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Abstract
The unit root test – a test of the null hypothesis that a first-order autoregressive model

is a random walk model against the alternative hypothesis that the model is a stationary
model - has played a significant role in time series literature. The benchmark unit root
test is the well-known Dickey-Fuller test widely extended to cover a variety of applications.
However, to the best of our knowledge, all available unit root tests assume no measurement
errors in the observed data. In this paper, we first investigate the effects of sampling errors,
alternatively called as measurement errors, on the biases of the commonly used estimators of
autocorrelation coefficient and the Dickey-Fuller test statistics. We then propose alternative
estimators for the autocorrelation coefficient and the Dickey-Fuller test statistics to reduce
such biases due to sampling errors. In our study, we prove that the adjusted estimators of
the autocorrelation coefficient and the test statistics have the same asymptotic distributions
as that of the Dickey-Fuller test statistics. Moreover, we conduct Monte Carlo simulation
studies to investigate the performance of our proposed test statistics in terms of unbiasedness,
the probability of Type-I error, and power of the test. Our simulation results demonstrate
that the proposed estimators can reduce bias due to sampling errors. Finally, we apply the
proposed test statistics to the Current Population Survey (CPS) data on unemployment of
the United States during the period 1990 - 2013.

Key words: Unit root; Autoregressive coefficient; Sampling errors; Measurement errors; Like-
lihood ratio.
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1. Introduction

Measurement errors in time series data occur in different applications of ecology, eco-
nomics, finance, repeated surveys, and other disciplines. In ecological research, Shenk et al.
(1998) introduced the concept of sampling errors in the form of measurement errors. Specif-
ically, they investigated the effects of sampling variances on the first-order autoregressive
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population models in order to estimate population abundance. The concept was then stud-
ied in the context of time series population models such as the ones given in De Valpine and
Hastings (2002), Dennis et al. (2006), Buonaccorsi and Staudenmayer (2009).

In Economics and Finance, Walters and Ludwig (1981) studied effects of measure-
ment errors on the estimation of stock-recruitment relationships. Moreover, they obtained
estimates of measurement errors. Besides the applications in stock markets, the measure-
ment errors in time series data were also considered in other applications such as the U.K.
GDP (Smith et al., 1998) and the U.S. GDP (Aruoba et al., 2016).

Time series data with measurement errors also occur in the context of repeated surveys
where the actual characteristics of interest are usually not observed but are estimated by
survey direct estimates. The problem was first considered in Scott and Smith (1974) where
the authors considered an autoregressive time series model with sampling errors. The study
was then further pursued by many researchers, such as Scott et al. (1977), Bell and Hillmer
(1990) Ludwig and Walters (1981), Bell and Hillmer (1990), Staudenmayer and Buonaccorsi
(2005), Rossi and Santucci de Magistris (2018).

Beside parameter estimation, one crucial tool for autoregessive time series analysis is
the test of unit root. The benchmark unit root test was introduced by Dickey and Fuller
(1979), where they obtained the test statistic and derived the asymptotic distribution of
their test statistic under the null hypothesis of unit root. The test has been widely extended
to higher order time series models and applied in many contexts during the last few decades.
However, the test statistic was originally designed for real-time series data without accounting
for sampling errors commonly found in repeated survey data. Ignoring sampling errors could
cause biases to the test statistic and lead to a wrong conclusion of the unit root test in the
presence of sampling errors. Therefore, to avoid such biases, effects of sampling errors to
the unit root test deserve investigation and an effective adjustment to the test statistics is
required. However, to the best of our knowledge, there is no unit root test for time series
data with measurement errors available in literature.

In this paper, we investigate the effect of sampling errors on the unit root test of
Dickey and Fuller (1979). Our study suggests that ignoring sampling errors could cause biases
in the estimation of autocorrelation coefficient and the Dickey-Fuller unit root test statistics.
Thus, we propose a modification of the Dickey-Fuller test that is bias-corrected for sampling
errors. We derive its asymptotic properties, and conduct Monte Carlo simulation studies to
investigate the performance of our proposed method by considering the unbiasedness, the
probability of Type-I error, and the power of the test. Moreover, we apply the proposed
test statistics to the Current Population Survey (CPS) data on unemployment of the United
States during the period 1990 to 2013. The numerical results demonstrate that the new test
can reduce the bias of the original Dickey-Fuller test when there is a present of sampling
errors.

The organization of this paper is as follows. In Section 2, we review the Dickey-Fuller
unit root test statistic for the first-order autoregressive model. In Section 3, we propose an
adjusted estimate of the Dickey-Fuller unit root in the presence of sampling errors. In Section
4, we demonstrate Monte Carlo simulations to study the performance of the proposed test
statistic in different aspects such as bias, probability of Type-I error, and power of the test.
In Section 5, we apply the proposed test statistic to the Current Population Survey (CPS)
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data on unemployment of the United States during the period 1990 to 2013. In Section 6, we
offer some concluding remarks. Finally the proofs of theoretical properties of the proposed
test statistic and important lemmas are provided in Section 7.

2. Unit root test for AR(1) model

Consider the first order autoregressive model for the time series {Yt : t = 1, 2, . . . , T},
defined as

Yt = ρYt−1 + et, (1)

where ρ is the regression coefficient and {et} is a sequence of independent normal random
variables with mean zero and unknown variance σ2

e .
The least squares estimate ρ̂Y of the autocorrelation coefficient ρ is defined as

ρ̂Y = SY,T (1)
SY,T (0) , (2)

where SY,T (k) =
T∑

t=2
Yt−1Yt+k−1.

Dickey and Fuller (1979) constructed the unit root test statistic under the null hypothesis
that ρ = 1 as

τ̂ =
(ρ̂Y − 1)

√
T∑

t=1
Y 2

t

√
σ̂2

, (3)

where

σ̂2 = 1
T − 2

T∑
t=2

(Yt − ρ̂Y Yt−1)2.

Moreover, they obtained the asymptotic distribution of ρ̂Y as

T (ρ̂Y − 1) d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
∞∑

i=1
γ2

i Z2
i

,

where Zi
iid∼ N(0, 1) and γi = (−1)i+1 2

(2i − 1)π .

Consequently, the asymptotic distribution of the test statistic τ̂ is obtained as

τ̂
d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
√

∞∑
i=1

γ2
i Z2

i

. (4)



578
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

W. RATTANACHADJAN, J. SUNTORNCHOST AND P. LAHIRI [Vol. 22, No. 3

3. Unit root test for AR(1) with measurement errors

In this section, we consider the model in (1) when the actual time series {Yt : t =
1, 2, . . . , T} is unobserved but its predicted value from a survey {Wt : t = 1, 2, . . . , T} can
be obtained. Specifically, the model considered in this section consists of two sub-models:
the autoregressive model for the actual time series defined in (1) and the sampling model
assuming that the observed value can be written as a sum of the actual value and a sampling
error. In particular, the sampling model is

Wt = Yt + ut, (5)

where {Wt : t = 1, 2, . . . , T} is the sequence of observed variables with W0 = 0 and {ut :
t = 1, 2, . . . , T} is the sequence of sampling errors assumed to be independently normally
distributed with mean zero and known variances σ2

ut. The assumption of known sampling
variances σ2

ut often follows from the asymptotic variances of transformed direct designed-
based estimates such as in Efron and Morris (1975), Carter and Rolph (1974), Lahiri and
Suntornchost (2015), and Marhuenda Garćıa et al. (2016).

To construct an adjustment of the unit root test, we first investigate the effect of
ignoring the sampling errors to the estimations of the autocorrelation coefficient and the
Dickey- Fuller unit root test statistic. By substituting Yt with the survey estimate Wt in (2),
the naive estimate of the autocorrelation coefficient is

ρ̂W = SW,T (1)
SW,T (0)

and the naive test statistic is

τ̂naive =
(ρ̂W − 1)

√
SW,T (0)√

σ̂2
W,e

, (6)

where
σ̂2

W,e = 1
T − 2

T∑
t=2

(Wt − ρ̂W Wt−1)2.

Applying the conditional expectation, we found that

E (SW,T (0)|Yt) =
T∑

t=2
Y 2

t−1 +
T∑

t=2
σ2

u,t−1,

E (SW,T (1)|Yt) =
T∑

t=2
YtYt−1.

Therefore, by applying the first order Taylor series approximation, we can show that the
naive estimator of the autocorrelation coefficient, ρ̂W , is asymptotically biased and then
the estimator is not reliable. Hence, following Lahiri and Suntornchost (2015), we propose
an adjustment to each component in ρ̂W by removing the biases of SW,T (0) and SW,T (1).
Therefore, the proposed estimate of the autoregressive coefficient ρ is defined as

ρ̂Adj = SW,T (1)
S̃W,T (0)

,
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where S̃W,T (0) = SW,T (0) − Sσu(0), and Sσu(0) =
T∑

t=2
σ2

u,t−1. Applying the first order Taylor

series approximation, we prove in Theorem 1 that

ρ̂Adj − ρ̂Y = op(1), (7)

under the assumption ρ = 1.
Moreover, we show in Theorem 2 that T (ρ̂Adj − 1) has the same asymptotic distribution as
T (ρ̂Y − 1). In particular,

T (ρ̂Adj − 1) d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
∞∑

i=1
γ2

i Z2
i

,

where Zi
iid∼ N(0, 1) and γi = (−1)i+1 2

(2i − 1)π .

Furthermore, we construct an adjusted estimate for σ2 subject to sampling errors,
defined as

σ̂2
Adj,e = |σ̂2

W,e,1 − σ̂2
W,e,2|, (8)

where

σ̂2
W,e,1 = 1

T − 2

T∑
t=2

(Wt − ρ̂AdjWt−1)2,

and

σ̂2
W,e,2 = 1

T − 2

T∑
t=2

(
σ2

u,t + ρ̂2
Adjσ

2
u,t−1

)
.

Then, we propose an adjusted test statistic for the unit root test of the first order autore-
gressive model subject to measurement errors defined as

τ̂Adj =
(ρ̂Adj − 1)

√
S̃W,T (0)√

σ̂2
Adj,e

. (9)

Moreover, we prove in Theorem 3 that the proposed test statistic has the same asymptotic
distribution as the true estimate τ̂Y . In particular,

τ̂Adj
d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
√

∞∑
i=1

γ2
i Z2

i

, (10)

where γi = (−1)i+1 2
(2i−1)π and Zi

iid∼ N(0, 1).
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4. Monte carlo simulations

In this section, we conduct Monte Carlo simulations to study the performance of
the proposed test statistic compared to the naive test that ignores sampling errors. For
our simulation experiment, we set the true sampling variances of ut, σ2

ut in model (5), by
using estimated variances of 288 monthly survey-weighted direct estimates of the number of
unemployed workers obtained from the U.S. Current Population Survey (CPS) conducted
during the period 1990 - 2013. There are 12 simulation settings based on four selected
states with different ranges of sampling standard deviations and three different values of
the regression standard deviation σe of the autoregressive model (1). The values of σe are
specified by the ratio k = σ̄u

σe

where σ̄u is the average of sampling standard deviations defined

as σ̄u = T −1∑T
t=1 σut. The three values of k considered are 0.75, 1, and 1.25 representing the

cases where the average of standard deviations of sampling errors is smaller than, equal to,
and larger than the regression standard deviation, respectively. In addition, we consider four
different lengths (T ) of time series, T ∈ {25, 50, 100, 250}, to study asymptotic behaviours
of the test statistics. Each setting is repeated for 20,000 simulation runs. In particular,the
steps of simulation are as follows.

1. For each combination of state and k, calculate the regression variance σ2
e from σe = σ̄u

k
.

2. For each simulation setting and each l = 1, 2, . . . , 20, 000,

(a) generate the variance components and sampling errors {(u(l)
t , e

(l)
t ) : t = 1, 2, . . . , 250},

(b) calculate the time series {Y
(l)

t : t = 1, 2, . . . , 250}, from model (1) with ρ = 1,
(c) generate {W

(l)
t : t = 1, 2, . . . , 250} from model (5),

(d) calculate τ̂
(l)
true, τ̂

(l)
naive, and τ̂

(l)
Adj from the fomula in (3), (6), and (9), respectively.

To study the performances of the test statistics, we first consider different percentiles
of the estimated test statistics and the estimated values of the probability of Type-I error.
The estimates of the test statistics in different percentiles by using data from one selected
state, State 3, are presented in Tables 1 - 3, respectively for the cases of k = 0.75, 1, and
1.25.

From Tables 1 - 3, we can see that the percentiles of the true test statistics and
the proposed test statistic are close together, particularly those values between the 10th
and 90th percentiles. In contrast, the naive test statistics are much lower than the true
estimates in all cases. These results suggest that the naive estimator of the Dickey-Fuller
test statistic underestimates the true test statistic, while the proposed estimator can reduce
such underestimation.

Next, we consider the accuracy of the estimated probability of Type-I error, computed
as the portion of the number of replications in which the unit root hypothesis is rejected
when the actual time series is generated from the true autoregressive model (1) with ρ = 1.
In particular, the estimated probability of Type-I error is computed as

α̂ = 1
L

L∑
l=1

1{τ̂
(l)
· reject H0},
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Table 1: The empirical percentiles of the different test statistics for k = 0.75

Length (T ) Statistics Percentiles
1 10 25 50 75 90 99

T = 25
τ̂true -2.58 -1.61 -1.06 -0.51 0.21 0.87 2.28
τ̂naive -3.88 -2.40 -1.65 -0.98 -0.34 0.25 1.24
τ̂Adj -3.41 -1.78 -1.07 -0.46 0.32 1.24 4.16

T = 50
τ̂true -2.60 -1.68 -1.11 -0.53 0.22 0.90 2.08
τ̂naive -3.91 -2.58 -1.82 -1.06 -0.36 0.20 1.10
τ̂Adj -3.10 -1.78 -1.11 -0.47 0.31 1.17 3.21

T = 100
τ̂true -2.65 -1.61 -1.09 -0.54 0.23 0.86 2.06
τ̂naive -3.87 -2.48 -1.76 -1.05 -0.37 0.19 1.13
τ̂Adj -2.64 -1.65 -1.08 -0.48 0.27 0.97 2.41

T = 250
τtrue -2.69 -1.62 -1.12 -0.55 0.19 0.87 2.16
τ̂naive -3.88 -2.46 -1.78 -1.09 -0.38 0.22 1.12
τ̂Adj -2.56 -1.64 -1.10 -0.54 0.21 0.91 2.20

Table 2: The empirical percentiles of the different test statistics for k = 1

Length (T ) Statistics Percentiles
1 10 25 50 75 90 99

T = 25
τ̂true -2.68 -1.65 -1.09 -0.54 0.16 0.92 2.16
τ̂naive -4.25 -2.81 -2.04 -1.29 -0.59 0.03 0.94
τ̂Adj -3.87 -2.04 -1.25 -0.54 0.27 1.26 5.48

T = 50
τ̂true -2.63 -1.70 -1.15 -0.56 0.18 0.84 2.22
τ̂naive -4.59 -3.05 -2.25 -1.41 -0.68 -0.09 0.77
τ̂Adj -3.50 -1.85 -1.16 -0.51 0.29 1.20 4.94

T = 100
τ̂true -2.52 -1.67 -1.13 -0.57 0.15 0.84 1.88
τ̂naive -4.49 -3.02 -2.19 -1.40 -0.67 -0.11 0.67
τ̂Adj -2.95 -1.71 -1.10 -0.50 0.23 1.02 3.23

T = 250
τtrue -2.58 -1.62 -1.11 -0.51 0.21 0.86 2.04
τ̂naive -4.46 -2.95 -2.15 -1.34 -0.64 -0.07 0.86
τ̂Adj -2.75 -1.65 -1.09 -0.49 0.24 0.97 2.68

where 1{τ̂
(l)
· reject H0} is equal to 1 if the specific test statistic τ̂ (l)

· ∈ {τ̂true, τ̂Adj, τ̂naive} rejects
ρ = 1, and is equal to 0 for otherwise. The results for the tests with significance level
0.05 are presented in Table 4 as follows. From Table 4, we can see that the estimated
probabilities of Type-I error of the true test statistic τ̂true and the proposed test statistic
τ̂adj are approximately 0.05 in all cases. In contrast, the naive test statistic τ̂naive produces
estimated probabilities of Type-I error different from 0.05 for all cases. Specifically, the
values are approximately 0.2, 0.3, and 0.4 for the cases corresponding to k = 0.75, 1, and
1.25, respectively. This result suggests that the bias of the estimated probability of Type-I
error obtained from the naive test statistic is higher when the sampling variance is higher.
Moreover, the naive test statistic gives different conclusions from the actual test statistic.
In contrast, our proposed test provides the same conclusion as the true test even with the
large values of sampling variances.

Finally, we investigate the performance of the proposed test regarding the estimation
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Table 3: The empirical percentiles of the different test statistics for k = 1.25

Length (T ) Statistics Percentiles
1 10 25 50 75 90 99

T = 25
τ̂true -2.58 -1.62 -1.06 -0.47 0.23 0.86 2.17
τ̂naive -4.09 -2.45 -1.71 -1.00 -0.35 0.25 1.24
τ̂Adj -3.58 -1.76 -1.05 -0.44 0.34 1.33 4.53

T = 50
τ̂true -2.64 -1.61 -1.10 -0.49 0.18 0.87 1.89
τ̂naive -4.05 -2.50 -1.81 -1.08 -0.44 0.10 0.93
τ̂Adj -3.14 -1.68 -1.06 -0.44 0.31 1.14 3.16

T = 100
τ̂true -2.59 -1.59 -1.08 -0.50 0.20 0.87 2.00
τ̂naive -3.84 -2.51 -1.76 -1.06 -0.42 0.16 0.91
τ̂Adj -2.65 -1.59 -1.07 -0.46 0.20 1.03 2.34

T = 250
τ̂true -2.62 -1.59 -1.10 -0.50 0.22 0.90 1.98
τ̂naive -3.81 -2.50 -1.80 -1.07 -0.37 0.19 0.99
τ̂Adj -2.59 -1.61 -1.09 -0.49 0.22 0.96 2.21

Table 4: The empirical estimates of Type-I error

Values of the ratio k
k = 0.75 k = 1 k = 1.25

τ̂true τ̂naive τ̂Adj τ̂true τ̂naive τ̂Adj τ̂true τ̂naive τ̂Adj

State 1 0.0490 0.2090 0.0495 0.0450 0.3092 0.0485 0.0422 0.4078 0.0492
State 2 0.0450 0.1955 0.0470 0.0445 0.2895 0.0410 0.0511 0.4099 0.0656
State 3 0.0480 0.2010 0.0465 0.0485 0.3210 0.0535 0.0532 0.4104 0.0572
State 4 0.0475 0.1955 0.0455 0.0550 0.2915 0.0565 0.0473 0.4031 0.0488

of the power of the test for different values of the autocorrelation coefficient ρ, varying in
the set {0.85, 0.9, 0.95, 0.975, 0.99, 0.995}. The simulation setting in this post is the same
as previous algorithm except in the step 2(b), instead of using the data with a unit root,
the time series {Y

(l)
t : t = 1, 2, . . . , 250}, is generated from model (1) with specific ρ = ρ0,

where ρ0 ∈ {0.85, 0.9, 0.95, 0.975, 0.99, 0.995}. The numerical results of the estimated power
functions of the true test statistic τ̂true and the proposed test statistic τ̂Adj for k = 0.75, 1, 1.25
are presented in Figures 1-3, respectively.

From Figures 1-3, we can see that the estimated powers of the two tests are lower
when the true value of ρ gets closer to one. The powers of the proposed test are close to the
powers of the true test. These results suggest that the proposed test performs well in terms
of the power of the test.

5. Applications

In this section, we apply the proposed test statistic to the CPS survey data of the four
selected states, comparing with the naive test statistic ignoring sampling errors. Numerical
results including the test statistics with their associated probabilities of Type-I errors are
presented in Table 5.
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Figure 1: Empirical estimates of the power for k = 0.75

Figure 2: Empirical estimates of the power for k = 1
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Figure 3: Empirical estimates of the power for k = 1.25

Table 5: The estimated test statistics and the corresponding p-values for four
selected states

τ̂naive τ̂Adj

Calculated test Statistic p-value Calculated test Statistic p-value
State 1 -6.59 < 1 × 10−4 -1.32 0.17
State 2 -4.89 < 1 × 10−4 -0.86 0.35
State 3 -7.90 < 1 × 10−4 -1.51 0.12
State 4 -4.18 < 1 × 10−4 -0.76 0.39

From Table 5, we observe the same behavior of the two estimates as the simulation
results presented in Tables 1 – 3. In particular, the naive test provides much lower values of
the test statistic than the proposed test statistics. The naive test statistics for the four states
reject the null hypothesis and conclude that the time series are stationary. In contrast, the
proposed test provides larger values of the p-values than 0.01 in all cases. Therefore, the
proposed test suggests that the actual time series have a unit root at the significant level
0.01.

6. Conclusions and discussions

In this paper, we investigated the effects of sampling errors on the commonly used
autocorrelation coefficient estimator and the well-known Dickey-Fuller unit root test statis-
tic. We found that ignoring sampling errors could cause biases in the estimations of the
correlation coefficient and the test statistic. This will lead to a wrong conclusion of the unit
root test. Therefore, in our study, we introduced a new autocorrelation coefficient estimator
and a unit root test statistic in order to reduce biases caused by sampling errors. Moreover,
we obtained asymptotic distributions of our proposed estimator ρ̂Adj and the proposed test
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statistic τ̂Adj and showed that the two estimators have the same asymptotic distributions
as of the estimators without measurement errors. Furthermore, we conducted simulation
studies and applied the proposed method to real data. Numerical results suggested that our
proposed method have good performances in terms of bias reduction, the accuracies of the
estimated probability of Type-I error and the estimated power of the unit root test.

Acknowledgements

The authors would like to thank the editor and the referees for all valuable comments
that improve the quality of the manuscript. The first author is supported by Development
and Promotion of Science and Technology Talents (DPST) Project, administered by The
Institute for the Promotion of Teaching Science and Technology (IPST).

References

Aruoba, S. B., Diebold, F. X., Nalewaik, J., Schorfheide, F., and Song, D. (2016). Improving
GDP measurement: A measurement-error perspective. Journal of Econometrics, 191,
384–397.

Bell, W. R. and Hillmer, S. C. (1990). The time series approach to estimation for repeated
surveys. Survey Methodology, 16, 195–215.

Buonaccorsi, J. P. and Staudenmayer, J. (2009). Statistical methods to correct for obser-
vation error in a density-independent population model. Ecological Monographs, 79,
299–324.

Carter, G. M. and Rolph, J. E. (1974). Empirical Bayes methods applied to estimating fire
alarm probabilities. Journal of the American Statistical Association, 69, 880–885.

De Valpine, P. and Hastings, A. (2002). Fitting population models incorporating process
noise and observation error. Ecological Monographs, 72, 57–76.

Dennis, B., Ponciano, J. M., Lele, S. R., Taper, M. L., and Staples, D. F. (2006). Estimating
density dependence, process noise, and observation error. Ecological Monographs, 76,
323–341.

Dickey, D. A. (1976). Estimation and Hypothesis Testing in Nonstationary Time Series.
Ph.D. thesis, Iowa State University.

Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time
series with a unit root. Journal of the American Statistical Association, 74, 427–431.

Efron, B. and Morris, C. (1975). Data analysis using Stein’s estimator and its generalizations.
Journal of the American Statistical Association, 70, 311–319.

Fuller, W. A. (1976). Introduction to Statistical Time Series. John Wiley & Sons, New York.
Lahiri, P. and Suntornchost, J. (2015). Variable selection for linear mixed models with

applications in small area estimation. Sankhya B, 77, 312–320.
Ludwig, D. and Walters, C. J. (1981). Measurement errors and uncertainty in parameter

estimates for stock and recruitment. Canadian Journal of Fisheries and Aquatic
Sciences, 38, 711–720.
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APPENDIX

A. Appendix: theoretical properties

In this section, we prove asymptotic properties of the adjusted estimators of the
correlation coefficient and the unit root test statistic discussed in Section 3. We first obtain
some important moment properties in Lemma 1 and then prove the three main results
respectively in Theorem 1, Theorem 2, and Theorem 3.

Lemma 1: Under the assumption that ρ = 1, we have

1. E (SY,T (0)) = 1
2T (T − 1)σ2

e ;

2. E (SY,T (1)) = 1
2T (T − 1)σ2

e ;

3. Var (SY,T (0)) = 1
3T (T − 1)(T 2 − T + 1)σ4

e ;

4. Var (SY,T (1)) = 1
3T (T − 1)(T 2 − T + 1)σ4

e ;

5. for any positive integer k, E(S−k
Y,T (0)) = O(T −2k) ; and

6. for any positive integers l and k, E(S−k
Y,T (0)Sl

Y,T (1)) = O(T 2(l−k)).
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Proof:

1. Given that Y0 = 0,

SY,T (0) =
T −1∑
t=1

 t∑
j=1

ej

2

=
T −1∑
i=1

(T − i)e2
i +

T −1∑
i=2

i−1∑
j=1

(T − i)eiej. (11)

By the property that {ei}i≥1 is a sequence of independent random variables with zero
mean and variance σ2

e ,

E (SY,T (0)) =
T −1∑
i=1

(T − i)σ2
e = 1

2T (T − 1)σ2
e .

2. Note that

SY,T (1) = SY,T (0) +
T∑

t=2
etYt−1.

Since E(ei) = 0 and ei and Yi−1 are independent, E (SY,T (1)) = E (SY,T (0)).

3. Since {ei}i≥1 is a sequence of independent random variables with zero mean and vari-
ance σ2

e , {e2
i } and {eiej} are uncorrelated sequences of uncorrelated random variables

such that Var(e2
i ) = 2σ4

e and Var(eiej) = σ4
e for i ̸= j. From (11),

Var (SY,T (0)) =
T −1∑
i=1

(T − i)2 Var
(
e2

i

)
+

T −1∑
i=2

i−1∑
j=1

(T − i)2 Var (eiej)

= T (T − 1)(T 2 − T + 1)σ4
e .

4. Note that

Var
(

T∑
t=2

etYt−1

)
=

T∑
t=2

Var(etYt−1) + 2
∑

2≤i<j≤T

Cov(eiYi−1, ejYj−1)

= 1
2T (T − 1)σ4

e ,

and

Cov
(

SY,T (0),
T∑

t=2
etYt−1

)
= Cov

(
T∑

t=2
Y 2

t−1,
T∑

t=2
etYt−1

)

=
T∑

t=2
Cov

(
Y 2

t−1, etYt−1
)

+
T∑

t=2

t−1∑
s=2

Cov
(
Y 2

t−1, esYs−1
)

+
T∑

t=2

T∑
s=t+1

Cov
(
Y 2

t−1, esYs−1
)



588
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

W. RATTANACHADJAN, J. SUNTORNCHOST AND P. LAHIRI [Vol. 22, No. 3

= 1
3T (T − 1)(T − 2)σ4

e .

Then,

Var (SY,T (1)) = Var (SY,T (0)) + Var
(

T∑
t=2

etYt−1

)
+ 2 Cov

(
SY,T (0),

T∑
t=2

etYt−1

)

= 1
3T (T − 1)(T 2 − T + 1)σ4

e + 1
2T (T − 1)σ4

e + 2
3T (T − 1)(T − 2)σ4

e

= 1
6T (T − 1)(2T 2 + 2T − 3)σ4

e .

5. To find the order of E(SY,T (0)−k), we apply the second order Taylor approximation to
the function f(x) = x−k about µ = E(SY,T (0)) as follows.

E(SY,T (0)−k) = 1
Ek(SY,T (0))

+ k(k + 1)
2

Var(SY,T (0))
Ek+2(SY,T (0))

+ O(T −2k)

= O(T −2k) + O(T −2(k+2))O(T 4) + O(T −2k)
= O(T −2k).

6. Similarly, we apply the second order Taylor approximation to the function f(x, y) =
y−kxl about µ = (E(SY,T (1)),E(SY,T (0))) to find the order of E(SY,T (0)−kSY,T (1)l) as
follows.∣∣∣∣∣E

(
SY,T (1)l

SY,T (0)k

)∣∣∣∣∣ ≤
∣∣∣∣∣E

l(SY,T (1))
Ek(SY,T (0))

∣∣∣∣∣+
∣∣∣∣∣ l(l − 1)

2
El−2(SY,T (1))
Ek(SY,T (0))

Var(SY,T (1))
∣∣∣∣∣

+
∣∣∣∣∣k(k + 1)

2
El(SY,T (1))

Ek+2(SY,T (0))
Var(SY,T (0))

∣∣∣∣∣
+
∣∣∣∣∣2kl

El−1(SY,T (1))
Ek+1(SY,T (0))

Cov(SY,T (1), SY,T (0))
∣∣∣∣∣+ O(T −2(l−k))

≤ O(T 2(l−k)) + O(T 2(l−k)) + O(T 2(l−k)) + O(T 2(l−k)) + O(T −2(l−k))
= O(T 2(l−k)).

Theorem 1: Under the assumption that ρ = 1,

ρ̂Adj − ρ̂Y = op(1) as T goes to infinity.

Moreover,
ρ̂Adj − ρ = op(1) as T goes to infinity.

Proof: To prove the theorem, we will show that E(ρ̂Adj − ρ̂Y )2 = O(T −2) by proving the
following statements:

(1) E(ρ̂Adj − ρ̂Y ) = O(T −2),



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

UNIT ROOT TEST FOR AR(1) SUBJECT TO MEASUREMENT ERRORS 589

(2) Var(ρ̂Adj − ρ̂Y ) = O(T −2).

To prove (1), apply the second order Taylor series expansion to the function f(x, y) =
x

y
around (SY,T (1), SY,T (0)) as follows.

ρ̂Adj − ρ̂Y = 1
SY,T (0)(SW,T (1) − SY,T (1)) − SY,T (1)

S2
Y,T (0)(S̃W,T (0) − SY,T (0))

+ SY,T (1)
S3

Y,T (0)(S̃W,T (0) − SY,T (0))2

− 1
S2

Y,T (0)(SW,T (1) − SY,T (1))(S̃W,T (0) − SY,T (0)) + Op(T −2).

Then, apply the conditional expectation given Y , we have

E (ρ̂Adj − ρ̂Y |Y ) = SY,T (1)
S3

Y,T (0) Var
(
S̃W,T (0)

∣∣∣Y )
− 1

S2
Y,T (0) Cov

(
SW,T (1), S̃W,T (0)

∣∣∣Y )

= SY,T (1)
S3

Y,T (0)

(
2

T∑
t=2

σ4
u,t−1 + 4

T∑
t=2

Y 2
t−1σ

2
u,t−1

)

− 2
S2

Y,T (0)

T∑
t=2

(YtYt−1 + Yt−1Yt−2) σ2
u,t−1 + Op(T −2).

Let σ2
u = max

1≤t≤T
σ2

u,t. We can show that

|E (ρ̂Adj − ρ̂Y |Y )| ≤ 2|SY,T (1)|
S3

Y,T (0) Tσ4
u + 4|SY,T (1)|

S2
Y,T (0) σ2

u + 5
SY,T (0)σ2

u + Op(T −2). (12)

From Lemma 1, we can show that

E
(

|SY,T (1)|
S3

Y,T (0)

)
= O(T −4),

E
(

|SY,T (1)|
S2

Y,T (0)

)
= O(T −2),

E
(

1
SY,T (0)

)
= O(T −2).

Therefore, |E(ρ̂Adj − ρ̂Y )| = O(T −2).

To prove (2), we note that

Var(ρ̂Adj − ρ̂Y ) = E (Var(ρ̂Adj − ρ̂Y |Y )) + Var (E(ρ̂Adj − ρ̂Y |Y ))
≤ E (Var(ρ̂Adj|Y )) + E

(
E2(ρ̂Adj − ρ̂Y |Y )

)
. (13)
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To bound the first term of (13), we apply the first order Taylor approximation to the function
f(x, y) = x

y
around the point (SY,T (1), SY,T (0)) as follows.

SW,T (1)
S̃W,T (0)

= SY,T (1)
SY,T (0) + 1

SY,T (0)(SW,T (1) − SY,T (1)) − SY,T (1)
S2

Y,T (0)(S̃W,T (0) − SY,T (0)) + Op(T −2).

Therefore,

Var
(

SW,T (1)
S̃W,T (0)

∣∣∣∣∣Y
)

= 1
S2

Y,T (0) Var (SW,T (1)|Y ) +
S2

Y,T (1)
S4

Y,T (0) Var
(
S̃W,T (0)

∣∣∣Y )
− 2SY,T (1)

S3
Y,T (0) Cov

(
SW,T (1), S̃W,T (0)

∣∣∣Y )
+ O(T −2)

:= A1 + A2 + A3 + Op(T −2).

To bound E(A1), we notice that

Var (SW,T (1)|Y ) =
T∑

t=2
(Y 2

t σ2
u,t−1 + Y 2

t−1σ
2
u,t + σ2

u,tσ
2
u,t−1 + 2YtYt−2σ

2
u,t−1)

≤
T∑

t=2
(2Y 2

t + Y 2
t−1 + Y 2

t−2)σ2
u + Tσ4

u

≤ 6SY,T (0)σ2
u + Tσ4

u.

From Lemma 1, we have E(A1) = E
(

6σ2
u

SY,T (0) + Tσ4
u

S2
Y,T (0)

)
= O(T −2).

For the term A2, we have

Var
(
S̃W,T (0)

∣∣∣Y )
= 2

T∑
t=2

σ4
u,t−1 + 4

T∑
t=2

Y 2
t−1σ

2
u,t−1 ≤ 2Tσ4

u + 4σ2
uSY,T (0).

From Lemma 1, E(A2) = E
(

2S2
Y,T (1)

S4
Y,T (0) Tσ4

u +
4S2

Y,T (1)
S3

Y,T (0) σ2
u

)
= O(T −2). For the last term A3,

we notice that

Cov
(
SW,T (1), S̃W,T (0)

∣∣∣Y )
= 2

T∑
t=2

(YtYt−1 + Yt−1Yt−2)σ2
u,t−1 ≤ 10σ2

uSY,T (0).

Hence, E(A3) = E
(

20σ2
uSY,T (1)

S2
Y,T (0)

)
= O(T −2). This implies that E (Var(ρ̂Adj|Y )) = O(T −2).

To consider E
(
E2(ρ̂Adj − ρ̂Y |Y )

)
, we apply (12) and Cauchy-Schwartz inequality to obtain

E2 (ρ̂Adj − ρ̂Y |Y ) ≤ 3
(

2|SY,T (1)|
S3

Y,T (0) Tσ4
u

)2

+ 3
(

4|SY,T (1)|
S2

Y,T (0) σ2
u

)2

+ 3
(

5
SY,T (0)σ2

u

)2

=
12S2

Y,T (1)
S6

Y,T (0) T 2σ8
u +

48S2
Y,T (1)

S4
Y,T (0) σ4

u + 75
S2

Y,T (0)σ4
u.
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From Lemma 1, E
(
E2(ρ̂Adj − ρ̂Y |Y )

)
= O(T −4). Hence, from (13), Var(ρ̂Adj−ρ̂Y ) = O(T −2).

From (1) and (2), we have E(ρ̂Adj − ρ̂Y )2 = O(T −2). Therefore, ρ̂Adj − ρ̂Y = op(1) as
T goes to infinity. Moreover, since ρ̂Y − ρ = op(1), we have ρ̂Adj − ρ = op(1) as T goes to
infinity.

Having proved the asymptotic property of ρ̂Adj , we will prove the asymptotic distri-
bution of the test statistics τ̂Adj by first obtaining some important lemmas as follows.

Lemma 2: Under the assumption that ρ = 1 ,
1

T 2 S̃W,T (0) −
∞∑

i=1
γ2

i Z∗2
i = op(1)

as T goes to infinity, where γi = (−1)i+1 2
(2i − 1)π and Z∗

i
iid∼ N(0, σ2

e).

Proof: We know from Dickey (1976) that

1
T 2 SY,T (0) −

∞∑
i=1

γ2
i Z∗2

i = op(1),

as T goes to infinity. To prove this lemma, we will show that
1

T 2 S̃W,T (0) − 1
T 2 SY,T (0) = op(1) (14)

as T goes to infinity.
First, we notice that

S̃W,T (0)
T 2 − SY,T (0)

T 2 = 1
T 2

T∑
t=2

2Yt−1ut−1 + 1
T 2

T∑
t=2

(u2
t−1 − σ2

u,t−1).

Since E(Ytut) and E
(
u2

t − σ2
u,t

)
are equal to zero for all t,

E
(

S̃W,T (0)
T 2 − SY,T (0)

T 2

)
= 1

T 2

T∑
t=2

2E (Yt−1ut−1) + 1
T 2

T∑
t=2

E(u2
t−1 − σ2

u,t−1) = 0. (15)

Since {Ytut}1≤t≤T and {u2
t − σ2

u,t}1≤t≤T are uncorrelated random sequences,

Var
(

S̃W,T (0)
T 2 − SY,T (0)

T 2

)
= 1

T 4

T∑
t=2

4 Var(Yt−1ut−1) + 1
T 4

T∑
t=2

Var(u2
t−1 − σ2

u,t−1)

≤ 1
T 4 σ2

eσ2
u · 1

2T (T − 1) + 2
T 4 Tσ4

u (16)

= O(T −2).

Hence, from (15) and (16), (14) is proved. Consequently,

1
T 2 S̃W,T (0) −

∞∑
i=1

γ2
i Z∗2

i = op(1),

as T goes to infinity.
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Theorem 2: Under the assumption that ρ = 1, the statistics T (ρ̂adj − 1) has the same
limiting distribution as T (ρ̂Y − 1) as T goes to infinity. In a particular,

T (ρ̂Adj − 1) d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
√

∞∑
i=1

γ2
i Z2

i

,

where γi = (−1)i+1 2
(2i−1)π and Zi

iid∼ N(0, 1).
Proof: From the definition of ρ̂Adj, T (ρ̂Adj − 1) can be simplified as

T (ρ̂Adj − 1) = T

(
SW,T (1) − S̃W,T (0)

S̃W,T (0)

)
=
( 1

T 2 S̃W,T (0)
)−1 ( 1

T

(
SW,T (1) − S̃W,T (0)

))
. (17)

From (1) and (5), we have

1
T

(
SW,T (1) − S̃W,T (0)

)
= 1

T

T∑
t=2

(
(Yt−1 + ut−1)(Yt + ut − Yt−1 − ut−1) + σ2

u,t−1

)

= 1
T

T∑
t=2

(
(Yt−1 + ut−1)(et + ut − ut−1) + σ2

u,t−1

)

= 1
T

T∑
t=2

Yt−1et + 1
T

T −1∑
t=1

etuT − Y1u1

T
− 1

T

T −1∑
t=2

etut−1

+ 1
T

T∑
t=2

etut−1 + 1
T

T∑
t=2

utut−1 − 1
T

T∑
t=2

(u2
t−1 − σ2

u,t−1). (18)

Notice that each of the terms in (18) except 1
T

T∑
t=2

Yt−1et is a sum of uncorrelated random
variables with zero means and finite variances. Therefore, by the law of large number, each
of those terms converges in probability to zero.
Following the results of Fuller (1976) that

1
T

T∑
t=2

Yt−1et
d−→ 1

2

( ∞∑
i=1

√
2γiZ

∗
i

)2

− σ2
e

2 ,

where γi = (−1)i+1 2
(2i − 1)π and Z∗

i
iid∼ N(0, σ2

e), we can show that

1
T

(
SW,T (1) − S̃W,T (0)

)
d−→ 1

2

( ∞∑
i=1

√
2γiZ

∗
i

)2

− σ2
e

2 . (19)

From Lemma 2, (17), and (19),

T (ρ̂Adj − 1) d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
√

∞∑
i=1

γ2
i Z2

i

, (20)

where γi = (−1)i+1 2
(2i − 1)π and Zi

iid∼ N(0, 1).
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Lemma 3: Define the statistic σ̂2
Adj,e as

σ̂2
Adj,e = |σ̂2

W,e,1 − σ̂2
W,e,2|,

where

σ̂2
W,e,1 = 1

T − 2

T∑
t=2

(Wt − ρ̂AdjWt−1)2,

and

σ̂2
W,e,2 = 1

T − 2

T∑
t=2

(
σ2

u,t + ρ̂2
Adjσ

2
u,t−1

)
.

Then, under the assumption that ρ = 1,

σ̂2
Adj,e − σ̂2

e = op(1).

In particular, σ̂2
Adj,e − σ2

e = op(1).

Proof: Notice that

(T − 2)σ̂2
W,e,1 =

T∑
t=2

(Yt − ρ̂Y Yt−1 + (ρ̂Y − ρ̂Adj)Yt−1 + ut − ρ̂Adjut−1)2

= (T − 2)σ̂2
e + (ρ̂Y − ρ̂Adj)2SY,T (0) +

T∑
t=2

(ut − ρ̂Adjut−1)2

+ 2(ρ̂Y − ρ̂Adj)
T∑

t=2
Yt−1(ut − ρ̂Adjut−1) + 2

T∑
t=2

(Yt − ρ̂Y Yt−1)(ut − ρ̂Adjut−1)

= (T − 2)σ̂2
e + (ρ̂Y − ρ̂Adj)2SY,T (0) +

T∑
t=2

(ut − ρ̂Adjut−1)2

+ 2
T∑

t=2
(et + (ρ − ρ̂Adj)Yt−1) (ut − ρ̂Adjut−1).

Then,

(T − 2)(σ̂2
W,e,1 − σ̂2

W,e,2 − σ̂2
e) = (ρ̂Y − ρ̂Adj)2SY,T (0) +

T∑
t=2

(ut − ρ̂Adjut−1)2

+ 2
T∑

t=2
(et + (ρ − ρ̂Adj)Yt−1) (ut − ρ̂Adjut−1)

−
T∑

t=2

(
σ2

u,t + ρ̂2
Adjσ

2
u,t−1

)

= (ρ̂Y − ρ̂Adj)2SY,T (0) +
T∑

t=2
(u2

t − σ2
u,t) + ρ̂2

Adj

T∑
t=2

(u2
t−1 − σ2

u,t−1)

− 2ρ̂Adj

T∑
t=2

utut−1 + 2
T∑

t=2
etut + 2(ρY − ρ̂Adj)

T∑
t=2

Yt−1ut
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− 2ρ̂Adj

T∑
t=2

etut−1 − 2ρ̂Adj(ρY − ρ̂Adj)
T∑

t=2
Yt−1ut−1

= op(T ),

where we use Theorem 1, Lemma 2, and the weak law of large number to obtain the last
equation. Therefore, σ̂2

W,e,1 − σ̂2
W,e,2 − σ̂2

e = op(1). Consequently, σ̂2
Adj,e,1 − σ2

e = op(1).

Applying Lemma 2 - Lemma 3, we obtain the asymptotic distribution of the proposed
statistic τ̂Adj in the following theorem.

Theorem 3: Let τ̂Adj be a statistic defined by

τ̂Adj =
(ρ̂Adj − 1)

√
S̃W,T (0)√

σ̂2
Adj,e

.

Then τ̂Adj has the same asymptotic distribution as τ̂ in (4). That is

τ̂Adj
d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
√

∞∑
i=1

γ2
i Z2

i

,

where γi = (−1)i+1 2
(2i − 1)π and Zi

iid∼ N(0, 1).

Proof: From Lemma 2 and Lemma 3, we have

1
T 2 S̃W,T (0) · 1

σ̂2
Adj,e

p−→
∞∑

i=1
γ2

i

Z∗2
i

σ2
e

,

where γi = (−1)i+1 2
(2i − 1)π and Z∗

i
iid∼ N(0, σ2

e).

Then, √√√√ 1
T 2 S̃W,T (0) · 1

σ̂2
Adj,e

p−→

√√√√ ∞∑
i=1

γ2
i Z2

i , (21)

where Zi
iid∼ N(0, 1).

From (20) and (21), we can conclude that

τ̂Adj = T (ρ̂Adj − 1) ·
√√√√ 1

T 2 S̃W,T (0) · 1
σ̂2

Adj,e

d−→

( ∞∑
i=1

√
2γiZi

)2
− 1

2
√

∞∑
i=1

γ2
i Z2

i

.
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