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Abstract

A system experiences two kinds of sporadic impacts: valid shocks (VS) that cause
damage, and positive interventions (PI) that induce partial healing. The system lifetime is
divided into two stages: In Stage 1, healing can occur; but in Stage 2, no healing is possible.
Stage 1 is further subdivided into two parts: In the early part, called Stage 1A, healing
happens faster than in the later stage, called Stage 1B. The system stays in Stage 1A until the
net count of impacts (VS registered minus VS nullified) reaches a predetermined threshold
m4; then the system enters Stage 1B and stays there until the net count reaches another
predetermined threshold m; (> my4). Thereafter, the system enters Stage 2. The system
fails when the net count of valid shocks reaches another predetermined higher threshold
my (> my).

We assume that the inter-arrival times between successive VS and those between PI
are independent and follow arbitrary distributions F' and G, respectively. We compute the
distributions of the sojourn time in Stage 1 and the failure time of the system using two ap-
proaches. We calculate the percentage improvement in the system lifetime after subdividing
Stage 1. Finally, we make optimal choices which minimize the expected maintenance cost
per unit time for two maintenance policies.

Key words: Reliability; Counting process; Weighted convolution; Mean time to failure; Re-
placement cost

AMS Subject Classifications: 90B25, 62N05, 60K10

1. Introduction

In machine maintenance and reliability engineering, it is often necessary to study the
impacts of external shocks. Other than degradation due to aging, system lifetime is affected
by the accumulated damage due to shocks. Because a system failure causes a severe loss, it
is preferable to replace a system before it fails, but only after utilizing its potential life to
the extent possible. Therefore, we seek optimal replacement policies before the system fails.

Shock models have been studied extensively in the past four decades. They can be
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classified according to types of shocks, arrival processes of shocks, types of systems, nature
of system degradation and so on. A comprehensive literature review is given in Chatterjee
and Sarkar (2021); it will not be repeated here, except to draw attention to papers dealing
with self-healing such as Dong et al. (2020) and Shen et al. (2018), together with applications
of self-healing mentioned in Lafont et al. (2012) (Solid-state lighting devices), Keedy and
Feng (2013) (bio-medical application), and Bhuyan and Dewanji (2017) (secondary email
account system and battery life of cell phones). Let us mention in some detail only one
paper Zhao et al. (2018) , which is instrumental in developing our model, though we modify
some of the assumptions therein to make our model more realistic.

In Zhao et al. (2018), the authors studied a two-stage shock model with a self healing
mechanism. A shock that results in a certain degree of damage is called valid; otherwise, it is
deemed invalid. A d-invalid shock is one whose time lag with the preceding shock exceeds a
given time-threshold 6. A change point splits the failure process into two stages: In Stage 1,
0-invalid shocks trigger self healing by essentially reducing by one the number of valid shocks.
When the cumulative number of net valid shocks exceeds a critical level d, the system enters
Stage 2, where it loses its healing ability. The cumulative number of valid shocks increases
by one whenever a valid shock arrives; but the self-healing behaviour is triggered only when
there is a running trail of k consecutive d-invalid shocks, reducing the cumulative number
of damage by one. A system fails when the cumulative number of valid shocks reaches a
threshold n (n > d). Further, the authors considered three preventive maintenance policies
and the optimal replacement strategies for each policy after considering the associated costs.
In their illustrations, inter-arrival times between successive valid shocks and é-invalid shocks
are exponentially distributed.

In Chatterjee and Sarkar (2021), two types of impacts — valid shocks (VS) and positive
interventions (PI) — are considered, with their inter-arrival times having arbitrary distri-
butions, and the system lifetime is split into two stages — Stage 1 where it can heal, and
Stage 2 where it can not heal. However, healing occurs when the cumulative effect of k
PIs (not necessarily consecutive) nullify one VS. Furthermore, the PIs need not be d-invalid.
This continues until the system reaches a “change point” beyond which it can no longer heal.

The main focus of the current work is to extend the two-stage model by splitting Stage 1
further into two parts. In the earlier part of Stage 1, called Stage 1A, k4 PlIs nullify the
damaging effect of one VS. In the later part of Stage 1, called Stage 1B, kg (> k4) PIs can
heal one VS. The system is in Stage 1A until the net VS reaches a threshold m 4; thereafter,
it enters Stage 1B. Next, the system reaches the “change point” and enters Stage 2 when the
net VS reaches m,. Therefore, m; —m4 = mp is the net number of VS allowed in Stage 1B.

Previous research considered either healing or degradation, or they have assumed that
the shocks/impacts have inter-arrival times exponentially distributed. Although some works
mention non-exponential inter-arrival times, they illustrate only exponential examples. As
in Chatterjee and Sarkar (2021), here we illustrate with several non-exponential inter-arrival
time distributions. As long as we can count the number of VS and PI, we can figure out the
distributions of duration of Stage 1 and system lifetime.

Section 2 describes the evolution of the system under shocks and healing; Section 3
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Figure 1: Stages of the system based on net count of VS

illustrates two approaches to compute the distributions of Stage 1 duration and lifetime;
Section 4 compares Stage 1 duration and system lifetime between divided Versus undivided
Stage 1; Section 5 obtains optimal decisions for two maintenance policies; and finally Sec-
tion 6 summarizes the main findings of this research.

2. The System Set-up

External impacts to the system are of two types: Valid Shocks (VS) that cause
damage to the system and Positive Interventions (PI) that do not have any damaging
effect; on the contrary, the accumulation of a certain (predetermined) number of PIs nullify
the effect of one VS. This behaviour is what we call healing, which means the net number
of VS (VS arrived minus VS nullified by PIs) reduces by one. For simplicity, we assume each
VS causes an equal amount of damage. Hence, leaving for future the study of magnitude of
damages, here we focus on counting the net number of VS to the system.

The system lifetime is divided into two stages depending on the net VS it receives. In
Stage 1, the system has healing ability as described above and the system remains in this
stage until the net VS reaches a certain predetermined threshold m;. Thereafter, the system
moves to Stage 2 where it can no longer heal; that is, new PIs do not reduce the net VS
anymore. The system fails when net VS reaches another higher threshold msy. Furthermore,
Stage 1 is subdivided into two parts: Stage 1A requires fewer and Stage 1B requires larger
number of PI's to nullify one VS.

In Figure 1, the arrival processes of VS (denoted by A) and PI (denoted by o) illustrate
the net count of VS, and hence the stages. Here, kgx = 2, kg = 4,ma = 3,m; = 6, and
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mo = 10. Do not start counting until the first VS arrives. Stop counting PI if the net
number of VS, drops to 0. Resume counting once the next VS arrives. The change point
T, defines the transition from Stage 1 (Stages 1A and 1B combined) to Stage 2.

The inter-arrival times of VS, denoted by X7, Xy, X3,... are independently and iden-
tically distributed (IID) with an arbitrary cumulative distribution function (CDF) F'. Like-
wise, Y71,Ys,Ys, ..., the inter-arrival times of Pls are IID with another arbitrary CDF G.
Arrival processes of PIs and VS are stochastically independent. Let the duration of system
in Stage 1 be denoted as T} and the system lifetime be denoted as T5. The total number of
VS in Stage 1 be N; and that until failure be Ny. Note that my — m; = Ny — Nj since in
Stage 2 there is no healing. Let r denote the number of Pls rendered unused towards healing
in Stage 1. Further, let D; and D, denote the total number of impacts (VS+PI) in Stage 1
and until failure, respectively.

3. Distributions of 7} and 75

We describe the underlying stochastic process in terms of two approaches: a counting
process approach and a convolution process approach.

3.1. The counting process

Given the constant integers ka, kg, ma, my (hence, mp = m; — myu) and msy, we
describe a simulation of the system status as follows.

Generate a sequence of inter-arrival times of VS X, X5, X3,... from F, and another
sequence of inter-arrival times of PIs Y7, Y5, Y3, ... from G. Take the cumulative sums of the
two sequences, to obtain the arrival times. Sort these arrival times of the impacts (VS and
PI), and associate with each arrival time an indicator 1 to denote VS and 0 to denote PI.
Begin counting as soon as the first VS arrives. Ignore all PIs (0) before this moment.

Stage 1A: Count the VS. Arrival of k4 PlIs nullify one VS. Compute the net VS as the
VS arrived minus VS nullified. If the net VS ever drops to 0, stop counting; resume counting
when again another VS arrives. When net VS reaches m 4, the system enters Stage 1B. We
keep record of the total number of VS that arrived in Stage 1A, namely Ny.

Stage 1B: In this later part of Stage 1, arrival of a VS increases its count by one,
but now to nullify one VS we need kg Pls (kg > ka). Again, we stop counting if the net
count ever drops down to 0; and resume counting when a new VS arrives. When the net VS
reaches my, the system enters Stage 2. Let Np denote the total number of VS that arrive
Stage 1B, and let r denote the number of Pls that have arrived in Stage 1, including those
that arrived before the very first VS, those which were used for nullifying VS, those which
arrived after the net count of VS dropped down to 0 and those that were unused towards
healing. Similarly let s denote the total number of PI that arrived in Stage 2.

Stage 2: In this stage the system does not heal. The VS keeps accumulating one by
one without being nullified since the PIs have no effect. The system fails when the net VS
reaches a threshold m..

Thus, in one iteration of the simulation, we obtain as outputs the following quantities:
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Ny = Na+ Np, Ny, T1, Ty, r; D1 = Ny + r which is the total number of impacts in Stage 1
and Dy = Ny + r + s which is total number of impacts in Stage 1 and Stage 2 combined.
Next, we repeat the above steps for a total of 10? iterations.

We will approximate the probability mass functions (PMF) of N; and Ny from the
relative frequencies observed in the simulation. Also, based on the simulation, we will directly
approximate the probability density function (PDF) of 77 and T,. Alternatively, we will
reconstruct these PDFs using the PMFs of Ny and Ny, respectively, through a convolution
process as explained below.

3.2. The convolution process
The underlying stochastic process is described below:

In Stage 1A, (N4 — my4) VS have been nullified by the arrival of (Ny — ma) * ks Pls.
Similarly in Stage 1B, (Np — mp) VS have been nullified by the arrival of (Ngp — mp) * kp
PI and there may have arrived h more Pls, where 0 < h < kg — 1, which are insufficient to
nullify another VS. Therefore, in total, the arrival of Q = (Ng—my) *xka+ (N —mp) x kg
PIs has contributed towards nullifying (N; — m4) Pls.

Let us denote S; = S, X; as arrival time of the j-th VS, and Uj = S, Y; as arrival
time of the j-th PI. We describe how Stage 1 duration 77 depends on the number of VS N;.

(1) The system receives N7 VS in Stage 1. The arrival time of the (N; — 1)-st VS is Sy, 1
and that of the Ni-th VS is Sy;,.

(2) Let Ug be the arrival time of a PI which causes the (N7 — m;)-th nullification of a VS,
and let Ugyp, be the arrival time of the (@ + h)-th PI, which do not nullify any VS
(where h = 1,2,...,ky — 1), since the count of unused PI has not reached kg yet.

(3) Before the (N —1)-st VS arrives, the Q-th PI has already arrived. Hence, Uy < Sn,—1.
Thereafter, until the N;-th VS arrives, fewer than kg PI have arrived in Stage 1B.
Therefore, the arrival times satisfy the inequality

Ug < Sni—1 < Ugin < Sny < Ugik, (1)
and the sojourn time in Stage 1 is

Ty = Sn, (2)

Note that S; has a CDF given by F'x F'x---x I, the j-fold convolution of F'. Moreover,
since V; is a random stopping time (that determines the end of Stage 1), by Wald’s first iden-
tity, we have E(T7) = E(N;) x E(X). However, Ny and T} are not independent. Therefore,
using a second-order approximation (by matching the mean and the mean squared deviation
from the mean), we model

Ty = S; + A (j — E[M]) E[X] with probability P(N; = j) (3)
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for j =my,m; +1,...; where A € [0,1] depends on F' and G. That is, the distribution of T}
is modeled as a weighted average of adjusted j-fold convolutions of F', where the adjustment
equals a suitable fraction of the departure of N; from its expectation times the expected
inter-arrival time between shocks, with weights given by the probability masses P(N; = j)
for j=my,my+1,....

The above explanations justify the following theorem:

Theorem 1: The distribution of Stage 1 duration is a weighted average of j-fold convo-
lutions of F' shifted by A (j — E[N;]) E[X], where A € [0, 1] is described below, with weights
given by P{N; = j}, the probability that N; VS arrive in Stage 1, for j = m;, m; + 1,....

Description of \: For several combinations of inter-arrival time distributions F' and
G, the fraction A is numerically obtained via a grid search (with increment 0.01) to match
the standard deviations of the distribution of 77 obtained from the point process and the
convolution process.

The system lifetime equals the duration of Stage 1 plus (ms — my) additional inter-
arrival times of VS (which is the duration of Stage 2), since the system can no longer heal
in Stage 2. Hence, the system lifetime is

Ni4+mo—m1
T2 = T1 + Z Xz = SNZ

i=N1+1

where Ny = Ny + mgy — my. Using Theorem 1, we can describe
Ty = Sjtme—m, + A(j — E[N:]) E[X] with probability P{N; = j} (4)
forj:ml,ml +1,

Corollary 1: The distribution of time to failure 7T’ is a weighted average of (j + mas — m;)-
fold convolution of F' shifted by A (j — E[N;]) E[X], with weights given by P{N; = j}, for
j:ml,mj +1,

It is noteworthy that the above theorem and corollary are exactly the same as in
Chatterjee and Sarkar (2021). The intuition behind this agreement is that both the theorem
and the corollary involve the PMF of N; = N4 + Np, the total number of VS in stages 1A
and 1B combined. Exactly how Stage 1 is subdivided (based on the requirements of healing)
is irrelevant to describe the Stage 1 duration or the lifetime.

3.3. Computation and comparison

We shall consider different inter-arrival time distributions for X and Y satisfying
E(X)=1and E(Y) =2/3. The distribution of sojourn time in Stage 1 is found directly by
repeating the point process 10? times. In Chatterjee and Sarkar (2021), we had considered
k = 3 and m; = 10 for illustration. For comparability, here we choose ks = 2, kg = 4 to
keep the overall average number of Pls required to nullify one VS roughly the same and we
choose my4 = 5, mp = 5, so that m; = 10.
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Figure 2: Probability Distribution of N; is unimodal with mode 17,
E(Nl) ~ 21, SD(NI) = 652, Ql = 17, Qz = 20, Qg = 24, 99-th percentile
(N1)0.99 = 36, P(N]_ > 40) - 00057.

We emphasize that while similar results hold for all combinations of inter-arrival times,
to save space, we will show detailed results for one particular combination of inter-arrival
times: F' = Weibull (shape = 2, scale = 2/4/m) and G = Gamma (shape = 2, scale = 1/3),
such that F(X) =1 and E(Y) = 2/3. Figure 3 shows the simulated PMF of Nj.

Figure 3 shows the PDFs of T7 and T5 obtained both directly from point process and
from adjusted convolution. For 77, the mean Kullback-Leibler divergence of the adjusted
convolution PDF from the point process PDF measures 0.001466, which is very small (with
simulated p-value 0.997) and supports Theorem 1. Similarly, for 7,, the mean Kullback-
Leibler divergence of 0.00102 (with simulated p-value 0.999) supports Corollary 1. The
discrepancies between the two PDFs is at most 0.00035, establishing that the PDFs arising
from the point process and the adjusted convolution process are the same,

Let us now consider all combinations of F' and G simultaneously. In the Table 1, we
show the mean and the standard deviations of T} obtained from the two processes for various
choices of F' and GG. Similarly, in Table 2, we show the mean and the standard deviations of
T,. We show the corresponding \’s for each combination of ' and G in Table 3.



22 D. CHATTERJEE AND J. SARKAR [SPL

Densities of stage 1 duration

0.08 |
0.06
0.04 |
0.02
0.00
T T T T
20 40 60 80
time
Kullback-Leibler Divergence
3
2
<
i
x 1
2 N
< 0 A A A ~ N\
\’\// WYV
-1 4
T T T T
20 40 60 80
timepoints
Densities of Lifetime
0.08 |
0.06 |
0.04 |
0.02
0.00
T T T T
20 40 60 80
time
Kullback-Leibler Divergence
2.0
1.5
g 10
3 ] N
2 o0 N AN AN~~~
. Y \V2ul V4 N
~05
-1.0
T T
20 40

60

timepoints

80

. PROC.

Figure 3: Densities of T; (upper) and T> (lower) estimated from a point process
(red) and an adjusted convolution process (black), with their difference being

within 3.5 x 1074 of 0.



2021] COST MINIMIZATION UNDER SPORADIC SHOCKS AND HEALING 23

Table 1: For various inter-arrival time distributions satisfying E(X)=1 and
E(Y) = 2/3 the top entries give mean (standard deviation) of Stage 1 duration
T; according to a point process, and the bottom entries (in italics) show the
same quantities according to an adjusted convolution process.

Weibull Gamma Inv-Gauss | Exponential
pll Cx) @b len e

VS SD =~ 0.12 SD =~ (.22 SD ~0.29 | SD ~0.40
Weibull (2, %r) 21.51 (8.12) | 21.17 (8.35) | 21.01 (8.50) | 20.34 (8.39)
SD =~ 0.27 21.50 (8.15) | 21.15 (8.58) | 21.01 (8.53) | 20.31 (8.59)
Gamma (2, %) 20.77 (9.13) | 20.42 (9.07) | 20.43 (9.21) | 19.82 (9.05)
SD =~ 0.50 20.76 (9.12) | 20.44 (9.07) | 20.43 (9.20) | 19.81 (9.01)
Inv-Gauss (1) 19.53 (10.16) | 19.26 (10.01) |19.18 (10.11) | 18.88 (9.97)
SD =~ 1.00 19.61 (10.16)((19.36 (10.01)[19.27 (10.07)| 18.98 (9.97)
Exponential (1) || 19.59 (10.36) | 19.41 (10.36) | 19.46 (10.59) |18.91 (10.04)
SD =~ 1.00 19.59 (10.87),19.37 (10.89)(19.43 (10.58)|18.89 (10.06)

4. Comparison with Undivided Stage 1

In Table 3, we compare the means of the Stage 1 duration, showing the percentage
change, between the divided Stage 1 studied here and the undivided Stage 1 studied in
Chatterjee and Sarkar (2021). We also report the A’s obtained in the current research and
compare them to the A’s reported in Chatterjee and Sarkar (2021).

From Table 3, we identify a trend in the values of A as we scan through the rows and
the columns. For a particular choice of F' in a row, as we look from left to right across the
columns, we see that A decreases. A closer look at the corresponding standard deviations
reveals that A decreases as the standard deviation of GG increases. Similarly, for a fixed choice
of G in a particular column, as we go from top to bottom down the rows, we see that A
increases as the standard deviation of F' increases. This led us to believe that A is a function
of the ratio of the standard deviations of F' and G. When we plotted \ against or/og, we
noticed a non-linear relationship. Thereafter, we fitted a linear regression of A on log(or/0o¢)
with slope = 0.11833, intercept = 0.20644 and adjusted coefficient of determination of 0.832.

Let us look at the change in A before and after the subdivision of Stage 1. When the
SD of F'is &~ 0.25 or = 0.50, the \’s for the divided Stage 1 is about one-half to three-fifths
of the \’s from the undivided Stage 1; but when the SD of F'is ~ 1, the \’s for the divided
Stage 1 is about two-thirds of the A’s from the undivided Stage 1.

In Table 4, we compare the means of the lifetimes, showing the percentage change,
between the divided Stage 1 studied here and the undivided Stage 1 studied in Chatterjee
and Sarkar (2021).
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Table 2: For various inter-arrival time distributions satisfying E(X)=1 and
E(Y) =2/3 the top entries give mean (standard deviation) of system lifetime
T, according to a point process, and the bottom entries (in italics) show the
same quantities according to an adjusted convolution process.

Weibull Gamma Inv-Gauss | Exponential
pll Cx) [ eh es e

VS SD~012 | SD~0.22 | SD=0.29 | SD ~ 0.40
Weibull (2, %) 31.48 (8.27) | 31.14 (8.51) | 31.01 (8.65) | 30.32 (8.58)
SD =~ 0.27 31.50 (8.81) | 31.15 (8.55) | 81.03 (8.69) | 30.33 (8.55)
Gamma (2, %) 30.77 (9.44) | 30.44 (9.34) | 30.42 (9.48) | 29.82 (9.34)
SD =~ 0.50 30.76 (9.89) | 30.45 (9.33) | 80.43 (9.47) | 29.80 (9.28)
Inv-Gauss (1) 29.45 (10.69) |29.23 (10.53)[29.17 (10.66)|28.83 (10.54)
SD =~ 1.00 29.55 (10.67)29.32 (10.51)(29.23 (10.57)|28.91 (10.49)
Exponential (1) || 29.62 (10.80) [29.42 (10.82)|29.51 (11.07)|28.95 (10.53)
SD =~ 1.00 29.57 (10.89)29.34 (10.88)[29.43 (11.08)|28.90 (10.58)

5. Preventive Maintenance Policies

System failure being disruptive to the production process and too expensive to recover
from, oftentimes a maintenance engineer must intervene to replace a functioning unit. Clearly
there is a tension between utilizing the remaining lifetime of the system and the prevention of
failure. We consider here two types of preventive maintenance policies. Let ¢,, be the cost of
replacement in Stage 1A, ¢,, in Stage 1B, ¢,, in Stage 2, and ¢ after failure. Furthermore, we
assume that the costs of replacement is the same throughout Stage 1, because the healing
rate ought not affect the cost of replacement. We consider ¢,, = ¢,, < ¢, << ¢y with
justification as follows: In Stage 1, the system is young, and so an early replacement will
incur a loss; if we replace in early part of Stage 2, we are not utilizing the system lifetime
sufficiently, but the system has already aged, and so maintenance/repair at this stage will
cost more. Therefore, we find it logical to consider that replacement cost in Stage 2 is higher
than that in Stage 1. Finally, a system failure is highly expensive. Furthermore, there is
an initial cost ¢y of setting up a new system. For illustration, we choose ¢y = 100,¢,, =
10, ¢y, = 10, ¢p, = 15, ¢5 = 200. In Figures 4 and 5, we illustrate decision making when F' =

Weibull (2, 2/y/7) and G = Gamma (2, 1/3), such that E(X) =1 and E(Y) = 2/3.
5.1. Maintenance Policy 1

Suppose that a monitoring equipment can detect the arrival of an impetus, but cannot
distinguish between a VS and a PI, nor can it identify whether the system is in Stage 1
or Stage 2. The system will be replaced when it has failed or has experienced a specified
number of impetus N (the sum of VS and PI).

Within one cycle (between two successive replacements of the system), the total cost
of replacement (] under Policy 1 is a random variable taking three possible values:
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Table 3: For various inter-arrival time distributions satisfying E(X) =1 and
E(Y) = 2/3, the top entries give the mean duration of T; for divided Stage 1
(undivided Stage 1), the middle row gives the % increase in T, after subdividing
Stage 1, and the third row gives the multiplier A\ of adjusted convolution for the
divided Stage 1 (undivided Stage 1).

Weibull Gamma Inv-Gauss | Exponential
bl @5R) | eh @y |6
Vs SD=~012 | SD=0.22 | SD~0.29 | SD ~0.40
Weibull (2, %) [21.51 (17.96) [ 21.17 (17.97) | 21.01 (17.98) | 20.34 (17.93)
9D ~ 0.97 ~ 19.76% ~ 17.8% ~ 16.85% ~ 13.44%
’ A =0.25(0.50)|A = 0.21(0.40)|A = 0.18(0.35)|A = 0.16(0.29)
Gamma (2,1) || 20.77 (17.92) | 20.42 (17.91) | 20.43 (17.93) | 19.82 (17.85)
SD ~ 050 ~ 15.90% ~ 14.00% ~ 13.94% ~ 11.03%
‘ A =0.31(0.59)|A = 0.27(0.50)|A = 0.25(0.46)|\ = 0.22(0.38)
Inv-Gauss (1) 19.53 (17.63) | 19.26 (17.61) | 19.18 (17.67) | 18.88 (17.61)
SD ~ 1.00 ~ 10.78% ~ 9.37% ~ 8.55% ~ 7.21%
' A = 0.43(0.68)|A = 0.40(0.61)|A = 0.37(0.58)|A = 0.36(0.52)
Exponential (1) || 19.59 (17.85) | 19.41 (17.87) | 19.46 (17.92) | 18.91 (17.82)
SD ~ 1.00 ~ 9.75% ~ 8.62% ~ 8.59% ~ 6.12%
' A =0.45(0.69)|A = 0.43(0.63)|A = 0.39(0.60)|\ = 0.37(0.54)

Table 4: For various inter-arrival time distributions satisfying E(X) =1 and
E(Y) = 2/3, the top row gives the mean duration of Ty for divided Stage 1 (un-
divided Stage 1), the bottom row gives approximate % increase in mean T, after
subdividing Stage 1.

Weibull Gamma Inv-Gauss | Exponential
ol 2t | @b (2/3) (3/2)

Vs SD=~0.12 | SD~0.22 | SD=0.29 | SD ~ 0.40
Weibull (2, %) 31.48 (27.94)|31.14 (27.96) [31.01 (27.96)|30.02 (27.92)
SD ~0.27 ~ 12.67% ~ 11.37% ~ 10.91% ~ 7.52%
Gamma (2,1) [30.77 (27.91)[30.44 (27.92)30.42 (27.93)|29.82 (27.86)
SD =~ 0.50 ~ 10.25% ~ 9.03% ~ 8.92% ~ 7.03%
Inv-Gauss (1) [/29.45 (27.57)(29.23 (27.58)[29.17 (27.60)|29.83 (27.54)
SD =~ 1.00 ~ 6.82% ~ 5.98% ~ 5.69% ~ 8.32%
Exponential (1) ||29.62 (27.86)[29.42 (27.90) |29.51 (27.93)]28.95 (27.82)
SD ~1.00 ~ 6.32% ~ 5.45% ~ 5.66% ~ 4.06%
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(1) ¢p,, if N impetus arrive while the system is still in Stage 1, with an associated probability
of P(D; > N).

(2) ¢p,, if the system has already moved from Stage 1 to Stage 2 and the N impetus have
arrived before system failure, with an associated probability of P(D; < N < Ds).

(3) ¢y, if the system has already failed before the arrival of N impetus, with an associated
probability of P(Dy < N).
Hence, the expected cost (C) under Policy 1, is given by
E(C|Policy 1) = ¢,, P(D1 > N) +¢,, P(D; < N < Dy) 4+ ¢y P(Dy < N) (5)
and, writing W; as the arrival time of the j-th impact (either VS or PI), the expected cycle
time (CT) is given by

E(CT|Policy 1) = E[min{Wy, Wp,}] = E[Wy|D; > N] P(D; > N)
+ E[Wy|Dy < N < Dy] P(Dy < N < D) (6)
+ E[Wp,|Ds < N] P(Dy < N).

Therefore, the expected cost per unit time is the ratio
E(C|Policy 1)/E(CT|Policy 1) (7)
which we must minimize by choosing N.

For the example considered, Figure 4 shows that the expected cost per unit time is
minimized when we choose N = 56. Moreover, note that for any other choice of N in the
vicinity of the optimal value 56, say between 50 and 60, the expected cost per unit time
increases only slightly (no more than 3%). Such a robustness result allows us to rely on the
optimal value even when the inter-arrival time distributions deviate slightly from the stated
ones. Table 5 documents the optimal choices for other combinations of inter-arrival times.

5.2. Maintenance Policy 2

Suppose that the monitoring equipment can identify the stages of the system. If the
system is in Stage 1, we do not replace it at all. After the system enters Stage 2, if the system
is still functioning for an additional ¢ units of time, we replace it immediately at epoch T} +t;
otherwise, we replace the system immediately on failure during [T7, 7} 4 t). Our objective is
to determine an optimum additional time ¢ in Stage 2. To do so, we minimize the expected
cost per unit time, where the expected cost (C) is given by

E(O|P011Cy 2) = CPQP(TQ > T1 + t) + CfP(TQ S T1 -+ t) (8)
and the expected length of the cycle time (CT) is

E(CT|Policy 2) = E(min(T3, Ty +t)) = E(Th) + E(min(Ty — T1,t)) 9)
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Expected cost per unit time for Policy 1

20 40 60 80 100 120 140 160

Value of N

Figure 4: Under Policy 1, when F = Weibull (2, 2/\/7) and G = Gamma (2,
1/3), and cost parameters are co = 100, c,,, = 10,c,,, = 10, c,, = 15, c¢ = 200,
the maintenance cost per unit time is minimized when we choose N = 56.

We wish to minimize the expected cost per unit time
E(C|Policy 2)/E(CT|Policy 2) (10)

by choosing ¢. Under Policy 2, the assumed cost parameters, and F = Weibull (2, 2/+/7) and
G = Gamma (2, 1/3), Figure 5 shows that the expected cost per unit time is minimized at
t = 6.6. In fact, we identified this optimal ¢ value via a grid search between the first and the
99-th percentiles of system lifetime with an increment of 0.05. This choice suffices because
any other choice of ¢ in the interval [6, 7] increases the cost per unit time only marginally.

Table 5 gives the summary of the optimal choices of N and t for Policy 1 and Policy 2,
respectively, for different choices of F' and G and for cost parameters ¢y = 100, ¢, =
10, ¢p,, = 10, ¢p, = 15, ¢y = 200.

We see that for policy 1, the total number of impacts N is only 0-3 impacts more than
the optimal values of N when Stage 1 was not divided. This close agreement should not
come as a surprise because, for our choice of (k4,kp) and (ma,mp), the average impact
throughout the entire undivided Stage 1 is comparable to that in the undivided Stage 1
case. Hence, there is only a negligible amount of change in N due to subdivision. Similarly,
for policy 2, there is no significant change in ¢, because the choice of ¢ depends only on the
arrival rate of VS in Stage 2 and not at all on the subdivision of Stage 1 to accommodate
varying rates of healing.
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Expected cost per unit time for Policy 2
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nance cost per unit time is minimized when we choose t = 6.6.
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Figure 5: Under Policy 2, when F = Weibull (2, 2/,/7), G = Gamma (2, 1/3), and
cost parameters are cy = 100, c,,, = 10,c,,, = 10, c,, = 15, ¢¢ = 200, the mainte-

Table 5: For various inter-arrival time distributions F and G satisfying E(X) =1
and E(Y) = 2/3, to minimize the maintenance cost per unit time, the optimal N
for Policy 1 is shown in the first row, and the optimal t for Policy 2 is shown in

Weibull Gamma Inv-Gauss | Exponential
ol 255 | @b (2/3) (3/2)
Vs SD~012 | SD~0.22 | SD~0.29 | SD~0.40
Weibull (2, %) N =55 N =56 N =53 N =52
SD ~ 0.27 t=6.45 t =6.60 t=6.55 t =6.60
Gamma (2, 3) N =54 N =51 N =52 N =50
SD =~ 0.50 t=5.70 t=25.75 t=5.80 t=15.85
Inv-Gauss (1) N =51 N =50 N =49 N =49
SD ~ 1.00 t=4.85 t =4.65 t=5.05 t=4.90
Exponential (1) N =50 N =50 N =50 N =49
SD ~ 1.00 t=4.75 t =4.65 t =4.65 t =480
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6. Summary and Future Work

In this paper, we subdivided Stage 1 into two parts: initially the system heals at a
faster rate requiring fewer Pls to nullify one VS; but once enough net VS have accumulated,
more Pls are needed to nullify one VS. We derived the distributions of Stage 1 duration and
the system lifetime for any arbitrary inter-arrival time distributions of VS and PI, in contrast
to only exponential distributions commonly assumed in the literature. Given a prefixed net
number of shocks that the system can withstand in various stages, we can work out the
distributions of Stage 1 duration T} and lifetime T, using a point process or an adjusted
convolution process with an adjustment factor A that is approximately a linear function of
the logarithm of the ratio of standard deviations of F' and G. The theoretical investigation of
A remains an open problem. Moreover, in this research we found that subdivision of Stage 1
leads to an increase in the Stage 1 duration, and hence the system lifetime.

In future, we like to consider varying magnitudes of V'S and PI and allow natural system
degradation according to some stochastic process. Our simple counting approach suffices to
make optimal decisions that minimize maintenance costs per unit time for various inter-
arrival distributions and various maintenance policies with different costs of replacement in
different stages. This realistic set up promotes an utmost utilization of system lifetime.
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