
Statistics and Applications {ISSN 2454-7395 (online)}
Volume 19, No. 1, 2021 (New Series), pp 443–451

On a Process of Rumour Propagation

Farkhondeh Alsadat Sajadi1 and Rahul Roy2
1 Department of Statistics, Faculty of Mathematics and Statistics

University of Isfahan, Iran
2Theoretical Statistics and Mathematics Unit

Indian Statistical Institute, Delhi

Received: 20 March 2021; Revised: 16 April 2021; Accepted: 19 April 2021

Abstract
In recent years there has been a vast amount of work to model the spread of rumour.

Here we review some of these mathematical models and present some of the main results.
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1. Introduction

The Oxford Dictionary defines rumour as ‘a statement or report circulating in a com-
munity, of the truth of which there is no evidence’. Mathematically, Gilbert (1961) used
the Poisson Boolean model and Maki and Thompson (1973) used a slight variant of this
model to study the transmission of information/rumour. This model consisted of a signal
being transmitted through a relay of transmitters to its recipient. Two such versions are the
Poisson Boolean model and the rumour processes. We present a brief description of these
processes here.

Poisson Boolean model: Let Ξ := (ξ1, ξ2, . . .) on Rd be a homogeneous Poisson point
process of intensity λ and {ρ1, ρ2, . . .} an independent collection of i.i.d. positive real valued
random variables. This is the Poisson Boolean model and its covered region is defined to be
the random set C := ∪∞i=1B(ξi, ρi), where B(ξ, ρ) is the closed ball centred at ξ and of radius
ρ in the Euclidean norm. Geometric properties of this Boolean model has been studied by
Matheron (1968), Hall (1988) and Chiu, et al. (2013). Kertesz and Vicsek (1982) used
this model to study a continuum version of percolation whose parameter is the intensity λ
with the radius random variables ρ1, ρ2, . . . being either constants or of a fixed distribution
(see Meester and Roy (1996) and Penrose (2003) for a review of the percolation properties
of this model). Gupta and Kumar (1998) used this model to study questions of signal-to-
interference-ratio (SINR) and other such problems in wireless transmission, see Franciscceti
and Meester (2007) for a review.

Rumour process: Sudbury (1985) studied the variant of the information-transmission
model introduced in Maki and Thompson (1973). Subsequently, Junior, et al.(2011) renamed
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the rumour process as the ‘firework process’ and introduced a different variant the ‘reverse
firework process’.

Firework process: Let {Ri : i ≥ 0} be a sequence of non-negative integer valued i.i.d.
random variables . At time 0 the origin starts a rumour and passes it onto all individuals in
the interval [0, R0]. At time t, all individuals who heard the rumour for the first time at time
t− 1 spread the rumour, with the individual at site j spreading it among all individuals in
the region [j, j + Rj]. Note that allowing P{Rj = 0} > 0 ensures that there are individuals
who are inactive.

Reverse firework process: The reverse firework process consists of the origin who knows
the rumour at time 0, and at time t an individual located at site j listens to individuals
in the interval [j − Rj, j]. If there is an individual at a site in this interval who has heard
the rumour by time t − 1, then the individual at site j gets to know the rumour. Here the
random variables {Ri : i ≥ 0} are as in the firework process.

1.1. Definitions

For each individual at site i ∈ N associate the pair (Xi, ρi) where (Xi)i≥1, is a sequence
of Bernoulli (p) random variables, i.e.,

Xi =
{

1 with probability p
0 with probability 1− p.

(1)

and (ρi)i≥1 a sequence of i.i.d. copies of some N-valued random, independent of the random
variables (Xi)i≥1. Let ρ denote a generic random variable with the same distribution as ρi.
In addition, let ρ0 an independent N valued random variables, independent of the collections
(Xi)i≥1 and (ρi)i≥1, with ρ0 having the same distribution as ρ. Whenever Xi = 1, the
individual at site i starts to spread rumour within a random distance to its right (an interval
of length ρi). Coverage occurs if every site of N is covered by some interval. Set X0 ≡ 1 and
let

C :=
⋃

{i≥0:Xi=1}
[i, i+ ρi],

and

D := {x ∈ R : there exist j, k ≥ −1 with j 6= k, Xj = Xk = 1
and x ∈ ([j, j + ρj] ∩ [k, k + ρk])}.

We say that N is eventually covered by C if there exists a t ≥ 1 such that [t,∞) ⊆ C.
We say that N is eventually doubly covered by D if it contains a region [t,∞), for some t ≥ 1.

Let {Xi : i ∈ Nd} be a collection of Bernoulli (p) random variables and {ρi : i ∈ Nd} a
collection of i.i.d. N valued random variables, independent of the collection {Xi : i ∈ Nd}.
Let ρ denote a generic random variable with the same distribution as ρi and

C := ∪{i:Xi=1}(i + [0, ρi]d)
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denote the covered region of Nd; here and subsequently i+[0, ρi]d = [i1, i1+ρi]×· · ·×[id, id+ρi],
where i = (i1, . . . , id). We say that Nd is eventually covered if there exists t ∈ Nd such that
t + Nd ⊆ C. Note that this definition may be seen to be equivalent to percolation of
the homogenous firework process for d = 1, and in that sense, it extends the definition of
percolation for a homogenous firework process in Nd. We say that Nd is eventually doubly
covered if there exists t ∈ Nd such that t + Nd ⊆ D, where

D := {x ∈ Rd : there exist i, j ∈ Nd with i 6= j and Xi = Xj = 1
such that x ∈ (i + [0, ρi]d) ∩ (j + [0, ρj]d)}.

The probability of coverage in terms of stochastic geometry or probability of survival
for the original rumour process depends on both, the marginal distribution of the radius of
influence ρ, and the joint distribution of the Xi’s. There are three types of scenarios for
random variables Xi’s for which we have a necessary and sufficient condition to guarantee a
positive probability of survival of the rumour:

(1): Xi’s are i.i.d. random variables.

(2): Xi’s are a {0, 1}-valued Markov chain.

(3): Xi’s are a one-dimensional undelayed discrete renewal point process.

2. The i.i.d Case

Suppose {Xi : i ∈ Nd} is a collection of {0, 1}-valued i.i.d. random variable with
p = P(Xi = 1). We assume that this collection is independent of the the collection of i.i.d.
positive integer-valued random variables {ρi : i ∈ Nd}. Let Pp denote the product probability
law of X and ρ. When the individuals are not sceptical we have:

Proposition 1: (Athreya, et al. (2004))

(i): For d = 1

Pp(C eventually coversN) =
{

1 if p > 1/l
0 if p < 1/L.

where
l := lim inf

j→∞
jP(ρ > j) > 1 and L := lim sup

j→∞
jP(ρ > j) <∞.

(ii): For d > 1 and 0 < p < 1, we have

Pp(C eventually coversNd) =
{

1 if lim infj→∞ jP(ρ > j) > 0
0 if limj→∞ jP(ρ > j) = 0.

A priori it may be the case that ‘single coverage’ occurs, i.e. C ⊇ t + Nd, but double
coverage does not occur. Equivalently, in terms of the rumour process, a rumour may
have a positive probability of spreading in a population consisting of only disbelievers or
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gullible persons. While if among the gullible persons there is also a further group who are
sceptics, then the rumour may not spread with positive probability. However, the following
proposition shows that this is not the case:

Proposition 2: (Sajadi and Roy (2019))

(i): For d = 1,

Pp(D eventually coversN) =
{

1 if p > 1/l
0 if p < 1/L.

where
l := lim inf

j→∞
jP(ρ ≥ j) > 1 and L := lim sup

j→∞
jP(ρ ≥ j) <∞.

(ii): For d > 1 and p > 0, we have

Pp(D eventually coversNd) =
{

1 if lim infj→∞ jP(ρ ≥ j) > 0
0 if limj→∞ jP(ρ ≥ j) = 0.

The key to the proof of Proposition 1 (i) is to note that, for d = 1, the coverage process
forms a renewal process, with renewal happening at every site i ∈ N such that i 6∈ C. Part
(ii) of the above two propositions exhibits a dichotomy in the behaviour of the process in
dimension 1 and in dimensions 2 or more. If P(ρ ≥ j) = O(j) as j →∞, then in dimension 1,
depending on the value of p, there may not be coverage or double coverage, with probability
1. However, for dimensions 2 or more, the only case when there is no coverage (and hence
no double coverage) with probability 1 when p = 0, i.e. there are no gullible people in the
population.

In particular, for p > 0 and i ≥ 1, let

Ai := {i 6∈ C} and Bi := {i 6∈ D}.

Taking G(i) = P(ρ ≥ i) and gp(i) = 1− pG(i), we observe that

Pp(Bi)
=P (Ai ∪ {(there exists exactly one j with Xj = 1 such that i ∈ [j, j + ρj]})

=Pp(Ai) +
i−1∑
l=0

Pp(Xi−l = 1, i ≤ i− l + ρi−l, i 6∈ ∪{j 6=i−l,Xj=1}[j, j + ρj])

=Pp(Ai) + p
i−1∏
l=1

gp(l) + p(1− p)
i−1∑
k=1

G(k)
i−1∏

l 6=k,l=1
gp(l). (2)

We next show that for p > 1/l, where l is as in Proposition 1∑
i

Pp(Bi) <∞, (3)

which, by Borel-Cantelli lemma yields Pp(Bi occurs finitely often) = 1, i.e. there is a random
variable T , with T <∞ almost surely, such that Pp{D ⊇ [T,∞)} = 1.
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Also, for p < 1/L, where L is as in Proposition 1 we have∑
i

Pp(Ai) =∞. (4)

However, since Ai’s are not independent events so we cannot apply the converse of the
Borel–Cantelli lemma. Our observation Ai’s are renewal events (in the sense that, for k > i,
Pp(Ak ∩ Ai) = Pp(Ak−i)Pp(Ai)) allows us to use Theorem 3, on page 312 of Feller (1971) to
conclude that (4) implies that Ai occurs for infinitely many i’s. Thus single coverage (and
hence double coverage) does not occur almost surely

3. The Markovian Case

Suppose (Xi)i≥1 is a {0, 1}-valued time-homogeneous Markov chain with pij = P(Xn+1 =
j|Xn = i), for i, j ∈ {0, 1} and n ≥ 0. Also suppose (ρi)i≥1 is an independent and identically
distributed sequence of random variables assuming values on N, independent of the Markov
chain. Let l := lim infj→∞ jP(ρ > j) > 1 and L := lim supj→∞ jP(ρ > j) <∞. We have

Theorem 1: (Athreya, et al. (2004)) For 0 < p00, p10 < 1, we have

P(C eventually coversN)

> 0 if p01
p10+p01

> 1/l
= 0 if p01

p10+p01
< 1/L.

Theorem 2: (Esmaeeli and Sajadi (2020)) For 0 < p00, p10 < 1, we have

P(D eventually coversN)

> 0 if p01
p10+p01

> 1/l
= 0 if p01

p10+p01
< 1/L.

The proofs of the above two theorems require intricate analysis using probability gener-
ating functions. In particular, for k ≥ 1 and the event Ai as before, let P0(Ak) = P(Ak|X1 =
0) and P1(Ak) = P(Ak|X1 = 1). We observe that

P0(Ak+1) = p00P0(Ak) + p01P1(Ak), P1(Ak+1) = P(ρ0 ≤ k − 1)[p10P0(Ak) + p11P1(Ak)]. (5)

Taking k0 such that k0 + (1−L) > 0, and considering the functions A(s) := ∑
k≥k0 P0(Ak)sk

and B(s) := ∑
k≥k0 P1(Ak)sk we show that

A(1) =
∑
k≥k0

P0(Ak) = B(1) =
∑
k≥k0

P1(Ak) =∞.

This along with the observation that Ak’s are delayed renewal events allow us to use the
theorem in Feller (1971). The proof of the double coverage case involves the same ideas,
except that the relation (5) is more complicated and as such the calculations are more
intricate.

4. The Renewal Case

Let (Ti)i≥1 be a sequence of independent copies of some N-valued random variable T .
Taking X0 = 1, define the {0, 1}-valued random variables X = (Xi)i≥1 as follows:
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Xi =
{

1 if and only if there existsn ≥ 1 such that ∑n
k=1 Tk = i

0 otherwise.
(6)

Observe that X is a binary undelayed renewal sequence with inter-arrival times T . Let (ρi)i∈N
be a sequence of independent copies of some N-valued random variable ρ, independent of the
sequence X and satisfying P(ρ = 0) > 0. We say that there is coverage if the event

A :=
( ⋃
{i≥0:Xi=1&ρi≥1}

[i+ 1, i+ ρi] = N
)
,

occurs. The main objective is to study P(A). We start with conditions under which this
probability is null.

Proposition 3: (Gallo and Garcia (2018)) If E[T ] =∞, then P(A) = 0.

Also

Proposition 4: (Gallo and Garcia (2018)) If lim sup
n→∞

nP(ρ > n)
E[T ] < 1, then P(A) = 0.

But the case where E[T ] =∞, is not interesting and usually it assumes that the process
(Xi)i≥1) is positive recurrent. If we further assume that X is aperiodic, we have the following
formula from Gallo and Garcia (2018), for the probability of coverage:

Theorem 3: (Gallo and Garcia (2018))

P(A) =
1 +

∑
n≥1

E
n−1∏
i=0

[P(ρ ≤ i)]Xi+1

−1

.

This above quantity is difficult to handle in general and Gallo and Garcia (2018)
presented explicit bounds for the probability of coverage.

To guarantee positive probability of coverage, Gallo and Garcia (2018) needed an extra
assumption.

Proposition 5: (Gallo and Garcia (2018)) Let qi := max
n≤i

P(T ≥ n+ 2|T ≥ n+ 1), i ≥ 0. If

k∑
j=1

k+j−2∏
i=k

qi = o(k) (7)

and lim sup
n→∞

nP(ρ > n)
E[T ] > 1 then P(A) > 0.

If the rumour process satisfies condition (7), then by Propositions 3 and 4, we have a
sharp phase transition between null and positive probability of coverage.

Gallo and Garcia (2018) conjectured that if the renewal process is positive recurrent,

then lim inf
n→∞

nP(ρ > n)
E[T ] > 1 should guarantee that P(A) > 0.
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5. Fireworks Version of Rumour Processes

To study rumour propagation in terms of the fireworks process, the main goal is to find
out the probability of having an infinite set of individuals knowing the rumour is positive.
Junior, et al. (2011) presented the survival event as a limit of an increasing sequence of
events whose probability can be bounded by a use of the FKG inequality. To find conditions
under which the process dies out, they used a non-standard version of the Borel-Cantelli
lemma. Gallo, et al. (2014) used a technique based on the relationship between the rumour
process and a certain discrete time renewal process to obtain more precise results for the
homogeneous versions of the fireworks process.

Suppose at time 0, the origin spreads a rumour to all individuals in the interval [0, ρ0].
At time t all individuals, who received the rumour at time t − 1, spread the rumour, with
an individual j spreading the rumour to all individuals in the interval [j, j + ρj] who have
not been activated before. Define the following monotone decreasing event and its limit:

Vn := {the vertex n is hit by an explosion} and V = lim
n→∞

Vn.

Theorem 4: (Junior, et al. (2011)) For the homogeneous firework process we have

∞∑
n=1

n∏
i=0

P(ρ ≤ i) =∞ if and only if P(V ) = 0 .

Let µ := 1 +
∑
n≥1

n−1∏
i=0

P(ρ ≤ i).

Theorem 5: (Gallo, et al. (2014)) For the homogeneous fireworks process

P(V ) = 1
µ
.

Esmaeeli and Sajadi (2021) extended this result for the propogation of rumour among
sceptics. Suppose that at the beginning, only two individuals {0, 1} are active and set
B0 := {0, 1}. Define the sequence of events (Bn)n≥1 as

Bn := {i ≥ 2 : ∃j1 6= j2 ∈ ∪n−1
i=0 Bi such that i ∈ [j1, j1 + ρj1 ] ∩ [j2, j2 + ρj2 ] ∩ N}.

Let B := ⋃
n≥1 Bn. B is the set of all sceptic individuals who have heard the rumour.Let

Ā be the event that the rumour survives among sceptic individuals. We have the following
result.

Theorem 6: (Esmaeeli and Sajadi (2021)) P(Ā) = 1
µ̄

, where

µ̄ = 2 +
∞∑
k=2

k∏
i=2

ᾱi and ᾱi =
i∑
l=1

(−1)l−1 ∑
I⊂{1,...,i},|I|=l

∏
r∈I

i∏
k=1,k 6=r

P(ρ ≤ k − 1), i ≥ 2. (8)
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They also showed that µ̄ <∞ if and only if µ <∞ and from that they concluded the
rumour dies out among sceptics under the same conditions presented in Gallo, et al. (2014)
for non-sceptics.

Theorem 7: (Esmaeeli and Sajad (2021))

P(Ā) = 0⇐⇒ P(A) = 0.

6. Further Questions

Bertacchi and Zucca (2013) studied the spread of rumour in a random environment on
N and on Galton-Watson trees. Also, as in Mukhopadhyay, et al. (2020), a natural question
is to ask for the rate of the spread of a rumour in a complete graph of N individuals,
when every individual samples a fixed k number of individuals. The mean field limit of
this model may suggest the rate of spread. Also if there are competing rumours, then a
majority rule mechanism may also be used to find which rumour survives and which does
not. This approach may provide rigorous answers to the simulation based observations of
Zanette (2001, 2002).
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Gallo, S., Garcia, N., Junior, V. and Rodŕıguez, P. (2014). Rumour processes on N and
discrete renewal processes. Journal of Statistical Physics, 155, 591–602 .

Gallo, S. and Garcia, N. L. (2018). Discrete one-dimensional coverage process on a renewal
process.Journal of Statistical Physics, 173, 381–397.

Gilbert, E. N. (1961). Random plane networks, Journal of the Society for Industrial and
Applied Mathematics., 22, 89–103.

Gupta, P., and Kumar, P. R. (1998). Critical power for asymptotic connectivity in wireless
networks. Stochastic Analysis, Control, Optimization and Applications: A Volume in
honor of W. H. Fleming, 547–566.



2021] RUMOUR PROCESSES 451

Hall, P. (1988). Introduction to The Theory of Coverage Processes, John Wiley, New York.
Junior, V., Machado, F. and Zuluaga, M. (2011). Rumour processes on N. Journal of Applied

Probability, 48, 624–636.
Kertesz, J. and Vicsek, T. (1982). Monte Carlo renormalization group study of the per-

colation problem of discs with a distribution of radii. Zeitschrift für Physik B , 45,
345–350.

Maki, D. P. and Thompson, M. (1973). Mathematical Models and Applications, With Em-
phasis on Social, Life, and Management Sciences. Prentice-Hall, Englewood Cliffs,
NJ.

Meester, R. and Roy, R. (1996). Continuum Percolation . Cambridge: Cambridge University
Press.
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Morpholgie Mathématique, Fontainbleau.

Mukhopadhyay, A., Mazumdar, R. R. and Roy, R.(2020). Voter and majority dynamics with
biased and stubborn agents. Journal of Statistical Physics, 181, 239–1265.

Newman, M. E. J. and Watts, D. J. (1999). Scaling and percolation in the small-world
network model. Physical Review E, 60(6), 7332–7342.

Penrose, M. (2003). Random Geometric Graphs, Oxford University Press, Oxford.
Sajadi, F. A. and Roy, R. (2019). On rumour propagation among sceptics. Journal of

Statistical Physics, 174, 935–952 .
Sudbury, A. (1985). The proportion of population never hearing a rumour. Journal of

Applied Probability., 22(2), 443–446.
Zanette, D. H. (2001). Critical behavior of propagation on small-world networks. Physical

Review. E, Statistical, Nonlinear, and Soft Matter Physics, 64, 050901.
Zanette, D. H. (2002). Dynamics of rumour propagation on small-world networks. Physical

Review. E, Statistical, Nonlinear, and Soft Matter Physics, 65, 041908.


