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Abstract

The existence of pairwise additive cyclic BIB designs with k = 2 and λ = 1 has been
discussed in the literature. In this paper, new classes of 2-pairwise additive BIB designs are mainly
constructed through methods of block trades, and then the existence of 2-pairwise additive cyclic
BIB designs with k = 2 and λ ≥ 1 is shown entirely.
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1 Introduction

A balanced incomplete block (BIB) design is a system (V,B), where V is a set of v points and
B (|B| = b) is a family of k-subsets (blocks) of V , such that each point of V appears in r different
blocks of B and any two different points of V appear in exactly λ blocks in B (Raghavarao, 1988).
This is denoted by BIBD(v, b, r, k, λ) or B(v, k, λ).

For a BIB design (V,B), let σ be a permutation on V . For a block B = {v1, . . . , vk} ∈ B
and a permutation σ on V , let Bσ = {vσ1 , . . . , vσk}. When B = {Bσ|B ∈ B}, σ is called an
automorphism of (V,B). If there exists an automorphism σ of order v = |V |, then the BIB design
is said to be cyclic.

For a cyclic BIB design (V,B), the set V of v points can be identified withZv = {0, 1, . . . , v−
1}. In this case, the design has an automorphism σ : a 7→ a+1 (mod v). The block orbit containing
B = {v1, v2, . . . , vk} ∈ B is a set of distinct blocks B + a = {v1 + a, v2 + a, . . . , vk + a} (mod v)
for a ∈ Zv. A block orbit is said to be full or short according as |{B + a | 0 ≤ a ≤ v − 1}| = v or
not.

Choose an arbitrary block from each block orbit and call it an initial block. The initial block
in a full block orbit and a short block orbit is called a full initial block and a short initial block,
respectively.
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Let s = v/k, where s need not be an integer unlike other parameters. A set of ` BIBD(v, b,
r, k, λ)s, namely, (V,B1), (V,B2), . . . , (V,B`), is called an `-pairwise additive BIB design, denoted
by `-PAB(v, k, λ), if it is possible to pair the designs (V,B1), (V,B2), . . . , (V,B`), in such a way
that every pair (V,Bi1), (V,Bi2), where 1 ≤ i1, i2 ≤ `, i1 6= i2, gives rise to a new design (V,B∗i1i2)
with parameters v∗ = v = sk, b∗ = b, r∗ = 2r, k∗ = 2k, λ∗ = 2r(2k − 1)/(sk − 1), where the
family B∗i1i2 is given by B∗i1i2 = {Bi1j ∪ Bi2j | 1 ≤ j ≤ b} with Bij being the jth block of an
ith block family Bi. An `-PAB(v, k, λ) is said to be cyclic, denoted by `-PACB(v, k, λ), if (i) each
of designs (V,B1), (V,B2), . . . , (V,B`) is cyclic, and (ii) every design (V,B∗i1i2) arising from the
pair (V,Bi1), (V,Bi2) is also cyclic and its initial blocks are obtained by joining an initial block in
(V,Bi1) to an initial block in (V,Bi2), where two orbits given by initial blocks Bi1j and Bi2j have
the same cardinality for each j of 1 ≤ j ≤ b. Note that when k = 2 every short orbit coincides
with the orbit of length v/2 given by {0, v/2}, and for convenience the orbit of length v given by
{0, v/2} is also regarded as a full orbit which contains each block exactly twice.

Example 1.1. A 2-PACB(6, 2, 2) on Z6 has two block families:

B1 : {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5} mod 6

B2 : {4, 5}, {3, 5}, {4, 5}, {2, 5}, {2, 4} mod 6.

Example 1.2. A 2-PACB(18, 2, 2) on Z18 has two block families:

B1 : {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6}, {0, 7},
{0, 8}, {0, 9}, {0, 10}, {0, 11}, {0, 12}, {0, 13}, {0, 14},
{0, 15}, {0, 16}, {0, 17} mod 18

B2 : {5, 8}, {8, 12}, {9, 14}, {1, 17}, {3, 4}, {3, 16}, {4, 14},
{2, 13}, {12, 14}, {3, 17}, {2, 10}, {7, 10}, {2, 14}, {5, 6},
{6, 17}, {4, 13}, {1, 7} mod 18.

Direct and recursive constructions of a 2-PACB(v, k, 1) are given in (Matsubara and
Kageyama, 2013; Matsubara et al., 2015). Especially, some results on the existence of an `-
PACB(v, k, λ) are known for ` = 2, k = 2 and λ = 1 as the following shows.

Lemma 1.3. (Matsubara and Kageyama, 2013) There exists a 2-PACB(v, 2, 1) for any odd integer
v ≥ 5 such that gcd(v, 9) 6= 3.

Lemma 1.4. (Matsubara et al., 2015) There exists a 2-PACB(2mt, 2, 1) for any integer m ≥ 2 and
any odd integer t ≥ 1 such that gcd(t, 27) 6= 3, 9.

However, even if ` = 2, k = 2 and λ = 1, the existence of some classes of 2-PACB(v, k, λ)s
has not been shown. In this paper, by further elaboration of the results given in Lemmas 1.3 and
1.4, through new methods of construction, the complete existence of a 2-PACB(v, 2, λ) will be
shown as follows.

Theorem 1.5. A 2-PACB(v, 2, λ) exists if and only if v ≥ 4 and λ ≥ 1, except for v ≡ 2 (mod 4)
and λ ≡ 1 (mod 2).
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2 Known Results on Constructions

Many types of combinatorial structures with a cyclic automorphism can be constructed by
use of cyclic difference matrices and cyclic relative difference families (Buratti, 1998; Jimbo, 1993;
Yin, 1998). Especially, some useful constructions of a 2-PACB(v, k, λ) are available in Matsubara
and Kageyama (2013); Matsubara et al. (2015).

A cyclic difference matrix on Zv, denoted by CDM(4, v), is defined as a 4 × v array (amn),
amn ∈ Zv, 1 ≤ m ≤ 4, that satisfies

Zv = {am1n − am2n (mod v)|1 ≤ n ≤ v}

for each m1,m2 of 1 ≤ m1 < m2 ≤ 4, that is, the differences of any two distinct rows contain
every element of Zv exactly once (cf. Ge, 2005).

Lemma 2.1. (Ge, 2005) There exists a CDM(4, v) for any odd integer v ≥ 5 and gcd(v, 27) 6= 9.

Let G be a group and N be a subgroup of G. Then a family F = {Fj | j ∈ J} of k-
subsets of G is called a relative difference family, denoted by (G,N, k, λ)-DF, if the multiset
∆F = {d − d′ | d, d′ ∈ Fj, d 6= d′, j ∈ J} of differences contains each element of G \ N
exactly λ times and each element of N zero time. When G is the cyclic group Zvg and N is the
subgroup of Zvg of order g, denoted by vZg, the relative difference family is said to be cyclic, and
it is denoted by (vg, g, k, λ)-CDF (cf. Buratti, 1998; Yin, 1998).

A set of two families F1 and F2 is called a 2-pairwise additive (vg, g, k, λ)-CDF, denoted
by 2-(vg, g, k, λ)-PACDF, if both F1 and F2 are (vg, g, k, λ)-CDFs and the family of set-unions of
the jth k-subsets Fj ∈ F1 and F ′j ∈ F2, 1 ≤ j ≤ |F1| = |F2|, is also a (vg, g, 2k, λ′)-CDF with
λ′ = 2λ(2k−1)/(k−1), that is, ∆Fi contains every element of Zvg \vZg exactly λ times for each
i = 1, 2, and ∆(F1,F2) = {±(d− d′) | Fj ∈ F1, F

′
j ∈ F2, d ∈ Fj, d′ ∈ F ′j , 1 ≤ j ≤ |F1| = |F2|}

contains every element of Zvg \ vZg exactly 2kλ/(k − 1) times.

Throughout the paper, the above “2-(vg, g, k, λ)-PACDF” is simply denoted by “(vg, g, k, λ)-
PACDF”.

Note that a B(v, 2, λ) may contain some short orbits of length v/2 given by {0, v/2}, and
a family of initial blocks of a 2-PACB(v, 2, λ) with no short orbit coincides with a (v, 1, 2, λ)-
PACDF. Now, the multisets of differences of short initial blocks of size two are newly defined
by

∆sS = {aj − bj | {aj, bj} ∈ S, 1 ≤ j ≤ |S|},
∆s(S1,S2) = {±(aj − cj),±(aj − dj) | {aj, bj} ∈ S1, {cj, dj} ∈ S2,

1 ≤ j ≤ |S1| = |S2|},

where S and (S1,S2) are a set of short initial blocks in a B(v, 2, λ) and a pair of sets S1, S2 of short
initial blocks in a 2-PACB(v, 2, λ), respectively. Actually, since bj = aj + v/2 and dj = cj + v/2,
∆sS is composed of |S| same elements v/2.

If a 2-PACB(v, 2, λ) contains short orbits, then ∆Fi ∪∆sSi contains every element of Zvg \
{0} exactly λ times for each i = 1, 2 and ∆(F1,F2) ∪ ∆s(S1,S2) contains every element of
Zvg \ {0} exactly 4λ times.
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Two symbols ∆ and ∆s defined here are used in Sections 3 and 4.

Lemma 2.2. (Matsubara and Kageyama, 2017) There exists a (27, 3, 2, 1)-PACDF.

A fundamental construction of a 2-PACB(vg, k, λ) from a PACDF(vg, g, k, λ) is at first
provided as follows.

Lemma 2.3. (Matsubara and Kageyama, 2017) The existence of a (vg, g, 2, λ)-PACDF and a
(g, 1, 2, λ)-PACDF (or 2-PACB(g, 2, λ)) implies the existence of a 2-PACB(vg, 2, λ).

Recursive constructions on a 2-PACB(v, 2, λ) and a PACDF(vg, g, 2, λ) are next reviewed.

Lemma 2.4. (Matsubara and Kageyama, 2013) Let v ≥ 5 and v′ ≥ 5 be odd integers. Then the
existence of a 2-PACB(v, 2, λ), a 2-PACB(v′, 2, λ) and a CDM(4, v′) implies the existence of a
2-PACB(vv′, 2, λ).

Lemma 2.5. (Matsubara and Kageyama, 2017) The existence of a (vg, g, 2, λ)-PACDF and a
CDM(4, v′) implies the existence of a (vv′g, v′g, 2, λ)-PACDF.

Lemma 2.6. (Matsubara and Kageyama, 2017) The existence of a (vg, g, 2, λ)-PACDF implies the
existence of a (2mvg, 2mg, 2, λ)-PACDF for any m ≥ 1.

In fact, Matsubara and Kageyama (2013, 2017) show the above Lemmas 2.3 to 2.6 for λ = 1.
Furthermore, by taking copies of each structure, it is clear that the results can also be shown for
any λ ≥ 2. Finally note that the existence of a (v, 1, 2, 1)-PACDF is equivalent to the existence of
a 2-PACB(v, 2, 1) for odd v ≥ 5. Each of Lemmas 2.1 to 2.6 is used to have Theorem 1.5.

3 Methods of Block Trades

Trades discussed in Hedayat and Khosrovshahi (2007) are useful in study of t-designs and its
related structures. In this section, by use of families similar to the trades, we provide two methods
of constructing a 2-PACB(vg, 2, 1) from a PACDF(vg, g, 2, 1).

Now, we consider the following families of blocks of size two on Z3p throughout the paper
for some positive integer m:

H1 = {{0, 1}, {0, 2mp+ 2}, {2mp+ 1,mp}, {mp+ 2,mp},
{2mp+ 1,mp− 1}},

H2 = {{mp+ 2,mp+ 3}, {2mp+ 4,mp+ 6}, {3, 2mp+ 2}, {6, 4},
{4, 2mp− 4}},

H∗1 = {{0, 1}, {0, 2mp+ 2}, {2mp+ 1,mp}, {mp+ 2,mp},
{2mp+ 1, 3}, {mp, 2mp}},

H∗2 = {{2mp+ 4, 2mp+ 5}, {mp+ 2,mp}, {mp+ 5, 4}, {0, 2mp+ 2},
{mp, 2mp}, {mp+ 2,−6}},

where p ≥ 7 is an odd prime and p ≡ m (mod 3).

Now, we have the following result by tradingH1,H2 forH∗1,H∗2, respectively.
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Lemma 3.1. Let p ≥ 7 be an odd prime. Then the existence of a (3p, 3, 2, 1)-PACDF with two
families F1 and F2 satisfying

{(B1j, B2j) | B1j ∈ H1, B2j ∈ H2, 1 ≤ j ≤ 5}
⊂ {(B1j, B2j) | B1j ∈ F1, B2j ∈ F2, 1 ≤ j ≤ |F1| = |F2|} (3.1)

implies the existence of a 2-PACB(3p, 2, 1).

Proof. For the differences arising from the above familiesH1,H2,H∗1 andH∗2, it holds that

∆H∗i = ∆Hi ∪ {p, 2p}, i = 1, 2,

∆(H∗1,H∗2) = ∆(H1,H2) ∪ {p(4), (2p)(4)},

where g(t) denotes that an element g is contained t times in the multiset on Z3p.

On the other hand, since the families F1 and F2 yield a (3p, 3, 2, 1)-PACDF, ∆Fi contains
every element of Z3p \ {0, p, 2p} exactly once for each i = 1, 2, and ∆(F1,F2) contains every
element of Z3p \ {0, p, 2p} exactly four times.

Hence, two families (Fi \ Hi) ∪ H∗i with i = 1, 2 yield a (3p, 1, 2, 1)-PACDF. Thus, the
required 2-PACB(3p, 2, 1) is obtained.

Next, we consider the following families of blocks of size two on Z2p throughout the paper:

I1 = {{0, 1}, {0, p+ 2}, {p+ 2, p+ 4}, {p+ 4, p+ 8}, {0, 12},
{0, p+ 12}},

I2 = {{p+ 2, p+ 4}, {p+ 4, p+ 8}, {0, 1}, {0, p+ 2}, {p+ 4, 8},
{p+ 4, p+ 8}},

I∗1 = {{0, 1}, {0, p+ 2}, {p+ 1, p+ 3}, {2, 6}, {0, 12},
{0, p}, {4, p− 8}},

I∗2 = {{p+ 1, p+ 3}, {2, 6}, {0, 1}, {0, p+ 2}, {p+ 4, p+ 8},
{4, p+ 8}, {0, p}},

where p ≥ 5 is an odd prime.

Now, we have the following result by trading I1, I2 for I∗1 , I∗2 , respectively.

Lemma 3.2. Let p ≥ 5 be an odd prime.Then the existence of a (2p, 2, 2, 2)-PACDF with two
families F1 and F2 satisfying

{(B1j, B2j) | B1j ∈ I1, B2j ∈ I2, 1 ≤ j ≤ 6}
⊂ {(B1j, B2j) | B1j ∈ F1, B2j ∈ F2, 1 ≤ j ≤ |F1| = |F2|} (3.2)

implies the existence of a 2-PACB(2p, 2, 2).
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Proof. For the differences arising from the above families I1, I2, I∗1 and I∗2 , it holds that

∆I∗i = ∆Ii ∪ {p(2)}, i = 1, 2,

∆(I∗1 , I∗2 ) = ∆(I1, I2) ∪ {p(8)},

where g(t) denotes that an element g is contained t times in the multiset on Z2p.

On the other hand, since the families F1 and F2 yield a (2p, 2, 2, 2)-PACDF, ∆Fi contains
every element of Z2p \{0, p} exactly twice for each i = 1, 2 and ∆(F1,F2) contains every element
of Z2p \ {0, p} exactly eight times.

Hence, two families (Fi \ Ii) ∪ I∗i with i = 1, 2 yield a (2p, 1, 2, 2)-PACDF. Thus, the
required 2-PACB(2p, 2, 2) can be obtained.

Lemmas 3.1 and 3.2 are effective for argument in Section 4.

4 Proof of Theorem 1.5

At first, we provide the new results on the existence of a 2-PACB(v, 2, λ) as follows.

Lemma 4.1. There exists a 2-PACB(3p, 2, 1) for any odd prime p ≥ 7.

Proof. Let p ≥ 7 be any odd prime and m be some positive integer. Also let F1 and F2 be a set of
two families on Z3p with

F1 = {{0, at+mp}, {at,mp}, {αa−1t,−αa−1t} | 1 ≤ a ≤ (p− 1)/2},
F2 = {{2at, 3at+mp}, {3at, 2at+mp}, {4αa−1t+mp,−4αa−1t+mp} |

1 ≤ a ≤ (p− 1)/2}

for p ≡ m (mod 3), t = 2mp+ 1 and a primitive element α of GF(p). Then, it can be checked that
the F1 and F2 form a (3p, 3, 2, 1)-PACDF satisfying H1 ⊂ F1 and H2 ⊂ F2. Hence Lemma 3.1
shows the existence of a 2-PACB(3p, 2, 1).

The following example illustrates Lemma 4.1 with p = 7,m = 1, t = 15 and α = 3.

Example 4.2. A 2-PACB(21, 2, 1) is obtained by use of Lemma 4.1 with the following families:

H1 = {{0, 1}, {0, 16}, {15, 7}, {9, 7}, {15, 6}},
H2 = {{9, 10}, {18, 13}, {3, 16}, {6, 4}, {4, 10}},
H∗1 = {{0, 1}, {0, 16}, {15, 7}, {9, 7}, {15, 3}, {7, 14}},
H∗2 = {{18, 19}, {9, 7}, {12, 4}, {0, 16}, {7, 14}, {9, 15}},
F1 = {{0, 1}, {0, 16}, {0, 10}, {15, 7}, {9, 7}, {3, 7}, {15, 6},

{3, 18}, {9, 12}},
F2 = {{9, 10}, {18, 13}, {6, 16}, {3, 16}, {6, 4}, {9, 13}, {4, 10},

{19, 16}, {1, 13}}.



2019] CYCLIC BIB DESIGNS OF BLOCK SIZE TWO 29

It can be checked that (i) Hi and Fi satisfy the condition (3.1) for i = 1, 2, (ii) F∗i = (Fi \
Hi) ∪ H∗i yields a cyclic B(21, 2, 1) for each i = 1, 2 and (iii) the pair of F∗1 and F∗2 yields the
2-PACB(21, 2, 1).

Lemma 4.3. There exists a 2-PACB(2p, 2, 2) for any odd prime p ≥ 5.

Proof. Let p ≥ 5 be any odd prime. Further let F1 and F2 be a set of two families on Z2p with

F1 = {{0, a+ (a− 1)p}, {2a+ p, 4a+ p}, {0, 12a}, {0, 12a+ p} | 1 ≤ a ≤
(p− 1)/2},

F2 = {{2a+ p, 4a+ p}, {0, a+ (a− 1)p}, {4a+ p, 8a}, {4a+ p, 8a+ p} |
1 ≤ a ≤ (p− 1)/2}.

Then, it can be also checked that the F1 and F2 form a (2p, 2, 2, 2)-PACDF satisfying I1 ⊂ F1 and
I2 ⊂ F2. Hence by Lemma 3.2 the required 2-PACB(2p, 2, 2) is obtained.

The following example illustrates Lemma 4.3 with p = 5.

Example 4.4. A 2-PACB(10, 2, 2) is obtained by use of Lemma 4.3 with the following families:

I1 = {{0, 1}, {0, 7}, {7, 9}, {9, 3}, {0, 2}, {0, 7}},
I2 = {{7, 9}, {9, 3}, {0, 1}, {0, 7}, {9, 8}, {9, 3}},
I∗1 = {{0, 1}, {0, 7}, {6, 8}, {2, 6}, {0, 2}, {0, 5}, {4, 7}},
I∗2 = {{6, 8}, {2, 6}, {0, 1}, {0, 7}, {9, 3}, {4, 3}, {0, 5}},
F1 = {{0, 1}, {0, 7}, {7, 9}, {9, 3}, {0, 2}, {0, 4}, {0, 7}, {0, 9}},
F2 = {{7, 9}, {9, 3}, {0, 1}, {0, 7}, {9, 8}, {3, 6}, {9, 3}, {3, 1}}.

It can be checked that (i) Ii and Fi satisfy the condition (3.2) for i = 1, 2, (ii) F∗i = (Fi \
Ii) ∪ I∗i yields a cyclic B(10, 2, 2) for each i = 1, 2 and (iii) the pair of F∗1 and F∗2 yields the
2-PACB(10, 2, 2).

On the other hand, some nonexistence result can be shown here. Especially, the nonexistence
of a 2-PACB(4m + 2, 2, 1) for any integer m ≥ 1 is given in Matsubara and Kageyama (2013).
More generally, we have the following.

Lemma 4.5. There does not exist a 2-PACB(4m + 2, 2, λ) for any integer m ≥ 1 and any odd
integer λ ≥ 1.

Proof. Assume that there exists a 2-PACB(4m+ 2, 2, λ) with families Fi of full initial blocks and
families Si of short initial blocks, i = 1, 2. Then the fact that λ is odd implies that |Si| is odd.

For each pair of full initial blocks {aj, bj} ∈ F1 and {cj, dj} ∈ F2, 1 ≤ j ≤ |F1| = |F2|,
aj − cj and aj − dj have the same parity if and only if bj − cj and bj − dj have the same parity.
Also any two elements −e, e ∈ Z4m+2 have the same parity. Hence, for each j, the number of
even elements in {±(aj − cj),±(aj − dj),±(bj − cj),±(bj − dj)} can be divided by 4, that is, the
number of even elements in ∆(F1,F2) can be divided by 4.
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On the other hand, for each pair of short initial blocks {aj, aj + 2m+ 1} ∈ S1 and {cj, cj +
2m + 1} ∈ S2, 1 ≤ j ≤ |S1| = |S2|, {±(aj − cj),±(aj − cj + 2m + 1)} contains two even
elements and two odd elements of Z4m+2. Since |Si| is odd, the number of even elements in
∆s(S1,S2) cannot be divided by 4.

However, since every element of Z4m+2 \ {0} must appear in the multiset ∆(F1,F2) ∪
∆s(S1,S2) exactly 4λ times, the number of even elements in ∆(F1,F2) ∪ ∆s(S1,S2) must be
divided by 4. This is a contradiction.

We are now in a position to prove Theorem 1.5.

Proof of Theorem 1.5. Let P ≥ 5 be an odd integer with gcd(P, 6) = 1.

Case I : v is odd. By Lemma 1.3 it is sufficient to show the existence of a 2-PACB(v, 2, 1)
with gcd(v, 9) = 3. For an odd integer v with gcd(v, 9) = 3, we can let v = 3P . If P is an odd
prime p ≥ 7, then Theorem 4.1 gives the required design. When P = 5, the 2-PACB(15, 2, 1)
is given in Matsubara and Kageyama (2013, Example 3.8). Also if P is not an odd prime, then
P has at least two odd prime factors. Hence, since gcd(P, 6) = 1, we can let P = pq with an
odd prime p ≥ 5 and an odd integer q ≥ 5 satisfying gcd(q, 6) = 1. Then Lemma 2.4 with the
2-PACB(3p, 2, 1), the 2-PACB(q, 2, 1) and the CDM(4, q) obtained by Lemmas 4.1, 1.3 and 2.1,
respectively, gives the required 2-PACB(v, 2, 1). By taking copies of the design, a 2-PACB(v, 2, λ)
can be obtained for any λ ≥ 1.

Case II : v is even. For m = 1, any n ≥ 0 and any odd integer λ, Lemma 4.5 shows that
there are no 2-PACB(2m3n, 2, λ) and no 2-PACB(2m3nP, 2, λ). For any m ≥ 2, any nonnegative
integer n 6= 1, 2 and any λ ≥ 1, there are a 2-PACB(2m3n, 2, λ) and a 2-PACB(2m3nP, 2, λ) by
taking copies of the design given in Lemma 1.4.

Now we consider the case of m ≥ 2 and n = 1, 2. Since a 2-PACB(9, 2, 1) (or a (9, 1, 2, 1)-
PACDF) and a (12, 2, 2, 1)-PACDF are given in Matsubara and Kageyama (2013, Example 3.6)
and Matsubara and Kageyama (2017, Example A.8), respectively, a (2m32, 2m, 2, 1)-PACDF
and a (2m+13, 2m, 2, 1)-PACDF can be obtained by Lemma 2.6 for m ≥ 2. Furthermore, a 2-
PACB(12, 2, 1) is given in Matsubara and Kageyama (2013, Example 3.7). Hence, for m ≥ 2 and
n = 1, 2, a 2-PACB(2m3n, 2, 1) can be obtained by Lemma 2.3 with the 2-PACB(2m, 2, 1) given
in Lemma 1.4. Also, for m ≥ 2 and n = 1, 2, a 2-PACB(2m3nP, 2, 1) can be obtained by Lemma
2.4 with the 2-PACB(P, 2, 1) and the CDM(4, P ) obtained by Lemmas 1.3 and 2.1, respectively.
By taking copies of the design, a 2-PACB(2m3n, 2, λ) and a 2-PACB(2m3nP, 2, λ) can be obtained
for any m ≥ 2, n = 1, 2 and any λ ≥ 1.

For even v, the remaining case is that m = 1, n ≥ 0 and λ is even. It is sufficient to show the
existence of a 2-PACB(2·3n, 2, 2) for n ≥ 1 and a 2-PACB(2·3nP, 2, 2) for n ≥ 0. At first, for n =
0 and an odd prime P ≥ 5, there exists a 2-PACB(2P, 2, 2) by Lemma 4.3. If P is not an odd prime,
then P has at least two odd prime factors. Hence, we can let n = 0 and P = pq with an odd prime
p ≥ 5 and an odd integer q ≥ 5 satisfying gcd(q, 6) = 1. Then a 2-PACB(q, 2, 2) can be obtained
by taking a copy of the design given in Lemma 1.3. Hence, a 2-PACB(2P, 2, 2) can be obtained
through Lemma 2.4 with the 2-PACB(2p, 2, 2), the 2-PACB(q, 2, 2) and the CDM(4, q) obtained
by Lemmas 4.3, 1.3 and 2.1, respectively. By taking copies of the design, a 2-PACB(2P, 2, λ) can
be obtained for any even λ.
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Next, for m = 1, n ≥ 1, a 2-PACB(6, 2, 2) and a 2-PACB(18, 2, 2) are given in Exam-
ples 1.1 and 1.2. On the other hand, a (54, 6, 2, 2)-PACDF can be obtained by Lemma 2.6 with
the (27, 3, 2, 2)-PACDF obtained by taking a copy of the family given in Lemma 2.2. Then
a 2-PACB(54, 2, 2) can be obtained by Lemma 2.3 with the 2-PACB(6, 2, 2). Moreover, a 2-
PACB(6, 2, 2) gives a (2 · 3n, 3n−1, 2, 2)-PACDF with n ≥ 4, by taking Lemma 2.5 with the
CDM(4, 3n−1) given in Lemma 2.1. Hence, for any n ≥ 4, a 2-PACB(2 · 3n, 2, 2) can be ob-
tained by Lemma 2.3 with the (2 · 3n, 3n−1, 2, 2)-PACDF and the 2-PACB(3n−1, 2, 1) obtained by
Lemma 1.3. Thus, a 2-PACB(2 · 3n, 2, 2) can be obtained for any n ≥ 1. Furthermore, Lemma 2.4
with the above 2-PACB(2 · 3n, 2, 2), the 2-PACB(P, 2, 2) and the CDM(4, P ) obtained by Lemmas
1.3 and 2.1, respectively, show the existence of a 2-PACB(2 · 3nP, 2, 2) for any n ≥ 1.

Thus, a 2-PACB(2 · 3n, 2, 2) for any n ≥ 1 and a 2-PACB(2 · 3nP, 2, 2) for any n ≥ 0 have
been obtained. By taking copies of the design, the proof is complete.
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