyond gene expression studies. 
 
2. Data and Methods  
 
Data: In this study, we used 2 types of data. First, for our genesets, we introduce a large 
collection of 457 curated genesets that were derived from experimentally identified signatures 
of gene expression in human embryonic stem cells. Hence, we call the collection “stem cell 
signatures”. These genesets were compiled from the Molecular Signature DataBase (MigDB), 
Liberzon et al. (2015); the Differentiation Map portal, Novershtern et al. (2011); Ingenuity 
Pathway Analysis tool (2020); and ChIP-X database, Lachmann et al. (2010). We restricted 
the size of genesets to be between 5 and 500. There are 281 genesets in this range (The full 
collection of these stem cell signatures is available from the authors upon request). Second, we 
downloaded the single cell RNA-Seq data from ArrayExpress database, Athar et al. (2019); 
access number E-MTAB-3929 ArrayExpress (2020). The dataset consists of 17855 genes 
measured in each of 1529 individual cells from 88 human preimplantation embryos. The total 
of 1529 individual cells is broken down during days 3 to 7 of the embryonic development as 
follows: 81 cells measured on day 3; 190 on day 4; 377 on day 5; 415 on day 6; and 466 on 
day 7. During the first 7 days of human development, the zygote undergoes cellular division 
and establishes the first three distinct cell types of the mature blastocyst: trophectoderm (TE), 
primitive endoderm (PE), and epiblast (EPI). Petropoulos et al. (2016) While the analysis of 
these data at individual gene level was conducted previously by Petropoulos (2016), in this 
study, we performed LCT analysis at geneset level of the same data using the above-mentioned 
stem cell signatures.  
 
Methods: LCT tests if there is a linear relationship between the geneset 𝑋 =
$𝑥!, … , 𝑥"( consisting of p genes and a set of q multivariate outcomes 𝑌 = $𝑌!, … 𝑌#(. The 
multivariate null hypothesis can be expressed linearly and univariately as 
 

H0: There is no association between any linear combination of gene expressions of the 
members of a geneset 𝑋 and any linear combination of multivariate outcomes 𝑌. 

 
If 𝑍(𝑋, 𝐴) is a linear combination of gene expression measurements within a set of 𝑥$s 

with coefficient vector 𝐴 and 𝑍(𝑌, 𝐵) is a linear combination of outcomes 𝑦$s with coefficient 
vector 𝐵, then we calculate the following statistic to test the null hypothesis 
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𝑇% = 𝑚𝑎𝑥|𝜌((𝑍(𝑋, 𝐴), 𝑍(𝑌, 𝐵))%|.	

 
                 (1) 

The coefficient vectors 𝐴	and 𝐵 are estimated in a way that maximizes the Pearson 
correlation between  𝑍(𝑋, 𝐴)	and 𝑍(𝑌, 𝐵).  𝑇% can be rewritten as 

 

𝑇! = 𝑚𝑎𝑥 "#!$%&((,*),-"

(#!$%&((,()#).(,!$%&(*,*),)
= "#!/#$,-

"

(#!/###)	.(,!/$$,)
	.	

 

                 (2) 

In the procedure for estimation of the coefficient vectors, two problems arise: singularity 
caused by the high dimensionality of data (solved by shrinkage methods) and computational 
efficiency (solved by eigenvalue decomposition). Then, the p-value is calculated using sample 
permutations. Sample permutation method preserves the correlation structure within geneset 
and the correlation structure within multivariate outcomes, see Schäfer and Strimmer (2005). 
 
Specifically, the (𝑖, 𝑗)th entry of the shrinkage covariance matrix 𝛴&&∗  is given by 

𝜎$(∗ = 𝛾$(;𝜎$$𝜎((  
	

with shrinkage coefficients 1 for the diagonal terms, and the off-diagonal terms 
 

𝛾$( = 𝜌$(𝑚𝑖𝑛( 1,𝑚𝑎𝑥( 0,1 − 𝜆∗)) 

 
where ρij is the sample correlation between xi and xj. The optimal shrinkage intensity can be 
estimated by 

𝜆∗ =
∑ &34(5%&)%'&

∑ 5%&
"

%'&
 . 

 
Based on this shrinkage strategy, we get the shrinkage version of the test statistic 
 

                                 𝑇!∗ = 𝑚𝑎𝑥
#,,

(#!/#$,)"

(#!/##∗ #) . (,!/$$∗ ,)
.	 	 	 	 	 																												(3)	

 
The computational cost of calculating (3) has to be taken into consideration, since the 

right-hand side is a nonlinear programming problem involving 𝑝 + 𝑞 parameters. The 
computational cost can be very high for maximizing directly the right-hand side of (3), 
especially when permutations are used for calculating the 𝑝-values of the test. To address the 
computational efficiency problem, we adopt a strategy of using two groups of normalized 
orthogonal bases, instead of using the original observation vectors of X and Y. We perform 
eigenvalue decompositions for the two shrinkage covariance matrices, 𝛴&&∗ = 𝑈𝐷&𝑈)  and 
𝛴**∗ = 𝑉𝐷*𝑉), and obtain two groups of orthogonal basis vectors 𝑋H = (𝑥I1… , 𝑥Ip) = (𝑥! −
𝑥̅1, … , 𝑥" − 𝑥̅p)𝑈𝐷&

+!/% and vectors 𝑌H = (𝑦I1… , 𝑦Iq) = (𝑦! − 𝑦K1, … , 𝑦# − 𝑦Kq)𝑉𝐷*
+!/%. 

 
 The test statistic in (3) can further be rewritten as  

 
𝑇!∗ = 𝑚𝑎𝑥

7,8

(7!/#)$)8)
"

||7||"" . ||8||"" 
 ,	 	 	 	 (4)	
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where 𝛼 = 𝐷&
! %⁄ 𝑈)𝐴 and 𝛽 = 	𝐷*

! %⁄ 𝑉)𝐵, and 𝛴&.*.  is the covariance matrix between 𝑋H and 𝑌H , 
with its (𝑖, 𝑗)th entry being 𝑐𝑜𝑣( 𝑥I$ , 𝑦I(). 
 
The optimization problem in (4) can be solved in two steps. First, for a given β, we find the 
optimal, α which is proportional to 𝛴&.*.𝛽; second, substitute the optimal α into (4), and find the 
global optimal, which is proportional to the first eigenvector of the matrix 𝛴&.*.

) 𝛴&.*.  
corresponding to the largest eigenvalue. We note that the value of  equals to the largest 
eigenvalue of either the 𝑞 × 𝑞 matrix 𝛴&.*.

) 𝛴&.*. 	or the 𝑝 × 𝑝 matrix 𝛴*.&.
) 𝛴*.&. . The cost of 

obtaining the largest eigenvalue is low, providing min(𝑝, 𝑞) is not large.  
 

The computational advantage is obvious when sample permutations are used to calculate 𝑝-
values of the test. Since sample permutation changes neither the correlation structure within 
genesets nor that within the outcomes, we do not need to repeat the same eigenvalue 
decompositions of the two shrinkage covariance matrices in (3) for the permuted data, but only 
for the original outcome. That is, after performing the eigenvalue decompositions for the two 
shrinkage covariance matrices 𝛴&&∗  and 𝛴**∗  and creating two groups of orthogonal basis vectors 
𝑋H and 𝑌H , permutations can be done only on 𝑌	Wdirectly, instead of on the original outcome 𝑌. 

 
For multiple comparisons over large collections of genesets, False Discovery Rate (FDR) is 

a commonly used method that can provide a better alternative to the more conservative 
Bonferroni approach. In this study, we used 𝑞-value, which is the expected positive FDR, to 
identify the significantly regulated genesets at different 𝑞-value levels (Storey and Tibshirani 
2003). 
 
3.  Results and Discussion 
 

In this study, we used LCT for testing associations of a new, large collection of curated 
stem cell signatures with a single-cell RNA-Seq based genome-wide expression dataset on 
human embryo development. We conducted a quick confirmation of the relevance of these 
signatures in stem cell gene regulation during human embryo development by applying LCT 
to single cell data across each pair of consecutive days, from day 3 to day 7. Petropoulos et al. 
(2016) reported results of an analysis at the individual gene level, across the three distinct cell 
types of the mature blastocyst. We note that segregation of EPI, PE and TE cell types appears 
at day 5. The breakdown of sample sizes by day and cell type is as follows: 41 EPI, 32 PE and 
142 TE for day 5; 45 EPI, 39 PE and 331 TE for day 6; 41 EPI, 37 PE and 388 TE for day 7.  

 
Differential expression analysis between the EPI cell types and PE cell types performed 

by Petropoulos et al. (2016) identified 43, 1,412, and 542 differentially expressed genes at days 
5, 6 and 7 respectively (at FDR ≤ 0.05), with earlier days’ (5 and 6) significance being 
maintained through later days (6 and 7). Our analysis at the geneset level identified 126 
differentially regulated stem cell signatures between EPI and PE at day 5 (𝑞-value ≤ 0.001), 
and a selected subset of 105 genesets that were the most significant (𝑞-value ≤ 0.0001) on days 
6 and 7 is shown in Table 1. Regarding the other two cell type pairs, TE versus PE, and TE 
versus EPI, our analysis at the geneset level indicated more obvious differences compared to 
EPI versus PE. More importantly, all 281 genesets, which are known stem cell signatures, were 
found to be significant on each pair of consecutive days from 5 to 7, and for each pair of cell 
types of TE versus PE, and TE versus EPI, which is in agreement with the individual gene 
analysis results of Petropoulos et al. (2016).  

2*T
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Finally, we focused on the endothelial transcription factor genes GATA2 and GATA3, 

which have been previously reported as known markers of TE segregation, and thus, for 
playing an important role in embryonic development. Ortega et al. (2018) We performed LCT 
using the expressions of these two genes as a bivariate continuous outcome. One hundred and 
thirty-eight stem cell signatures were significantly associated (𝑞-value ≤ 0.001) with the 
bivariate continuous phenotype at day 3. For the subsequent days, this count increased to 234, 
278 and 281 respectively.  
 

We presented here a new application of LCT methodology to SCA experiments with an 
illustration on human embryonic development gene expression data. Our approach extends the 
individual gene analysis to identification of sets of genes that share a common biological 
function. Such collections of sets exhibit higher reproducibility across studies, and are more 
robust for addressing complex questions in systems biology. Notably, our new collection of 
stem cell signatures presented the opportunity to confirm their relevance to the dynamic gene 
regulation during human embryonic development. As stem cells are an active area of research 
in biology and medicine, multivariate dynamic outcomes and associated markers (and 
combinations thereof) can be analyzed by LCT, which can also be extended to testing of newer 
gene signatures such as those reported by novel experiments to chart a single cell level 
transcriptional roadmap of human development, e.g., Blakeley et al. (2015), Durruthy-
Durruthy et al. (2016).  

 
Unlike the traditional analysis of bulk samples composed of thousands of different cells, 

experiments that can measure the expressions of selected markers in individual cells are 
capable of revealing not only the occurrence but also the dynamic states of diverse cell 
populations, including rare ones, as shown by Pyne et al. (2009), Pyne et al. (2014), Qi et al. 
(2020), etc. In order to characterize the cellular heterogeneity of a given sample (say, a tumor) 
with precision, the experimenter will need to select the corresponding panels of marker genes. 
Different choices of markers are given by genesets which must be compiled carefully as we 
have done for characterizing embryonic stem cell signatures in this study.  

LCT is a powerful correlation-based test that can be used to explore thousands of 
genesets in an automated yet computationally efficient manner. However, we note that the 
linear combinations identified by LCT are not unique, and there is no direct interpretation of 
the linear combination coefficients that one can achieve through classical linear regression 
techniques. To address this, statistical models for high-dimensional analysis can be applied 
post hoc to the identified sets of genes, based on their LCT significance, and selected for their 
biological relevance. Such methods may provide further interpretation and insight into the 
selected sets. LCT was extended to longitudinal multivariate outcomes by Khodayari et al. 
(2019). LCT has also proven to be effective beyond gene expression data. Analogous to 
genesets, we have used LCT on collections of metabolite-sets to test for associations between 
oncogenic outcomes and high-throughput metabolomic data from prostate cancer patients in 
Khodayari et al. (2018).  
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Figure 1: A schematic diagram showing a basic SCA experiment. Single-cell gene 
expression measurement using qPCR workflow is performed with the Fluidigm Dynamic 
Array microfluidic chip. Reproduced from Kalisky et al. (2018) with permission. 
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Table 1: Stem cell gene signatures differentially regulated between 41 epiblast and 32 
primitive endoderm lineages at day 5 in human embryo development (shown in the 
increasing order of size) 

Geneset Size q-value 
StemCell_Lian07_20genes_17053208.table1a 20 <0.0001 
StemCell_Shim04_23genes_15246160.table4 22 <0.0001 
IPA_affects.epithelial.mesenchymal.transition.of.cells 22 <0.0001 
IPA_increases.epithelial.mesenchymal.transition.of.cells 24 <0.0001 
StemCell_Kocer08_44genes_18667080.TableS3 26 <0.0001 
StemCell_Matushansky08_35genes_18310505.TableS6 28 <0.0001 
StemCell_Lottaz10_30genes_20145155.Table1 29 <0.0001 
IPA_increases.differentiation.of.embryonic.stem.cells 29 <0.0001 
StemCell_Lim08_35genes_18510698.Table3 34 <0.0001 
Ben.Porath_ES_2 39 <0.0001 
StemCell_Seo07_61genes_18034892.Table1 40 <0.0001 
DMAP_TCELLA3_DN 40 <0.0001 
Marson_H3K4me3 41 <0.0001 
DMAP_PRE_BCELL2_UP 42 <0.0001 
DMAP_PRE_BCELL3_DN 42 <0.0001 
IPA_affects.differentiation.of.embryonic.stem.cells 43 <0.0001 
DMAP_EOS_DN 44 <0.0001 
DMAP_BCELLA3_DN 44 <0.0001 
DMAP_CMP_DN 44 <0.0001 
DMAP_NKA2_DN 44 <0.0001 
DMAP_TCELL_DN 45 <0.0001 
DMAP_GRAN3_UP 45 <0.0001 
DMAP_MEGA2_DN 45 <0.0001 
DMAP_NKA3_UP 45 <0.0001 
DMAP_ERY1_DN 46 <0.0001 
DMAP_ERY2_UP 46 <0.0001 
DMAP_HSC3_DN 46 <0.0001 
DMAP_BCELLA1_DN 47 <0.0001 
DMAP_TCELLA2_UP 47 <0.0001 
DMAP_TCELLA6_DN 47 <0.0001 
StemCell_Lim08_50genes_18510698.Table1 48 <0.0001 
DMAP_MYP_UP 48 <0.0001 
DMAP_BCELLA2_UP 49 <0.0001 
StemCell_Duhagon10_60genes_20500816.Table1 56 <0.0001 
IPA_affects.differentiation.of.hematopoietic.progenitor.cells 56 <0.0001 
IPA_affects.differentiation.of.hematopoietic.cells 62 <0.0001 
IPA_increases.differentiation.of.stem.cells 68 <0.0001 
StemCell_Kocer08_87genes_18667080.TableS6 71 <0.0001 
IPA_affects.differentiation.of.stem.cells 73 <0.0001 
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StemCell_Hao09_97genes_20077526.TableS7 74 <0.0001 
Kim_CORE 74 <0.0001 
StemCell_Almstrup04_138genes_15256440.tableS1 80 <0.0001 
DB_KLF2.18264089 83 <0.0001 
DB_KLF4.18264089 83 <0.0001 
DB_KLF5.18264089 83 <0.0001 
Taube.et.al._EMT_upregulated_genes 86 <0.0001 
StemCell_Colombo09_111genes_19123479.TableS1 90 <0.0001 
IPA_affects.differentiation.of.bone.marrow.cells 90 <0.0001 
DB_TRP63.18441228 94 <0.0001 
Ben.Porath_ES_CORE_NINE_CORRELATED 99 <0.0001 
StemCell_Korkola05_146genes_15870693.SuppTable1 100 <0.0001 
StemCell_Bohgaki05_118genes_16014681.table2 113 <0.0001 
DB_NOTCH1.17114293 121 <0.0001 
StemCell_Hao09_173genes_20077526.TableS5 126 <0.0001 
DB_HOXD13.18407260 130 <0.0001 
StemCell_Kocer08_185genes_18667080.TableS4 154 <0.0001 
Ben.Porath_NOS_TARGETS 168 <0.0001 
DB_IRF1.19129219 173 <0.0001 
DB_TP63.19390658 176 <0.0001 
DB_ESR1.20079471 187 <0.0001 
DB_PPARG.19300518 187 <0.0001 
StemCell_Kocer08_236genes_18667080.TableS8 194 <0.0001 
DB_VDR.20736230 196 <0.0001 
DB_WT1.19549856 197 <0.0001 
DB_SCL.19346495 206 <0.0001 
Kim_GCN5L2 211 <0.0001 
Ben.Porath_MYC_TARGETS_WITH_EBOX 222 <0.0001 
StemCell_Hao09_359genes_20077526.TableS4 239 <0.0001 
DB_EGR1.19032775 242 <0.0001 
DB_CDX2.19796622 253 <0.0001 
Kim_CTR9 258 <0.0001 
StemCell_Matushansky08_297genes_18310505.TableS8 261 <0.0001 
DB_ZIC3.20872845 266 <0.0001 
Ben.Porath_OCT4_TARGETS 272 <0.0001 
StemCell_Hao09_612genes_20077526.TableS3 302 <0.0001 
StemCell_Matushansky08_886genes_18310505.TableS1 306 <0.0001 
StemCell_Bhattacharya05_2471genes_16207381.Table1Sb 308 <0.0001 
StemCell_Kocer08_575genes_18667080.TableS9 309 <0.0001 
StemCell_Kocer08_864genes_18667080.TableS2 310 <0.0001 
StemCell_Bhattacharya05_2843genes_16207381.Table1Sa 310 <0.0001 
StemCell_Majeti09_3024genes_19218430.TableS3 313 <0.0001 
StemCell_Matushansky08_1453genes_18310505.TableS7 315 <0.0001 
DB_POU5F1.18700969 322 <0.0001 
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DB_RARG.19884340 326 <0.0001 
Zola07_426genes_CellDifferentiationMarkers_17174972.TableS1 332 <0.0001 
StemCell_Qi03_534genes_12631704.table1 334 <0.0001 
StemCell_Hassan09_1544genes_19808871.TableS3 340 <0.0001 
DB_ESR1.17901129 347 <0.0001 
DB_TP53.16413492 349 <0.0001 
DB_HTT.18923047 355 <0.0001 
Ben.Porath_ES_1 358 <0.0001 
DB_SMAD4.19686287 367 <0.0001 
DB_STAT6.20620947 369 <0.0001 
DB_SOX2.18555785 388 <0.0001 
DB_CLOCK.20551151 399 <0.0001 
DB_NANOG.18555785 412 <0.0001 
DB_CTNNB1.20615089 416 <0.0001 
DB_TCF4.18268006 420 <0.0001 
DB_POU5F1.18555785 438 <0.0001 
DB_ZFP281.18358816 441 <0.0001 
Kim_PRC 444 <0.0001 
DB_CDX2.20551321 446 <0.0001 
Kim_ZFP281 461 <0.0001 
DB_SMAD1.18555785 465 <0.0001 
DB_PDX1.19855005 493 <0.0001 

 

 

 


