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Abstract
The research work undertaken in this paper is motivated by a real life scenario in the

context of agricultural experiments. It is believed that the neighboring ‘plots’ in a Block
Design or in a Latin Square Design [LSD] tend to influence each other in terms of the mean
yield through the ‘neighboring effects of the treatments’ applied in these plots. Further to
this, there are quantifiable and controllable covariates acting linearly in the mean model.
We contemplate a linear ANCOVA model and study its analysis - with special emphasis on
the question of estimability of the regression coefficient(s) involving the covariates. We focus
on RBDs with b = v = 4, on an SBIBD(7, 7, 4, 4, 2) and also on an LSD of order 4.

Key words: Randomized block designs; Balanced incomplete block designs; Latin square de-
signs; Direct treatment effects; Neighbor treatment effects; Left neighbors; Right neighbors;
Top neighbors; Bottom neighbors; Linear ANCOVA model; Covariates; Optimal covariate
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1. Introduction

The key reference to this article is Springer Publication by Das et al. (2015) titled
“Optimal Covariate Designs”. Generally speaking, in the context of an experimental design
with covariates, each experimental unit is supposed to have attached to it a number of
quantifiable and measurable covariates. Assuming that there is a large pool of units, we have
a choice for selection of the units with assigned covariate-values. Optimal covariate designs
are the designs which provide optimal or most efficient estimation of the covariates’ effects
in terms of the parameters in an assumed linear model. The experimental set-up is quite
general - starting with CRDs, RBDs, BIBDs, LSDs etc. The number of covariates need not
be just one or two. Optimality problems center around characterization and constructions
of designs i.e., choice of experimental units with ‘optimally assigned’ covariate values in a
given experimental set-up. The reader is referred to Das et al.(2015) for details. This area
of research grew over the last 40 years or so.
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Covariate Models or ANCOVA Models are seen as a ‘blend’ of ‘design model’ and ‘re-
gression model’. In a block design set-up, writing yij for the observation in the experimental
unit corresponding to i-th block and j-th treatment, we may write the model as

yij = µ+ βi + τj + β1x1;(i,j) + β2x2;(i,j) + . . .+ eij,

where it is assumed that x1;(i,j), x2;(i,j), . . . are the covariate values attached to the unit
labelled (i, j) with associated linear effects parameters β1, β2, . . .. Our purpose is to identify
and select those experimental units which collectively provide optimal estimation of the
covariate parameters i.e., of the β’s. Note that the design set- up could be very much
general in nature. However, unless there is a nice combinatorial structure of the underlying
design [without the covariate effects], the problem, in its most general form, is untraceable.
That is why only CRDs, RBDs, BIBDs, LSDs etc have been studied in the literature. The
complexity of the problem cannot be undermined if there are a number of covariates. In
general terms, for any number of covariates and any experimental design set- up, it transpires
that V ar(β̂) ≥ σ2/

∑
x2

(i,j). It can be argued that, without any loss of generality, we may
assume −1 ≤ x(i,j) ≤ 1. This takes the variance bound to σ2/n where n is the total number
of observations. We need to examine the case of ‘equality’ and that too, for each of the
covariates and there again, we need to attain ‘equality’ simultaneously for all the covariates
parameters’ estimates. Note that we are examining the status of a design only wrt the
β-parameters, ignoring other fixed-effects parameters in the model. Anyway, there are too
many issues involved and, without any further digression, we refer to Das et al. (2015).

Specifically, if we are dealing with an RBD involving b blocks and v treatments and if
there are k covariates (X(1), X(2), . . . , X(k)), we will attain ’equality’ in the variance bound
simultaneously for all the covariates if and only if the following conditions are met :

(i)
∑

j

x(u;(i,j)) = 0, 1 ≤ i ≤ b; (ii)
∑

i

x(u;(i,j)) = 0, 1 ≤ j ≤ v;

(iii)
∑

1≤i≤b

∑
1≤j≤v

xu;(i,j)xu∗;(i,j) = nI(u, u∗); 1 ≤ u, u∗ ≤ k.

where, in the above, I(..) is the usual indicator function and n = bv.

In this paper we will deal with an RBD(b = 4, v = 4), a BIBD(7, 7, 4, 4, 2) and an LSD
of order 4. Moreover, we will adopt a model where, besides the block effects/row- column
effects and treatment effects, we also have neighbor effects - designated as Left-Neighbor
(LN)-Effects, Right-Neighbor (RN)-Effects etc. Naturally, we will require more conditions
to be satisfied by the collection of the x(u;i,j)’s. Note that (iii) requires that x(u;(i,j)) = +1/−1
for all choices of (u;(i,j))’s. With this background, we will proceed to derive/present the results
on optimal covariates designs in a model with N-Effects. In doing so, our target will be to
cover maximum number of such covariates with most efficient estimation for each one. Once
for all, we refer to systematic study of four- sided RN- and CN- effects as proposed and
discussed in Varghese et al. (2014) for an explanation of neighbor effects. There are two
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follow- up papers in this direction as well. [Sapam et al. (2019a, 2019b)]. We may mention
another related paper by Jaggi et al. (2018).

2. RBD with b=v=4

We start with the following RBD in Table 1 wherein we also display the Left-sided and
Right-sided Neighbor Effects, assuming a circular model. [Vide Kunert (1984)].

Table 1: RBD with b=v=4: First Choice

LN 4 1 2 3 4 RN 1
LN 1 2 3 4 1 RN 2
LN 2 3 4 1 2 RN 3
LN 3 4 1 2 3 RN 4

We assume the existence of a controllable and quantifiable covariate (X) attached to
every plot in the block design. We denote by xij the value of the covariate attached to the
plot labelled (i, j) which corresponds to plot number i in block number j; i, j = 1, 2, 3, 4.

Without any loss of generality, we further assume that −1 ≤ xij ≤ 1 for each of the
covariate values.

Under the assumed linear model, it follows that I(β) ≤ ∑ ∑
x2

ij ≤ bv = 16, dropping
the error variance σ2 in the model. The case of ’equality’ has been studied earlier in our
papers in easier settings. We refer to Das et al. (2015) for details. However, the present
setting is a bit complicated since there are block effects, (direct) treatment effects and both
LN- and RN- Effects of the treatments. Consider the following X(1)-matrix in Table 2 for
one choice of the covariate values.

Table 2: Covariate matrix for RBD with v=b=4 in Table 1

X(1) =

1 −1 1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 1 −1

It can be verified that this choice of the X-matrix provides equality in the above wrt
information on β. As a matter of fact, the column vector of order 16 × 1 consisting of the
covariate values is seen to be orthogonal to each of the 4+4+4+4 = 16 vectors corresponding
to 4 block effects parameters, 4 treatment effects parameters, 4 LN-Effects parameters and
4 RN-Effects parameters. It would be an interesting exercise to figure out how many such
X-matrices can be made available which are (i) orthogonal to those listed in the above and
(ii) themselves mutually orthogonal. Here are two others i.e., X(2) and X(3) displayed in
Table 3.

We now refer to Das et al. (2015) Monograph on ‘Optimal Covariate Designs’. Specif-
ically, subsection 3.2 lists 9 matrices, denoted as W (1),W (2), . . . ,W (9), in the context of an
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Table 3: Covariate matrices for RBD with v=b=4 in Table 1

X(2) =

1 −1 −1 1
1 1 −1 −1
1 −1 −1 1
1 1 −1 −1

X(3)=

1 1 −1 −1
1 −1 −1 1
1 1 −1 −1
1 −1 −1 1

RBD with parameters b = v = 4. It turns out that all these 9 matrices serve our purpose in
the present context. As a matter of fact, we have already listed 3 of them [W 1, W 2, W 3]
in the above - suitably rewritten to fit in our framework as X(1), X(2), X(3) in Table 2 and
Table 3. The rest are shown in the Appendix - A.

Remark 1: It must be noted that not all block design structures are amenable to this kind
of allocation of covariate values with desirable orthogonality properties. Take, for example,
the following RBD in Table 4 with associated LN- and RN-Effects shown along the margins.
We may try to convert W into X-matrix, hoping that it would serve the purpose ! We show
it below in Table 5.

Table 4: RBD with b=v=4: Second Choice

LN 4 1 2 3 4 RN 1
LN 3 1 2 4 3 RN 1
LN 4 2 1 3 4 RN 2
LN 3 2 1 4 3 RN 2

Table 5: Non-conformative Covariate Matrix for RBD with b=v=4: Second
Choice

1 −1 1 −1
−1 1 1 −1
−1 1 1 −1

1 −1 1 −1

It turns out that (i) block total of x-values is zero for each block;
(ii) treatment total of x-values is zero for each treatment.
However, orthogonality fails wrt LN- and RN-Effects. The message is clear. We have to
study the structure of allocation of the treatments in the RBD and proceed accordingly.
For the RBD in Table 4, we are able to establish that there are at the most 4 X-matrices -
satisfying the desirable properties. We provide a proof of this statement as also display all
the available X-matrices in the Appendix - B.

Remark 2: Every layout of an RBD(b = v = 4) is special and has to be dealt with due



2021] DESIGNS WITH NEIGHBOR EFFECTS AND COVARIATES 33

attention to its structure. Here we have one more in the ’affirmative’ sense displayed in
Table 6. It has at least one underlying X-matrix and we display one X-matrix in Table 7.

Table 6: Covariate Matrix for RBD with b=v=4: Third Choice

LN 4 1 2 3 4 RN 1
LN 3 2 1 4 3 RN 2
LN 2 3 4 1 2 RN 3
LN 1 4 3 2 1 RN 4

Table 7: RBD with b=v=4: Third Choice

−1 1 −1 1
−1 1 −1 1
−1 1 −1 1
−1 1 −1 1

Remark 3: It is tempting to conjecture that for any given layout of an RBD, there is at
least one X-matrix available satisfying all the properties stipulated.

3. BIBD with b=v=7, r=k=4, λ=2

We borrow necessary results from Das et al. (2015), Chapter 4, Subsection 4.2. We
take up the SBIBD(7, 7, 4, 4, 2) and display the incidence matrix in a slightly modified form
below in Table 8. We also show the LN- and RN-Effects in the same table, assuming a
circular model. We now display the X-matrix of ((+1,−1)) ’s in Table 9.

Table 8: SBIBD (7, 7, 4, 4, 2)

LN 7 1 4 6 7 RN 1
LN 7 1 2 5 7 RN 1
LN 2 1 6 3 2 RN 1
LN 7 2 3 4 7 RN 2
LN 3 1 5 4 3 RN 1
LN 6 2 4 5 6 RN 2
LN 7 3 5 6 7 RN 3

It is readily verified that this X-matrix is one desired solution to provide most efficient
estimation of the β-coefficient even in the presence of LN- and RN-effects of the treatments.
As a ready reckoner, we display below in Table 10, the LN-and RN-effects of the treat-
ments, assuming a circular model. Note that the positions of the treatments within the
blocks are important for assessing the properties of the X-matrix. It would be interesting to
investigate if there are other such X-matrices and mutually orthogonal to the one just found.
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Table 9: X-matrix for SBIBD (7,7,4,4,2)

1 0 0 −1 0 1 −1
−1 1 0 0 −1 0 1

1 −1 1 0 0 −1 0
0 1 −1 1 0 0 −1
−1 0 1 −1 1 0 0

0 −1 0 1 −1 1 0
0 0 −1 0 1 −1 1

Table 10: LN- and RN-Effects under a circular model

LN Tr 1 Coeff RN Tr 1 Coeff.
4 −1 7 −1
2 1 7 1
6 −1 2 −1
5 1 3 1
* * * *

LN Tr 2 Coeff RN Tr 2 Coeff.
5 −1 1 −1
1 1 3 1
3 −1 7 −1
4 1 6 1
* * * *

LN Tr 3 Coeff RN Tr 3 Coeff.
2 −1 6 −1
4 1 2 1
1 −1 4 −1
5 1 7 1
* * * *

LN Tr 4 Coeff RN Tr 4 Coeff.
6 1 1 1
7 −1 3 −1
3 1 5 1
5 −1 2 −1
* * * *

LN Tr 5 Coeff RN Tr 5 Coeff.
7 1 2 1
4 −1 1 −1
6 1 4 1
6 −1 3 −1
* * * *

LN Tr 6 Coeff RN Tr 6 Coeff.
7 −1 4 −1
3 1 3 1
2 −1 5 −1
7 1 5 1
* * * *

LN Tr 7 Coeff RN Tr 7 Coeff.
6 1 6 1
5 −1 5 −1
2 1 4 1
3 −1 6 −1
* * * *

4. Latin Square Design of Order 4

So far we have developed study of RBDs and BIBDs with covariates and in the presence
of neighbor- effects. Now we focus on an LSD of order 4. We refer to Das et al. (2015), pages
155 - 159. In Example 8.2.3 (page 155), an LSD of order 4 has been laid out. We reproduce
it here in Table 11 along with all the four-sided neighbor-effects : Left-sided Neighbor Effects
(LN), Right-sided Neighbor Effects (RN), Top-sided Neighbor Effects (TN) and Down-sided
Neighbor Effects (DN). We assume a circular model - covering all sides.

Since in an LSD of order 4, there are six (6) orthogonal linear error functions (i.e., 6
error df), in the Example 8.2.3, six (6) orthogonal X-matrices have been shown. Vide the
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Table 11: LSD of order 4 with 4-sided NEs

TN 4 3 2 1 Effects
LN-Effects RN-Effects

4 1 2 3 4 1
3 2 1 4 3 2
2 3 4 1 2 3
1 4 3 2 1 4

DN 1 2 3 4 Effects

bottom part of the matrix shown in the expression for ELSD. These represent optimal choices
of six orthogonal covariate matrices for estimation of the same number of beta-coefficients.
This, however, holds without the presence of any sort of neighbor effects. While we introduce
the N-Effects on all sides (i.e., in all directions), it follows that only four (4) of them are valid
X-matrices. These are the 2nd, 4th, 5th and 6th X-matrices in the bottom part of the table
for ELSD. These are reproduced below for the sake of completeness in Table 12. Moreover,
as in the case of the RBD in Table 4, we prove that for the LSD under consideration, there
exist only 4 distinct and mutually orthogonal X-matrices as are found out and displayed in
Table 12. This is taken up in Appendix - C.

Table 12: Optimal X-matrices

X(1) 1 −1 −1 1; −1 1 1 −1; 1 −1 −1 1; −1 1 1 −1
X(2) 1 −1 1 −1; −1 1 −1 1; −1 1 −1 1; 1 −1 1 −1
X(3) 1 −1 −1 1; 1 −1 −1 1; −1 1 1 −1; −1 1 1 −1
X(4) 1 1 −1 −1; −1 −1 1 1; 1 1 −1 −1; −1 −1 1 1

Remark 4: We must note that the choice of the specific form of the LSD is very crucial
for existence of such X-matrices. For example, if we adopt the LSD shown in Table 13 [re-
produced as L2 on Page 29 of Das et al. (2015)], then we can find one X-matrix comfortably
and it is shown in Table 14. However, our attempt to find one more did not succeed.

Remark 5: Even though we are discussing about LSDs of order 4, very general treatments
of row-column designs are available in the literature. Vide, for example, Shah and Sinha
(1996). The reader might like to study such general patterns in the light of Neighbor- Effects
and covariates.

Table 13: LSD of order 4 from Das et al. (2015) Page 29 L2

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3
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Table 14: X-matrix for LSD in Table 13

1 −1 −1 1
1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

5. Conclusion

In this paper we have examined the existence of ‘optimal covariates designs’ in the
presence of neighbor-effects. The designs considered are (i) RBD(b = v = 4), (ii) BIBD(b =
v = 7, r = k = 4, λ = 2) and (iii) LSD of Order 4. The model adopted is linear in the
general mean, block - effects / row-column effects, treatment effects and circularly located
neighbor- efffects. The presence of covariates makes the analysis complicated unless their
effects are optimally and orthogonally estimated. This study shows that at times we are in
a position to achieve this by suitably allocating the covariates values in the experimental
units. Even though the experimental set-ups are simple, the results are non-trivial and worth
noting.
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APPENDIX

A.I : Choice of Six Additional and Mutually Orthogonal Optimal Covariate Ma-
trices for the RBD(b=v=4) in Table 1

Table 15: Covariate matrices for RBD with v=b=4 in Table 1

X(4)=

1 −1 1 −1
−1 1 −1 1
−1 1 −1 1
1 −1 1 −1

X(5)=

1 −1 −1 1
1 1 −1 −1
−1 1 1 −1
−1 −1 1 1

X(6)=

1 1 −1 −1
−1 1 1 −1
1 1 −1 −1
−1 1 1 −1

X(7)=

1 −1 1 −1
1 −1 1 −1
−1 1 −1 1
−1 1 −1 1

X(8)=

1 −1 −1 1
−1 −1 1 1
1 −1 −1 1
−1 −1 1 1

X(9)=

1 1 −1 −1
−1 1 1 −1
−1 −1 1 1
1 −1 −1 1

A.II : Verification of Orthogonality wrt LN- and RN-effects of each of the treat-
ments
We take up the verification wrt X(1) below in Table 16.
The nature of incidence of the treatments as LN- and RN-Effects is very special. That is
clearly visible in Table 16. The conditions relating to orthogonality wrt these N-Effects are
the same as orthogonality wrt (direct) treatment effects which is true. Therefore, all the
X-matrices satisfy the stipulated conditions of orthogonality.
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Table 16: Coefficients of LN- and RN- Effects for RBD in Table 1 corresponding
to the covariate matrix X(1)

Blocks Tr. 1 as LNE as LNE coeff Tr. 1 as RNE as RNE coeff
1 2 −1 4 −1
2 2 1 4 1
3 2 −1 4 −1
4 2 1 4 1

Total 0 0
Blocks Tr. 2 as LNE as LNE coeff Tr. 2 RNE as RNE coeff

1 3 1 1 1
2 3 −1 1 −1
3 3 1 1 1
4 3 −1 1 −1

Total 0 0
Blocks Tr. 3 as LNE as LNE coeff Tr. 3 RNE as RNE coeff

1 4 −1 2 −1
2 4 1 2 1
3 4 −1 2 −1
4 4 1 2 1

Total 0 0
Blocks Tr. 4 as LNE as LNE coeff Tr. 4 RNE as RNE coeff

1 1 1 3 1
2 1 −1 3 −1
3 1 1 3 1
4 1 −1 3 −1

Total 0 0

B. X- matrices for RBD : Second Choice
We have displayed four mutually orthogonal covariate matrices for the RBD(b = v = 4) :
Second Choice in the Table 17. We now establish that no further X-matrices exist in this
context. Let us start with a general form of an X-matrix given in Table 18.

Table 17: Four covariate matrices for RBD v=b=4: Second Choice

X(1)=

1 −1 1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 1 −1

X(2)=

1 −1 1 −1
−1 1 −1 1
−1 1 −1 1
1 −1 1 −1

X(3)=

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

X(4)=

1 1 −1 −1
−1 −1 1 1
−1 −1 1 1
1 1 −1 −1

We realize that there are too many restrictions on the elements of X. It may be noted that
WOLG, we may assume a = 1. The restrictions are listed below in Table 19. By examining
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Table 18: General form of a covariate matrix X for RBD (v=b=4): Sec-
ond Choice

a b c d
e f g h
i j k l

m n o p

the triplet (b, e, f) and all the 23 = 8 combinations along with a = 1, we can argue that the
following are the only feasible combinations in this context.
(a, b, e, f) = (1, 1,−1,−1), X(4)Matrix;
(a, b, e, f) = (1,−1, 1,−1), X(1)Matrix;
(a, b, e, f) = (1,−1,−1, 1), X(2) and X(3) Matrices.
Hence the stated claim is established.

Table 19: Restrictions on the elements of X

Sl. No. Restriction
Tr1 a+e+j+n = 0
Tr2 b+f+i+m = 0
Tr3 c+h+k+p = 0
Tr4 d+g+l+o = 0
Bl1 a+b+c+d = 0
Bl2 e+f+g+h = 0
Bl3 i+j+k+l = 0
Bl4 m+n+o+p = 0

LN1 b+f+k+o = 0
LN2 c+g+j+h = 0
LN3 d+e+l+m = 0
LN4 a+h+i+p = 0
RN1 d+h+i+m = 0
RN2 a+e+l+p = 0
RN3 b+g+j+o=0
RN4 c+f+k+n=0

C : Existence of four mutually orthogonal X-matrices for the LSD in Table 11
We refer to Table 11 for the particular LSD of order 4 and also to Table 18 for a general
structure of an X-matrix. We now incorporate the conditions for optimality.

(a) Consideration of Treatment Effects :

a+ f + k + p = 0 (1); b+ e+ l + o = 0 (2);
c+ h+ i+ n = 0 (3); d+ g + j +m = 0 (4).

(b) Consideration of Row Effects :

a+ b+ c+ d = 0 (5); e+ f + g + h = 0 (6);
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i+ j + k + l = 0 (7); m+ n+ o+ p = 0 (8).

(c) Consideration of Column Effects :

a+ e+ i+m = 0 (9); b+ f + j + n = 0 (10);

c+ g + k + o = 0 (11); d+ h+ l + p = 0 (12).

(d) Consideration of Left-Neighbor Effects :

b+ g + l +m = 0 (13); c+ f + i+ p = 0 (14);

d+ e+ j + o = 0 (15); a+ h+ k + n = 0 (16).

(e) Consideration of Right-Neighbor Effects :

b+ g + l +m = 0 (17); c+ f + i+ p = 0 (18);

e+ j + o+ d = 0 (19); a+ h+ k + n = 0 (20).

(f) Consideration of Top-Neighbor Effects

b+ g + l +m = 0 (21); a+ h+ k + n = 0 (22);

e+ j + o+ d = 0 (23); c+ f + i+ p = 0 (24).

(g) Consideration on Down-Neighbor Effects

e+ j + o+ d = 0 (25); c+ f + i+ p = 0 (26);

b+ g + l +m = 0 (27); a+ h+ k + n = 0 (28).

From the above, we find that the 4 equation sets, viz., those arising out of LN-sum, RN-sum,
TN-sum and DN-sum, each of 4 equations, are the same. So, we consider only the 4 equation
sets, viz., those arising from Treatment- sum, Row- sum, Column- sum and LN-sum. If there
exists a solution of these equations with solution space [1,−1], an X-matrix exists. As in the
case of RBD set-up, WOLG, we set a = 1 and examine all the 8 combinations corresponding
to choices of (b, e, f). The results are stated below.
Case 1. b = e = f = 1 : no solution;
Case 2. b = −1, e = f = 1 : no solution;
Case 3. b = f = −1, e = 1 : one solution viz., X(1);
Case 4. e = −1, b = f = 1 : no solution;
Case 5. f = −1, b = e = 1 : no solution;
Case 6. b = e = −1, f = 1 : X(3) and X(2) are the two solutions;
Case 7. e = f = −1, b = 1 : one solution viz., X(4);
Case 8. b = e = f = −1 : no solution.

Hence the claim is justified.


