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Abstract
A set of measures is developed which indicate the robustness of a Balanced Incom-

plete Block Design (BIBD) against yielding a disconnected eventual design in the event of
observation loss. The measures have uses as a pilot procedure and as a tool to aid in design
selection in situations in which significant observation loss is thought possible. The measures
enable non-isomorphic BIBDs with the same parameters to be ranked. Investigation of a
class of BIBDs suggests there is some correspondence between robustness against becoming
disconnected and rankings associated with A-efficiency.
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1. Introduction

Consider D, a binary connected incomplete block design. During experimentation,
some observations may be lost and the properties of the eventual design, De, will be different
from those of D. The eventual design may be far less efficient than the original design. In
an extreme situation, De may be disconnected, resulting in serious damage to the aims of
the experiment. When selecting a design for experimentation, it is prudent to assess the
potential for observation loss to result in a disconnected design.

The universal optimality properties of BIBDs make such designs appealing when avail-
able within the practical constraints of an experiment. Where it is non-empty, the class of
non-isomorphic BIBDs with υ treatments arranged in b blocks of size k is denoted D(υ, b, k).
See Mathon and Rosa (1996) for sets of relatively small non-isomorphic designs. All designs
in a D(υ, b, k) have treatments replicated r = bk/υ times and each pair of treatments occurs
together in λ = r(k−1)/(υ−1) blocks. Designs in D(υ, b, k) are usually considered as having
equal merit. In particular, optimality criteria cannot be used to distinguish between designs
in a class. However, in the event of observation loss from a BIBD, the property of balance
is destroyed and the A-efficiency of the eventual design may be small.
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Many authors investigate observation loss in binary connected incomplete block de-
signs, which are not necessarily balanced. A design is said to be Criterion-1 robust against
a specific pattern of observation loss, if a connected eventual design is guaranteed in the
event of such observation loss. The Criterion-1 robustness of designs against the loss of t
observations is investigated in Ghosh (1979), and results are given on the maximum num-
ber of blocks and the maximum number of observations that can be lost whilst ensuring
a connected eventual design in Ghosh (1982) (see Kageyama (1990), for a review of other
related work up to 1988). Baksalary and Tabis (1987) and Godolphin and Warren (2011)
give sufficient conditions for Criterion-1 robustness against the loss of a subset of blocks.
Bailey et al. (2013) investigate the Criterion-1 robustness of classes of universally optimal
and D-optimal designs. Tsai and Liao (2013) look into the Criterion-1 robustness of designs
with blocks of size two. Conditions on the number of individual observations and on the
number of whole blocks that a design is Criterion-1 robust against losing, are given in terms
of the E-value of the design and of the design support, in Godolphin (2016, 2019).

The A-efficiency of eventual designs following a specified pattern of observation loss, for
which it is known that De will be connected, provides a second measure of design robustness.
A design is Criterion-2 robust against a pattern of observation loss if the A-efficiency for
any potential De is not too small. Dey (1993) investigates the Criterion-1 and Criterion-2
robustness of a design according to two patterns of loss: the loss of t observations on the same
treatment; the loss of all observations in a single block. Lal et al. (2001) develop conditions
for Criterion-1 robustness against the loss of any t observations, and give expressions for the
A-efficiencies of eventual designs resulting from the loss of some configurations of observation
pairs, any pair of blocks and for sets of disjoint blocks. Related work by Bhar (2014)
advocates the advantages of the E-efficiencies of potential eventual designs as an alternative
criterion to assess design robustness in the event of observation loss.

For results specific to Criterion-1 robustness of BIBDs see, for example, Ghosh (1982),
where it is established that a BIBD is Criterion-1 robust against the loss of any r− 1 obser-
vations and against the loss of any r − 1 blocks. Key work associated with the Criterion-2
robustness of BIBDs includes Bhaumik and Whittinghill (1991), who consider the loss of
complete blocks, and Whittinghill (1995) who considers the effect of losing any two observa-
tions on optimality criteria. Das and Kegeyama (1992) investigate the Criterion-2 robustness
of a BIBD against observation loss in one block. Results of Lal et al. (2001) on observa-
tion loss in BIBDs mirror those of Whittinghill (1995), with Whittinghill’s case 3 omitted.
Prescott and Mansson (2001) investigate properties of eventual designs arising from the loss
of observation pairs, with reference to a design in D(8, 14, 4). The Intersection Aberration
criterion of Morgan and Parvu (2008) ranks members of D(υ, b, k) according to efficiency
properties of eventual designs arising from the loss of two blocks.

A Rank Reducing Observation Set (RROS) in D is a set of observations, the removal
of which yields De with Rank(X) > Rank(Xe), where X and Xe are the design matrices of
D and De, respectively. In this work, the focus is on identifying the sizes and numbers of
RROSs for designs in D(υ, b, k) that are most damaging to the aims of the experiment. The
work is closely aligned to the concept of Criterion-1 robustness: if D is not Criterion-1 robust
against a specific pattern of observation loss, then there will be at least one set of observations
corresponding to this pattern that comprise a RROS. Using an approach closely aligned to
the treatment partitioning processes of Godolphin and Warren (2011), the smallest RROSs
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for different treatment partitions are determined. Expressions for the measure (Su, Tu) are
developed, where Su is the smallest number of observations in a RROS of specific type and
Tu is the number of such RROSs. Observation loss is assumed to be random, that is, each
observation has the same probability of being lost, independent of any other. For designs in
a D(υ, b, k) the (Su, Tu) measure has uses:

(i) as a pilot procedure to provide information on the robustness of a design;

(ii) to aid selection of a design from a D(υ, b, k) having cardinality greater than one.

In §2, the different types of RROS are defined and illustrated via an example. Formulae
for the (Su, Tu) measures are developed in §3. These are of two types: (Su, Tu) depending
only on υ, b, k, u, which are fixed for all designs in a D(υ, b, k); (Su, Tu) that can vary within
a D(υ, b, k). The former can be used to assess the general robustness of designs in the class
against giving rise to a disconnectedDe. The latter provide a means of design comparison and
aid in design selection. In §4, results are illustrated by reference to D(8, 14, 4). The design
ranking obtained by the (Su, Tu) measure is found to be consistent with ranking according
to worst A- and E-efficiencies according to the loss of between two and five observations,
and to the Intersection Aberration criterion of Morgan and Parvu (2008).

2. Preliminaries

Consider D, a planned incomplete block design, that is both binary and connected,
with n observations on υ treatments in b blocks of size k. The observations are assumed to
be uncorrelated each with variance σ2, and the observation vector Y is assumed to follow
the additive model.

E(Y) = µ1n +X1τ +X2β.

Here, µ is a scalar constant, 1n is the vector of length n with all elements unity, and τ =
(τ1, τ2, . . . , τυ)T and β are vectors of the treatment and block effects. Matrices X1 and X2,
of orders n× υ and n× b, relate to the treatment and block components of D, each row of
Xi, i = 1, 2, having one element unity and remaining elements zero. The design has design
matrix X = (1nX1X2) and υ × υ information matrix:

C = XT
1 X1 −XT

1 X2(XT
2 X2)−1X1.

Since D is connected, Rank(C) = υ − 1 and the positive eigenvalues of C are expressed as:

0 < µ1 ≤ µ2 ≤ · · · ≤ µυ−1.

Any RROS of D can be categorised as being of Types I to III. These types are not
mutually exclusive. Brief details are given below.

Type I: If observations comprising a Type I RROS are lost from D then Be, the set of
blocks of De, can be partitioned into non-empty sets B0 and Be \ B0 with the treatments in
B0 being distinct from those in Be \ B0.

Type II: A Type II RROS contains all observations from one or more blocks.
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Type III: A Type III RROS contains all replicates of one or more treatments.

The most extreme consequence of observation loss arises if not all υ(υ− 1)/2 pairwise treat-
ment contrasts are estimable from De. The loss of a RROS that is of Type II only will not
restrict the capacity to estimate treatment contrasts, but will affect the overall efficiency.
Such RROSs are not the focus of this work. However, in the event of the loss of observations
comprising a RROS that is Type I and/or Type III then Rank(Ce) < υ−1, where Ce denotes
the information matrix of De, and not all treatment contrasts will be estimable. A Type
III RROS contains all replicates of a subset of υ0 treatments. Such RROSs are immediately
evident from the treatment replications of D. In the event that a RROS that is Type III and
not Type I is lost from D, then Rank(Ce) = υ− υ0− 1 and all contrasts in the υ− υ0 treat-
ments occurring in De will be estimable. If a Type I RROS is lost from D then no pairwise
treatment contrast involving one treatment occurring in a block of B0 and one occurring in
a block of Be \B0 will be estimable. The available data comprise two observation sets which
cannot be analysed as a single entity, although they can be analysed separately, see Searle
(1971, §7.4), to gain limited information.

Whilst the aims of the experiment are seriously compromised by the loss of a Type I
or a Type III RROS from D, the Type I RROSs are not easily identifiable from the planned
design and these are the main focus of this work. For more extensive discussion of the types
of RROS see Godolphin and Warren (2014). Type I and Type III RROSs are demonstrated
in the following example.

Example: The design D has seven treatments, each with replication three, arranged in
seven blocks of size three. The design is depicted below, with columns as blocks numbered
1 to 7.

D =

1 2 3 4 5 6 7
1 1 1 2 2 3 4
2 3 3 5 5 4 5
7 4 6 7 7 6 6

The following six potential eventual designs, labelled De1, . . . , De6, result from different con-
figurations of observation loss, with each pattern of loss corresponding to a RROS of Type
I and/or Type III.

De1 =

1 2 3 4 5 6 7
1 1 1 ∗ ∗ 3 4
∗ 3 3 5 5 4 5
7 ∗ 6 7 7 6 6

De2 =

1 2 3 4 5 6 7
1 1 1 2 2 ∗ 4
2 ∗ ∗ 5 5 4 5
7 4 6 7 7 6 6

De3 =

1 2 3 4 5 6 7
∗ 1 1 2 2 3 4
2 3 3 5 5 4 ∗
7 4 6 7 7 6 6

De4 =

1 2 3 4 5 6 7
1 1 1 2 2 3 4
∗ 3 3 5 5 4 ∗
∗ 4 6 7 7 6 6

De5 =

1 2 3 4 5 6 7
∗ 1 1 2 2 3 4
2 ∗ 3 5 5 4 ∗
7 4 6 7 7 6 6

De6 =

1 2 3 4 5 6 7
∗ 1 1 2 2 3 4
2 3 3 ∗ ∗ 4 ∗
7 4 6 7 7 6 6

The RROSs giving rise to De1 and De2 are Type III only. In both cases all replicates of
one treatment have been lost. The eventual designs are connected designs in six treatments.
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Thus Rank(Ce1) = Rank(Ce2) = 5. All pairwise treatment contrasts in the six treatments
of De1 and De2 are estimable. The RROS giving rise to De2 is minimal in the sense that, if
any observation of the RROS is reinstated then the resulting design is a connected design in
seven treatments. The RROS of De2 is not minimal: if the replicate of treatment 4 in block
2 is reinstated then the observation loss incurred still corresponds to a Type III RROS.

The RROSs giving rise to De3 to De5 are Type I only. All three eventual designs are
disconnected with the blocks partitioned so that each block contains treatments from exactly
one set of {1, 3, 4, 6} and {2, 5, 7}. The eventual designs have Rank(Ce3) = Rank(Ce4) =
Rank(Ce5) = 5. Pairwise treatment contrasts are estimable within each treatment set, but
the 12 pairwise treatment contrasts involving one treatment from each set, such as τ1 − τ2,
are not estimable. The Type I RROSs leading to De3 and De4, containing two and three
observations respectively, are minimal. The Type I RROS leading to De3 is of particular
interest, since no smaller Type I RROS exists for D. The Type I RROS leading to De5 is
not minimal: reinstatement of the replicate of treatment 3 in block 2 gives De3.

Finally, the RROS giving rise to De6 is both Type I and Type III. The eventual design
De6 is disconnected with block partition such that treatments in {2, 7} are contained in B0,
say, and treatments in {1, 3, 4, 6} are contained in Be \ B0. Only seven pairwise treatment
contrasts are estimable. The eventual design has Rank(Ce6) = 4.

Some basic properties can be established for minimal Type I RROSs, such as those
RROSs leading to De3 and De4 in Example 1.

Theorem 1: Consider a Type I RROS for design D such that no subset is also a RROS.
Then, the eventual design De arising due to the loss of the RROS from D has the properties:

(i) De, has b blocks;

(ii) De, has υ treatments.

Proof: By the definition of a Type I RROS, the blocks of De, can be partitioned into non-
empty sets B0 and Be \ B0 with the treatments in blocks of B0 being distinct from those in
the blocks of Be \ B0. For (i): assume De has fewer than b blocks. Then the RROS contains
all observations from at least one block of D. Reinstate any one observation in such a block
to form D†e. The additional block of D†e, over those of De, can be allocated to one of B0 and
Be \ B0 to form a partition in D†e. Thus the observation loss resulting in D†e corresponds to
a Type I RROS, but the missing observations are a subset of those lost to form De. This
provides a contradiction and it follows that De has b blocks, as required. For (ii), assume
De has fewer than υ treatments. Then the RROS contains all replicates of one or more
treatments of D. Reinstate one observation of such a treatment to form D††e . By (i) the
reinstated observation will be in a block in either B0 and Be \ B0. In either case, there is
partition in D††e . As with (i), the observations lost from D to form D††e comprise a Type I
RROS, but are a subset of those lost to form De. This gives a contradiction. Hence, De has
υ treatments, as required.

Such RROSs are summarised in the following definition, where V , B denote the sets of
treatments and blocks of D, respectively:
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Definition: A RROS(u) for D, for 1 ≤ u ≤ υ/2, is a Type I RROS with the following
properties:

(i) no subset is also a RROS;

(ii) in De, the treatments are partitioned into sets Vu, Vυ−u, with cardinalities u and υ−u,
and the blocks are partitioned into non-empty sets B1, B2, with treatments from Vu
arranged exclusively in blocks of B1 and those from Vυ−u exclusively in blocks of B2.

The partitioning of V and B induced by the loss of a Type I RROS is termed a consistent
treatment and block partition.

3. Robustness Measures for BIBDs

Henceforth, any planned design, will be taken as being a BIBD, that is, D ∈ D(υ, b, k).
It is evident thatD contains υ Type III RROSs of size r. The aim is to add to this information
by finding RROS(u)s of smallest size for 1 ≤ u ≤ υ/2. From Ghosh (1982), D is Criterion-1
robust against the loss of any r − 1 observations. Thus, a RROS(u) must be of size at least
r. A RROS(u) consists of all replicates of treatments in Vυ−u contained in blocks of B1 and
all replicates of treatments in Vu contained in blocks of B2. The consequence of losing all
observations in the RROS(u) is that in B1 only treatments from Vu are preserved and it is
precisely treatments in Vu that are lost from B2. For a given Vu, denote the smallest number
of observations in a RROS(u) by su. Further, define Su to be minVu{su}, the minimisation
being over all υ!/[u!(υ−u)!] sets of u treatments, and define Tu to be the number of RROS(u)s
of size Su. The pair (Su, Tu) forms the robustness measure. It gives the smallest number
of observations that must be lost, and the number of observation sets of this size, for the
possibility of an eventual design with a consistent treatment and block partition, with the
treatment sets being of sizes u and υ − u.

Relationships associated with the distribution of subsets of treatments in Vu amongst
the blocks of D arise as a consequence of the properties of BIBDs. These relationships are
given below without proof.

Theorem 2: For given Vu, let bj be the number of blocks in D containing exactly j elements
from Vu, for 0 ≤ j ≤ w, where w = min{u, k}. Then:

w∑
j=0

bj = b (1)

w∑
j=0

jbj = ur (2)

w∑
j=0

(
j

2

)
bj =

(
u

2

)
λ. (3)

Corollary 1: For any D ∈ D(υ, b, k):

(i) Each of the υ sets V1 has (b0, b1) = (b− r, r);
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(ii) Each of the υ(υ − 1)/2 sets V2 has (b0, b1, b2) = (b− 2r + λ, 2r − 2λ, λ).

For any D ∈ D(υ, b, 2):

(iii) Every Vu has (b0, b1, b2) = (b− ur + u(u− 1)λ/2, ur − u(u− 1)λ, u(u− 1)λ/2).

Proof: (i) follows through application of (1) and (2) with w = 1. Similarly, (ii) and (iii)
follow through use of (1) to (3), with u = 2, k ≥ 2 for (ii), and u ≥ 2, k = 2 for (iii).

From Corollary 1, the values of bj are dependent only on the design parameters and u
for w = min{u, k} ≤ 2. For many D ∈ D(υ, b, k), the elements of (b0, b1, . . . , bw) will depend
on the particular Vu, for w ≥ 3. For example, some sets of three treatments may occur
together in more blocks than other sets. Consider D ∈ D(υ, b, k), with k ≥ 3. Using (1), (2)
and (3), a given V3 has:

(b0, b1, b2, b3) = (b− 3r + 3λ− b3, 3r − 6λ+ 3b3, 3λ− 3b3, b3). (4)

Further, for given u, the distributions of (b0, b1, . . . , bw) may differ between designs within a
D(υ, b, k).

We now use the properties of D(υ, b, k) design classes to obtain expressions for the
(Su, Tu) measures.

3.1. (Su, Tu) measures for D(υ, b,2)

Any non-empty D(υ, b, 2) has cardinality one and thus the (Su, Tu) measures provide
a pilot process to check the Criterion-1 robustness properties of the design.

Let D ∈ D(υ, b, 2). First consider the trivial case u = 1. For any V1, exactly r of the
blocks of D contain the treatment in V1. There are 2r − 1 ways of selecting one observation
from each of these blocks to form a RROS(1), that is, to yield a treatment disconnected
eventual design in υ treatments. There are υ ways of selecting V1. Thus S1 = r and
T1 = υ(2r − 1). Now consider any set Vu with 2 ≤ u ≤ υ/2. A RROS(u) is formed by
selecting one observation from each of the b1 blocks containing one element from Vu. Using
Corollary 1 (iii), b1 = ur − u(u − 1)λ = ru(υ − u)/(υ − 1). This is independent of the
particular set of u treatments, indicating that su = ur(υ − u)/(υ − 1), for every Vu. There
are υ!/(u!(υ − u)!) sets of u treatments. It follows that the robustness measures are:

(S1, T1) = (r, υ(2r − 1)) (5)

(Su, Tu) =
(
ru(υ − u)
υ − 1 ,

2Suυ!
u!(υ − u)!

)
, for 2 ≤ u ≤ υ/2. (6)

From (5) and (6) Su increases monotonically with u. Thus a pilot procedure starts by
evaluation of S1. Hence, in addition to the υ Type III RROSs of size r, by (5) there are
υ(2r − 1) Type I RROSs, also of size r. Then, by (6) there are many Type I RROSs of size
2r(υ − 2)/(υ − 1), and so on.
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3.2. (Su, Tu) measures for D(υ, b,3)

ManyD(υ, b, 3) design classes have cardinality greater than one. For example, D(7, 14, 3),
D(7, 21, 3) and D(7, 28, 3) have cardinalities 4, 10 and 35 respectively.

Consider D ∈ D(υ, b, 3). For any set V1, exactly r blocks of D contain the treatment in
V1. For a valid RROS(1), the eventual design must contain all υ treatments, thus a smallest
RROS(1) contains the replicate of the treatment of V1 from r−1 blocks and the replicates of
the two treatments from Vυ−1 from the rth block. This gives s1 = r+ 1, independent of the
particular V1. For given V1 there are r ways of selecting the replicate of the treatment in V1
that is preserved in De and there are υ ways of selecting V1. Thus, S1 = r + 1 and T1 = rυ.
Now let Vu be any set with 2 ≤ u ≤ υ/2. For Vu, a RROS(u) of smallest size comprises the
observation of a treatment contained in Vu from each of the b1 blocks containing one element
of Vu and the observation of a treatment in Vυ−u from each of the b2 blocks containing two
elements of Vu. Using (2) and (3), su = b1 + b2 = ur − λu(u − 1)/2 = ru(υ − u)/(υ − 1).
Again, the value of su is independent of the particular Vu. Given Vu, the RROS(u) of size
su is unique. Thus, the robustness measures for D(υ, b, 3) are:

(S1, T1) = (r + 1, rυ) (7)

(Su, Tu) =
(
ru(υ − u)
υ − 1 ,

υ!
u!(υ − u)!

)
, for 2 ≤ u ≤ υ/2. (8)

As with k = 2, the value of Su increases with u for 1 ≤ u ≤ υ/2.

Results for k = 3 merit special comment. In some D(υ, b, 3), designs in the class differ
in the number of repeated blocks. For example, the four designs in D(7, 14, 3) have support
sizes (i.e. number of distinct blocks) of 7, 11, 13 and 14 respectively. Several authors, in-
cluding Bhaumik and Whittinghill (1991), recommend avoiding BIBDs with repeated blocks
when observation loss is possible. Also, see Raghavarao et al. for an investigation of designs
in D(7, 21, 3) with emphasis on the relationship between the support size and the estimation
of contrasts of the block effects. Conversely, Foody and Hedayat (1977) discuss some ex-
perimental situations in which deliberate use of designs with repeated blocks gives practical
advantages. In assessing robustness within a D(υ, b, 3) via (Su, Tu) measures, no advantage
is gained by the avoidance of designs with repeated blocks, since the formulae of (7) and (8)
are the same for all designs in a class. Thus, all designs in a D(υ, b, 3) are equally vulnerable
to becoming disconnected through random observation loss.

3.3. (Su, Tu) measures for D(υ, b, k), with k ≥ 4

Let D ∈ D(υ, b, k), with k ≥ 4.

For 1 ≤ u < k/2, choose any u treatments from any one block for Vu. From the same
block, select the k − u treatments in Vυ−u for removal. From the b − 1 remaining blocks,
select the treatments from Vu for removal. The (k − u) + (r − 1)u = u(r − 2) + k selected
observations comprise a RROS(u) and, by the process used, there is no smaller RROS(u)
for that Vu, giving su = (k − u) + (r− 1)u = u(r− 2) + k. The value of su does not depend
on the chosen block or on the treatments used from the block for Vu. Thus

(Su, Tu) =
(
u(r − 2) + k,

k!b
u!(k − u)!

)
, for 1 ≤ u < k/2. (9)
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Now, for even k, consider u = k/2. For a Vk/2 with bk/2 > 0, select the observations
from Vυ−k/2 for removal from at least one of the bk/2 blocks containing all k/2 treatments of
Vk/2. From all other blocks select the observations from Vk/2 for removal. Every observation
on a treatment in Vυ−k/2 occurs in a block with no more than k/2 treatments from Vk/2,
thus, the selected observations comprise a RROS(k/2) of minimal size: sk/2 = kr/2. For the
particular Vk/2, there will be 2bk/2 − 1 RROS(k/2)s of this size, giving

(Sk/2, Tk/2) =
kr

2 ,
∑
Ψ0

(
2bk/2 − 1

) , (10)

where, the summation is over Ψ0, the set of Vk/2 sets with bk/2 > 0.

Now consider k/2 < u ≤ k. For every Vu, perform a scan of D in the following way.
For blocks containing fewer than k/2 members of Vu, select the members of Vu for removal.
Conversely, for blocks containing more than k/2 members of Vu, select the members of Vυ−u
for removal. For even k, for blocks containing exactly k/2 members of Vu, select either
treatment set for removal. Let the number of selected observations be N . Then

N =
[k/2]∑
i=1

ibi +
k−1∑

i=[k/2]+1
(k − i)bi,

where [k/2] denotes the integer part of k/2. Using (2):

N = ur −
k−1∑

i=[k/2]+1
(2i− k)bi. (11)

The selected observations form a RROS of Type I and/or Type III. Any Vu with bj = 0
for all j > k/2 has N = ur, and any Vu with bj > 0 for at least one j > k/2 has N < ur.
Thus, for any Vu yielding the minimum value for N , there is at least one block containing
more than k/2 treatments from Vu in D. Suppose a RROS obtained by the scan for a Vu for
which N is minimised comprises a Type III RROS. Call this Vu set V∗u. Then all replicates
of a member of V∗u, say u0, are selected by the scan and at least one treatment from V \ V∗u,
say u1, is in a block containing more than k/2 treatments from V∗u. Now consider the set
V†u with u1 replacing u0 but with the other u − 1 treatments common to those of V∗u. This
has smaller N , providing a contradiction. Thus, Vu sets corresponding to the smallest value
of N only yield RROS(u)s by the scan, and, by the process, no smaller RROS(u) exists for
that Vu. It follows that Su = minVu{N} < ur. Let Ψ1 be the set of Vu sets achieving Su.
Then Tu = ∑

Ψ1 2bk/2 , where bk/2 is taken to be zero for odd k. Thus,

(Su, Tu) =
ur −max

Vu


k−1∑

i=[k/2]+1
(2i− k)bi

 ,∑
Ψ1

2bk/2

 , for k/2 < u ≤ k.

Now consider k < u ≤ υ/2. As for k/2 < u ≤ k, the approach is to conduct a scan for
each Vu and to obtain N as given by (11). However, in this case the minimum value of N
can arise for sets of selected observations corresponding to Type III RROSs. An additional
step is required in order to identify RROS(u)s of smallest size.
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Definition: A covering for Vu comprises two sets of blocks from D, denoted B1c and B2c,
such that together the blocks of B1c contain all the treatments of Vu, and together the blocks
of B2c contain all the treatments of Vυ−u. The weight of the covering is

[k/2]−1∑
j=1
B1c

(k − 2bj) +
k−1∑

j=[k/2]+1
B2c

(2bj − 1).

Consider a scan of D conducted with treatment set Vu in the usual way, but with an
adjustment for the blocks of a covering. Treatments from Vυ−u are selected from the blocks
of B1c, and treatments from Vu are selected from the blocks of B2c, regardless of the numbers
of treatments from Vu in blocks of either set. Then, the number of observations selected in
total exceeds N by the weight of the covering. For a given Vu, let W be the minimum weight
of all coverings for Vu. Then, the RROS(u) of smallest size for that Vu contains W + N
observations. These are: observations from Vυ−u in blocks of B1c; observations from Vu in
blocks of B2c; observations selected from the scan in the usual way for all other blocks. Thus
Su = minVu{W +N}. Let Ψ2 be the set of Vu sets achieving Su. Then

(Su, Tu) =
min
Vu

{W +N} ,
∑
Ψ2

2bk/2

 , for k < u ≤ υ/2. (12)

3.4. A lower bound for Su

For k < u ≤ υ/2, the process of obtaining minimal coverings for each Vu, before
running the scan, to obtain (Su, Tu) via (12) can be computer intensive. The following
result gives a lower bound for Su. For u moderate in size, the magnitude of this bound
might indicate that Su is sufficiently large that the identification of the exact value is not
of concern, given understanding of the expected level of observation loss for the particular
experimental situation.

Theorem 3: For D ∈ D(υ, b, k) and 1 ≤ u ≤ υ/2, a lower bound for Su is given by:⌈
u(υ − u)r
υ − 1

⌉

Proof: For any set Vu, the sum of concurrences between treatments in Vu and treatments
in Vυ−u is u(υ − u)λ. To induce a Type I RROS through observation loss, the concurrence
between any treatment in Vu and a treatment in Vυ−u must be reduced to zero. The greatest
reduction in the sum of the concurrences between treatments in Vu and Vυ−u caused through
the loss of a single observation occurs if the observation is in a block containing exactly
one or k − 1 treatments from Vu. The loss of such an observation reduces the sum of the
concurrences by k − 1. Thus the number of observations in a RROS(u) is at least

u(υ − u)λ
k − 1 = u(υ − u)r

υ − 1

as required.
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4. Investigation of Designs in D(8,14,4)

We use the D(8, 14, 4) design class, which has cardinality four, to demonstrate the
results of §3, and compare the design ranking produced with design comparisons focused on
Criterion-2 robustness. A set of four non-isomorphic designs in D(8, 14, 4) is obtained by
combining pairs of four base designs. Base designs Da and Db contain treatments 1, 2, . . . , 7
and base designs Dc and Dd contain treatments 1, 2, . . . , 8. Each base design is obtained
via a cyclic construction, modulo 7: Da and Db are members of D(7, 7, 4) with initial blocks
containing 1, 3, 4, 5 and 1, 2, 3, 5, respectively; Dc has initial block containing 1, 2, 4 and each
block is augmented with treatment 8; Dd is obtained from Dc with treatments 1 and 2
interchanged. The base designs are displayed below:

Da =

1 2 3 4 5 6 7
1 2 3 4 5 6 7
3 4 5 6 7 1 2
4 5 6 7 1 2 3
5 6 7 1 2 3 4

Db =

1 2 3 4 5 6 7
1 2 3 4 5 6 7
2 3 4 5 6 7 1
3 4 5 6 7 1 2
5 6 7 1 2 3 4

Dc =

1 2 3 4 5 6 7
1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3
8 8 8 8 8 8 8

Dd =

1 2 3 4 5 6 7
2 1 3 4 5 6 7
1 3 4 5 6 7 2
4 5 6 7 2 1 3
8 8 8 8 8 8 8

Members of D(8, 14, 4), denoted by D1, D2, D3 and D4, comprise the base design pairs:

D1: Da and Dd, D2: Db and Dd, D3: Db and Dc, D4: Da and Dc

The labelling of the designs as D1 to D4 is consistent with Morgan and Parvu (2008). Design
D3 is the design given careful consideration in Prescott and Mansson (2001).

4.1. (Su, Tu) measures for D(8,14,4)

Robustness measures for u = 1 and u = 2 are common to all designs in the class. By
(9), (S1, T1) = (9, 56). Every V2 in each design has b2 = λ = 3, giving (S2, T2) = (14, 196),
by (10). These measures indicate the extent of observation loss required from designs in
D(8, 14, 4) to result in an eventual design in which the treatments are partitioned into sets
of size one and seven, and into sets of size two and six, respectively. The lowest value of u
enabling discrimination between the four designs is u = 3. The measure (S3, T3) is different
for each design and ranks the designs in terms of robustness against incurring a RROS(3).
For each design and each V3, (11) gives s3 = 3r − 2b3 = 21 − 2b3. Designs D1 to D3 each
have some V3 sets with b3 = 2. For example D1 has b3 = 2 for the sets {1, 3, 5}, {1, 6, 7},
{2, 3, 7} and {2, 5, 6}. Thus, designs D1 to D3 each have S3 = 17. By contrast, D4 has
b3 = 1 for every set V3, giving S3 = 19. The values of T3 depend on the numbers of V3 with
maximum b3. Using (4),

(b0, b1, b2, b3) = (2− b3, 3 + 3b3, 9− 3b3, b3). (13)

For designs D1 to D3, the V3 sets with b3 = 2 each have b2 = 3, by (13) and contribute
23 = 8 to T3. For D4, each V3 set has b2 = 6, and contributes 64 to T3. The (S3, T3) measures
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Table 1: (S3, T3) measures for designs in D(8,14,4)

Design maxV3 b3 (S3, T3) Rank
D1 2 (17, 32) 2
D2 2 (17, 48) 3
D3 2 (17, 56) 4
D4 1 (19, 3584) 1

are displayed in Table 1. Design D4 is ranked highest with S3 = 19. The other designs have
S3 = 17 and are ranked according to T3. To summarise, of designs in D(8, 14, 4), design D4
is the most robust against becoming disconnected through a consistent treatment and block
partition with treatments separated into sets of sizes three and five. Two more observations
need to be lost from D4 than from the other designs, before there is a possibility of a De

with a consistent block and treatment partition, with the treatments partitioned into sets of
cardinalities 3 and 5.

4.2. A- and E-efficiencies of eventual designs

It would be hoped that the loss of as many as 17 observations from a design inD(8, 14, 4)
would be considered a remote possibility in most experimental situations. It is interesting to
investigate the quality of eventual designs arising from the loss of much smaller numbers of
observations from D1 to D4. To compare the designs with regards to Criterion-2 robustness,
the A-efficiencies of eventual designs are considered and, in line with suggestions of Bhar
(2014), the E-efficiencies are also obtained.

For D ∈ D(υ, b, k), all non-zero eigenvalues of C are υλ/k. Let De be a connected
eventual design arising from the loss of observations from D and let the eigenvalues of Ce
be 0 < µ1e ≤ µ2e ≤ · · · ≤ µ(υ−1)e. The A- and E-efficiencies of De, denoted EA(De) and
EE(De), have formulae:

EA(De) =
∑υ−1
i=1

1
µi∑υ−1

i=1
1
µie

= (υ − 1)2k

υr(k − 1)∑υ−1
i=1

1
µie

and EE(De) = µ1e

µ1
.

Hence, for designs in D(8, 14, 4), the A- and E-efficiencies of De are EA(De) = 7/(6∑υ−1
i=1

1
µie

)
and EE(De) = µ1e/6. In Table 2 results are given on the lowest A- and E-efficiencies of De

arising from the loss of up to five observations from designs in D(8, 14, 4). As established in
the literature, for example see Whittinghill (1995), all designs are equivalent when only one
observation is lost. For the loss of between 2 and 5 observations the ranking of D1 to D4,
according to the lowest A- and E-efficiences of eventual designs, is consistent with the design
ranking according to (S3, T3). Design D4 consistently demonstrates better performance.
Designs D1 to D3 have the same values for the lowest A- and E-efficiences, but the number
of eventual designs with worst properties is consistent with T3 measure. It is notable that,
in each case, the eventual designs with lowest A-efficiency are exactly those with lowest
E-efficiency.

4.3. Intersection Aberration

The Intersection Aberration criterion of Morgan and Parvu (2008) extends results
of Bhaumik and Whittinghill (1991) to enable the comparison of designs in a D(υ, b, k)
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Table 2: Smallest A-efficiency values following the loss of up to five observations
from designs in D(8,14,4)

Design No.of missing min{A-efficiency} min{E-efficiency} No. of eventual
observations designs

D1 1 0.9722 0.8333 36
D2 1 0.9722 0.8333 36
D3 1 0.9722 0.8333 36
D4 1 0.9722 0.8333 36
D1 2 0.9354 0.6806 12
D2 2 0.9354 0.6806 18
D3 2 0.9354 0.6806 21
D4 2 0.9373 0.6944 168
D1 3 0.8885 0.5462 36
D2 3 0.8885 0.5462 54
D3 3 0.8885 0.5462 63
D4 1 0.8909 0.5556 280
D1 4 0.8216 0.4096 36
D2 4 0.8216 0.4096 54
D3 4 0.8216 0.4096 63
D4 4 0.8249 0.4167 280
D1 5 0.7155 0.2722 12
D2 5 0.7155 0.2722 18
D3 5 0.7155 0.2722 21
D4 5 0.7206 0.2778 168

according to lowest A-efficiency on the loss of two blocks. This criterion enables the ranking
of designs within a D(υ, b, k) in order of their robustness against suffering the most damage
on the loss of any two blocks. For D ∈ D(υ, b, k), let ηg(D) denote the number of pairs of
blocks such that blocks in a pair have exactly g common treatments. These design properties
can be summarised by the intersection aberration vector η(D) = (η0(D), η1(D), · · · , ηk(D)).
Following Morgan and Parvu (2008):

Definition: Let designs D†, D‡ ∈ D(υ, b, k), and let p be the largest integer such that
ηp(D†) 6= ηp(D‡). Then D† is described as having less intersection aberration than D‡ if
ηp(D†) < ηp(D‡).

A design with less intersection aberration has greater Criterion-2 robustness against the loss
of two blocks than one with more intersection aberration.

Designs in D(8, 14, 4), investigated in Morgan and Parvu (2008), have intersection
aberration vectors:

η(D1) = (3, 12, 72, 4, 0)
η(D2) = (1, 18, 66, 6, 0)
η(D3) = (0, 21, 63, 7, 0)
η(D4) = (7, 0, 84, 0, 0)
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The designs are ranked by Intersection Aberration from most to least robust in the
order D4, D1, D2, D3, according to η3(.) values. This ranking is consistent with the ranking
obtained by consideration of (S3, T3) in §4.1. Note that the η3(.) values are precisely the
number of V3 sets having b3 = 2 for each design. Thus within D(8, 14, 4) the robustness of
a design against incurring a RROS(3) through the loss of random observations corresponds
to its robustness against lowest A-efficiency from the loss of two blocks.

See Thornewell (2011) for further investigation into coincidence between rankings of
designs according to Intersection Aberration and (S3, T3).

5. Conclusion

For D ∈ D(υ, b, k), the (Su, Tu) measures developed in §3 give the smallest number of
observations that comprise a specific kind of RROS and the number of such observation sets.
Loss of observations in such a RROS yields an eventual design in which the treatments are
partitioned into sets of size u and υ − u respectively, and the usual analysis to compare the
treatments cannot be conducted.

For u ∈ {1, 2} and u < [k/2], both Su and Tu are fixed for all designs in D(υ, b, k).
Also, for D(υ, b, 2) and D(υ, b, 3) design classes, all Su and Tu are functions of the basic
design parameters. Information obtained from these measures complements information on
the Type III RROSs to give a full picture of the vulnerability of a design to become dis-
connected through observation loss. Prior to experimentation, calculation of fixed measures,
and knowledge of the potential level of observation loss, provide the experimenter with a
pilot procedure to check that the eventual design is likely to be connected.

Other measures are dependent on properties of the particular design. For k even and
at least six, Sk/2 is fixed but Tk/2 is design dependent. For k ≥ 4 and u > k/2, both Su and
Tu can vary within a D(υ, b, k) indicating that consequences of observation loss may vary
within the design class. For a D(υ, b, k) with cardinality greater than one, comparison of
measures for the lowest value of u for which (Su, Tu) vary, enables the designs to be ranked
according to vulnerability.

Investigation of designs in D(8, 14, 4) indicates that designs which are ranked high
according to (Su, Tu) also perform well with regards to Criterion-2 robustness in the event
of different patterns of observation loss.
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