
Statistics and Applications {ISSN 2454-7395 (online)}
Special Issue in Memory of Prof. C R Rao
Volume 22, No. 3, 2024 (New Series), pp 595–609
http://www.ssca.org.in/journal

Tests of Contrasts for Mean Vectors with Large Dimensions

Rauf Ahmad
Department of Statistics, Uppsala University, Sweden

Received: 17 April 2024; Revised: 28 September 2024; Accepted: 10 October 2024

Abstract
A test statistic for a fixed contrast comparison of high-dimensional mean vectors

is introduced. The statistic can be used when the dimension of the vectors exceeds the
sample size, and the data may not necessarily follow a multivariate normal distribution. The
components of the test statistics are defined as U -statistics with optimal properties, where
the same estimators are given equivalent, computationally highly efficient, formulation for
practical applications. The properties of the statistic are studied under a general multivariate
model and certain mild assumptions. Through simulations, the statistic is shown to have an
accurate size control and high power properties. An extension of a set of fixed orthogonal
contrasts is also discussed.
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1. Introduction

Let Xik = (Xik1, . . . , Xikp)T ∼ Fi, k = 1, . . . , ni, be a random sample of ni vectors
from ith non-degenerate p-variate distribution, denoted Fi, which need not necessarily be
multivariate normal, i = 1, . . . , g ≥ 2. Further, the g populations are assumed to be inde-
pendent, with E(Xik) = µi ∈ Rp and Cov(Xik) = Σi ∈ Rp×p, and Σi > 0, ∀ i.

Most of the testing problems in multivariate theory pertain to the two basic pa-
rameters, µi and Σi; e.g, single- and multi-sample hypotheses for µi, such as µi = 0,
µ1 = . . . = µg (g ≥ 2). These hypotheses are termed global hypotheses, and their rejection
often implies further exploration to sort out potential contributors to the rejection. For
example, for g = 1, a level profile analysis is carried out to test if all components of µ are
same, i.e. if µ1 = . . . = µp.

In practice, however, situations exist, mainly in multi-sample cases, where certain
specific contrast comparisons among µi are of interest. For example, for g = 3, it might be
of interest to test if µ1 − 2µ2 + µ3 = 0. In general, such a contrast hypothesis is formulated
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as

H0 :
g∑

i=1
ciµi = 0 vs. H1 : Not H0, (1)

with ∑g
i=1 ci = 0, a condition which is an inevitable component of the definition of a contrast.

In the aforementioned example, (c1, c2, c3) = (1, −2, 1).

Note that, for g = 2, the condition implies c2 = −c1 which, without loss of generality,
can be taken as c1 = 1 ⇒ c2 = −1, so that H0 reduces to the usual two-sample hypothesis
H0 : µ1 = µ2. Although, it is also a special form of contrast, the main advantage of contrast
testing is apparent for the case of more than two populations.

Our objective in this article is to construct tests for H0 in (1) when the dimension
p may be large, and possibly larger than the sample sizes, i.e., p ≫ ni, the Fi may be
non-normal, and Σi may be unequal. For the classical case, i.e., p < ni, with Fi assumed
multivariate normal, and often Σi = Σ ∀ i (homoscedasticity assumption), the multivariate
theory offers likelihood-ratio tests leading to Wilks’ Λ criterion, which is further related to
an F-statistic, and for moderately large sample sizes, follows an approximate χ2-distribution;
see e.g Anderson (2003).

As the likelihood-ratio testing framework collapses for high-dimensional data, par-
ticularly when p ≫ ni, new testing strategies are needed to cope with this issue. In this
context, we are interested to introduce tests of (1) for p ≫ ni under multivariate Behrens-
Fisher setting, additionally relaxing normality assumption which is replaced with alternative
mild assumptions stated below.

The test statistics are composed of estimators defined as U -statistics with optimality
properties. The same estimators are alternatively also defined as simple functions of empirical
covariance estimators, which makes them computationally very efficient. The U -statistics
version, however, helps study their theoretical properties, including limiting distribution,
conveniently, where the efficient formulation is useful for practical applications.

Whereas high-dimensional mean testing has generally attracted huge attraction in
the recent past (see a list of references in Ahmad, 2019b), problems like contrast comparison
have mostly been dealt with under the general rubric of multiple testing theory. For a related
work in the classical case, i.e., n > p, see Hayter (2014) and the references cited therein.
A general, comprehensive reference for multiple testing problems, including for large data,
containing abundant further references, is Dickhaus (2014).

Section 2 introduces test statistic for a single contrast hypothesis in (1), with an ex-
tension to a set of orthogonal contrasts in Section 3. Evaluation of the proposed tests through
simulations is given in Section 4. Some technical results are deferred to the Appendix.

2. Test of a single contrast

Given the data set up in Sec. 1, let Xi = (XT
i1, . . . , XT

ini
)T ∈ Rni×p be the data matrix

corresponding to the ith sample, so that the unbiased estimators of µi and Σi are defined as

Xi = 1
ni

XT
i 1ni

, Σ̂i = 1
ni − 1XT

i Cni
Xi, (2)
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respectively, where Cni
= Ini

− Jni
/ni is the centering matrix with Ini

as identity matrix
and Jni

= 1ni
1T

ni
with 1ni

a vector of 1s. All vectors are column vectors by default.

Further, we denote vector inner product of a, b ∈ Rp as ⟨a, b⟩ = aTb : Rp 7→ R,
so that ∥a∥2 = aTa is the (squared) norm of a, and ∥A∥2 = tr(ATA) : Rq×p 7→ R is
the Frobenius norm of A ∈ Rq×p. Moreover, ⊗ and ⊕ are Kronecker product and sum,
respectively.

To consider a test statistic for H0 in (1), we can logically begin with the point esti-
mator, ∑g

i=1 ciXi = X0, and note that, under independence,

E(X0) = µ0 =
g∑

i=1
ciµi and Cov(X0) = Σ0 =

g∑
i=1

c2
i

Σi

ni

. (3)

In the classical setting, assuming normality and homoscedasticity, a test for (1) can be
defined as T2 = c−1

0 XT
0 S−1

0 X0 with c0 = ∑g
i=1 c2

i /n2
i , where S0 = ∑g

i=1(ni − 1)Σ̂i/(n − g)
is the pooled estimator of Σ0 and n = ∑g

i=1 ni. The T2 statistic has optimality properties
under the aforementioned assumptions, but its validity rests on the invertibility of S0 which,
in turn, holds if and only if n − g > p. As this condition is not satisfied for high-dimensional
data, and definitely not when p ≫ ni, T2 collapses in this case and needs a modification.

The test statistic that we intend to propose for (1) is based on a modification of
T2-type statistics for testing different hypotheses on location parameters (see e.g Ahmad,
2014, 2019b). To see how this modification may work for the present case, first assume,
tentatively, that Σi are known and, to avoid singularity issue of their empirical estimators
at a later stage, consider the criterion

A = A1

tr(Σ0)
, (4)

with A1 = ∥X0∥2, X0, Σ0 as in (3), and tr(·) is the trace operator. It follows that

∥X0∥2 =
( g∑

i=1
ciXi

)T ( g∑
i=1

ciXi

)
=

g∑
i=1

c2
i ∥Xi∥2 +

g∑
i=1

g∑
j=1

i ̸=j

cicj⟨Xi, Xj⟩.

Partitioning ∥Xi∥2 as

∥Xi∥2 = 1
n2

i

ni∑
k=1

∥Xik∥2 + 1
n2

i

ni∑
k=1

ni∑
r=1

k ̸=r

⟨Xik, Xir⟩ = 1
ni

Ei +ni − 1
ni

Ui = Qi + Ui,

we can further write A1 as

A1 = ∥X0∥2 =
g∑

i=1
c2

i Qi +
g∑

i=1
c2

i Ui + 2
g∑

i=1

g∑
j=1

i<j

cicjUij = A11 + A12, (5)

with A11 = ∑g
i=1 c2

i Qi, where Qi = (Ei −Ui)/ni, Ei = ∑ni
k=1 ∥Xik∥2/ni. Moreover

Ui = 1
ni(ni − 1)

ni∑
k=1

ni∑
r=1

k ̸=r

⟨Xik, Xir⟩ and Uij = ⟨Xi, Xj⟩ = 1
ninj

ni∑
k=1

nj∑
l=1

⟨Xik, Xjl⟩ (6)
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are, one- and two-sample U -statistics with symmetric kernels, h(Xik, Xir) = ⟨Xik, Xir⟩ and
h(Xik, Xjl) = ⟨Xik, Xjl⟩, respectively. The motivation behind this decomposition becomes
clear from the moments of the components of A1 as summarized in the following theorem,
proved in Appendix B.1.

Theorem 1: Given the partition of A1 in (5) with

A11 =
g∑

i=1
c2

i Qi, A12 =
g∑

i=1
c2

i Ui + 2
g∑

i=1

g∑
j=1

i<j

cicjUij, (7)

we have E(A11) = tr(Σ0), E(A12) = ∥µ0∥2 and Var(A12) = 2∥Σ0∥2 + R, where

R = 4
g∑

i=1
(ciµi)T c2

i Σi

ni

(ciµi) + 4


g∑

i=1

g∑
j=1

i<j

(ciµi)T c2
jΣj

nj

(ciµi) +
g∑

i=1

g∑
j=1

i<j

(cjµj)T c2
i Σi

ni

(cjµj)



+ 8


g∑

i=1

g∑
j=1

i<j

(ciµi)T c2
jΣj

nj

(cjµj) +
g∑

i=1

g∑
j=1

i<j

(cjµj)T c2
i Σi

ni

(ciµi)



+ 8


g∑

i=1

g∑
j=1

g∑
j′=1

i<j<j′

(ciµi)T c2
jΣj

nj

(ci′µi′) +
g∑

i=1

g∑
i′=1

g∑
j=1

i<i′<j

(cjµj)T c2
i Σi

ni

(cj′µj′)


Under H0, E(A12) = 0, Var(A12) = 2∥Σ0∥2, where E(A11), Var(A11) remain same.

We observe that, E(A11) is independent of µi, hence of µ0, and E(A12) is independent
of Σi, hence of Σ0. Further, under H0, E(A12) = 0 and Var(A12) = 2∥Σ0∥2, so that

E(A) = 1 + ∥µ0∥2

tr(Σ0)
= 1 (8)

Var(A) = 2∥Σ0∥2

[tr(Σ0)]2
. (9)

From the proof in Appendix B.1, we note that we use a slight approximation for Var(A12)
since the first term in 2∥Σ0∥2 has denominator ni(ni − 1), not n2

i , which, precisely, gives
Var(A12) = 2∥Σ0∥2[1+o(1)] and Var(A) = [2∥Σ0∥2/[tr(Σ0)]2][1+o(1)]. As (ni −1)/ni makes
no difference for the final limit as ni → ∞, we skip o(1) term when the context is clear.

Note also that, Var(A11) is not reported in Theorem 1. It will be a part of main
theorem, Theorem 2, where it is shown that A11 is a simple plug-in, consistent estimator of
E(A11) = tr(Σ0) for ni, p → ∞, in the sense that A1 / tr(Σ0) and [A1 / tr(Σ0)][tr(Σ0)/ A11]
have essentially the same limit. We can thus consider the following test statistic for H0

T = A1

A11
= 1 + A12

A11
. (10)
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With normality assumption relaxed, we replace it with a general multivariate model. Given
Xik ∈ Rp, let Yik = Xik − µi, and define

Yik = ΓiZik, k = 1, . . . , ni, i = 1, . . . , g, (11)

with Γi = Σ1/2
i , Zik ∈ Rp, Zik ∼ Fi, where E(Zik) = 0p and Cov(zik) = Ip ∀ i. Here, 0p is

a vector of zeros and Ip denotes the identity matrix. We supplement Model (11) with the
following assumptions, where νis = λis/p and λis, s = 1, . . . , p, denote the eigenvalues of Σi.

Assumption 1: E(Y 4
iks) = γis ≤ γ < ∞ ∀ s = 1, . . . , p, ∀ i = 1, . . . , g, γ ∈ R+.

Assumption 2: limp→∞
∑p

s=1 νis = νi0 ≤ ν ∈ R+, ∀ i = 1, . . . , g.

Assumption 3: limni,p→∞ p/ni = ξi ≤ ξ = O(1), ∀ i = 1, . . . , g.

Assumption 4: limni→∞ ni/n = ρi ≤ ρ = O(1), ∀ i = 1, . . . , g, n = ∑g
i=1 ni.

Assumption 5: limp→∞ µT
i Σkµj/p = ϕijk ≤ ϕ = O(1), ∀ i, j, k = 1, . . . , g.

Assumption 1 helps deal with moments of quadratic forms under Model (11). Assump-
tion 2 is often used in high-dimensional inference. Assumptions 3-4 ensure a non-degenerate
limit by controlling simultaneous rates of convergence among sample sizes and in relation to
dimension. Assumption 5 is only needed under the alternative. Using Theorem 1 and the
probability convergence of A11 (see Appendix B.2), we write

T −1 = A12

tr(Σ0)
[1 + oP (1)],

with A12 as in (7), E(T −1) = ∥µ0∥2/ tr(Σ0) and

σ2
1 = 2∥Σ0∥2 + R

[tr(Σ0)]2
,

where, under H0, E(T −1) = 0, σ2
0 = 2∥Σ0∥2/[tr(Σ0)]2. Theorem 2 gives the distribution of

T̃ = (T − E(T))/σT with T̃0 as its value under H0. For proof, see Appendix B.2.

Theorem 2: Let T̃ be as defined above. Under Model (11) and Assumptions 1-5, T̃ D−→
N(0, 1), as ni, p → ∞. In particular, under H0, T̃0

D−→ N(0, 1).

For power of T̃, let Zα be the quantile of Z ∼ N(0, 1), and T̃, T̃0 be as in Theorem
2. For any ni and p, P (T̃0 ≥ Zα) = α and P (T̃ ≥ −δ + τZα) = 1 − β define the size and
power of the test, respectively, where δ = ∥µ0∥2/

√
2∥Σ0∥2 + R and τ = σ0/σ1, with σ2

0 and
σ2

1 as Var(T) under the null and alternative, respectively, as in Theorem 2. It follows, under
the assumptions, that τ → [2 + ξ−1]−1/2O(1) = O(1) and δ = ni[2 + ξ−1]−1/2O(1) = O(ni),
so that 1 − β = 1 - P [T̃ ≤ −(ni + Zα)O(1)] ⇒ 1, as ni, p → ∞.

We need to estimate Var(T). As A11
P−→ ∑g

i=1
∑∞

s=1 c2
i ξiνi0, Var(T) basically follows

from Var(A12) which is composed of ∥Σi∥2 and ∥ΓiΓj∥2, where Γi = Σ1/2
i , since, under H0,

∥Σ0∥2 =
g∑

i=1

c4
i

ni

∥Σi∥2 + 2
g∑

i=1

g∑
i=1

i<j

c2
i c

2
j

ninj

∥ΓiΓj∥2. (12)
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The estimators are defined as below, where Γ̂i = Σ̂1/2
i .

Definition 1: Estimators of ∥ΓiΓj∥2, ∥Σi∥2, under Model (11), are defined as below, where
νi = (ni − 1)/ni(ni − 2)(ni − 3), Qi = ∑ni

k=1 ∥X̃ik∥2, X̃ik = Xik − Xi, i = 1, . . . , g.

Eij = ∥Γ̂iΓ̂j∥2, (13)
Ei = νi

[
(ni − 1)(ni − 2)∥Σ̂i∥2 + [∥Γ̂i∥2]2 − n Qi

]
, (14)

As functions of empirical Σ̂i, the estimators are computationally very efficient. They
are unbiased and high-dimensional consistent. To prove these properties, however, an alter-
native formulation of the same estimators, in terms of U -statistics, is very helpful.

Given Model (11), let Dikr = Yik −Yir with E(Dikr) = 0, Cov(Dikr) = 2Σi = 2∥Γi∥2,
and Σ̂i can be written as U -statistic with symmetric kernel h(Xik, Xir) = DikrDT

ikr/2, i.e.,

Σ̂i = 1
Q(ni)

ni∑
k=1

ni∑
r=1

k ̸=r

1
2DikrDT

ikr

where Q(ni) = ni(ni − 1). Denote further Aijkrls = DT
ikrDjls and Aikrls = DT

ikrDils with
E(A2

ijklrs) = 4∥ΓiΓj∥2, E(A2
ikrls) = 4∥Σi∥2. The U -statistics forms of Eij and Ei follow as

Eij = 1
Q(ni)Q(nj)

ni∑
k=1

ni∑
r=1

π(k,r)

nj∑
l=1

nj∑
s=1

π(l,s)

1
4 A2

ijklrs (15)

Ei = 1
P (ni)

ni∑
k=1

ni∑
r=1

ni∑
l=1

ni∑
s=1

π(k,r,l,s)

Bikrls, (16)

where P (ni) = ni(ni − 1)(ni − 2)(ni − 3), Bikrls = A2
ikrls + A2

iksrl + A2
ilrsk and π(·) implies all

involved indices pairwise unequal. Note that, Ei and Eij are one- and two-sample U -statistics
with symmetric kernels Bikrls /4 and A2

ijklrs /4, respectively; see e.g Koroljuk and Borovskich
(1994). The following theorem summarizes the properties of estimators. The proof of this
theorem is a tedious computational exercise of projection properties of U -statistics and is
omitted for simplicity; see e.g Ahmad (2017).

Theorem 3: Given Model (11), Assumption 1, and Eij, Ei as in (15)-(16). Then, E(Eij) =
∥ΓiΓj∥2 and E(Ei) = ∥Σi∥2. Further,

Var(Eij) = 2
(ni − 1)(nj − 1)

[
(ni + nj − 1)∥ΣiΣj∥2 +

{
∥ΓiΓj∥2

}2
+ M2O(n) + M3O(1)

]
,

Var(Ei) = 4
P (ni)

[
a(ni)∥Σ2

i ∥2 + b(ni)
{
∥Σi∥2

}2
+ M2O(n3

i ) + M3O(n2
i )
]
,

Cov(Eij, Ei) = 4
Q(ni)

[
ni tr(Σ3

i Σj) + M2O(ni)
]

,

where a(ni) = 2n3
i − 9n2

i + 9ni − 16, b(ni) = n2
i − 3ni + 8, P (ni) = ni(ni − 1)(ni − 2)(ni − 3),

Q(ni) = ni(ni − 1), and M2, M3 are given in Lemma 1.
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Note that, less emphasis on terms involving M2, M3 etc. is due to the fact that they
eventually vanish, exactly under normality, and asymptotically under Model (11) and the
assumptions. For the rest, Theorem 3 yields Var(Ei / E(Ei)) ≤ O(1/ni), Var(Eij / E(Eij)) ≤
O(1/ni+1/nj), Cov(Ei / E(Ei), Eij / E(Eij)) ≤ O(1/ni), i.e., the ratios are uniformly bounded
in p. This, in particular, implies that p does not influence the non-degenerate limit of T̃ in
Theorem 2. Following corollary can now replace Theorem 2 for practical applications.

Corollary 3.1: Theorem 2 remains valid if Var(T̃) is replaced with V̂ar(T̃) obtained by
substituting Eij for ∥ΓiΓj∥2 and Ei for ∥Σi∥2 in (12).

3. Test of a set of orthogonal contrasts

Often, the researcher is interested to simultaneously test a set of multiple contrasts.
In principal, this set can be of any cardinality, but only a set of orthogonal contrasts makes
sense since any contrast beyond orthogonal set will carry redundant information. For g
populations, an orthogonal set consists of m = g − 1 contrasts. We are thus interested in
simultaneous testing of a set of m contrasts, i.e.,

H0q :
g∑

i=1
ciqµiq = 0 vs. H1q : Not H0q, q = 1, . . . , m, (17)

where ∑g
i=1 ciq = 0, as before, with additional orthogonality constraint, ∑g

i=1 ciqciq′ = 0,
q ̸= q′. Extending the notations in Sec. 2, we can re-write the set of hypotheses in (17) as

H0s : Ξs = 0 vs. H1s : Not H0s, (18)

where s refers to the set of contrasts, with Ξs = (µT
01, . . . , µT

0m), µ0q = ∑g
i=1 ciqµiq. Letting

X0q = ∑g
i=1 ciqXiq estimate µ0q, an estimator of Ξs ∈ Rm×p follows as

Ms = (XT
01, . . . , XT

0m) ∈ Rm×p.

Denoting Σ0q = ∑g
i=1 c2

iqΣiq/ni and using Cov(X0q, X0q′) = 0 for q ̸= q′„ we get

E(Ms) = Ξs and Cov(Ms) = Σs = diag(Σ01, . . . , Σ0m) = ⊕m
q=1Σ0q,

It is obvious then that the theory for m orthogonal contrasts extends straightforwardly from
that of one contrast in Sec. 2, where the orthogonality condition particularly simplifies the
computations. Thus, partitioning ∥X0q∥2 similarly as ∥X0∥2 in Sec. 2, we have

∥X0q∥2 =
g∑

i=1
c2

iqQiq +
g∑

i=1
c2

iqUiq + 2
g∑

i=1

g∑
j=1

i<j

ciqcjqUijq = A11q + A12q,

with
A11q =

g∑
i=1

c2
iqQiq, A12q =

g∑
i=1

c2
iqUiq + 2

g∑
i=1

g∑
j=1

i<j

ciqcjqUijq,

where Qiq = (Eiq − Uiq)/ni, Eiq, Uiq, Uijq are defined as for single contrast, except for each
q now. The rest of the theory proceeds likewise, so that Theorem 2 and Corollary 3.1 stand
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Table 1: Estimated size of T̃ for three distributions with three covariance triplets

Normal Uniform Exponential
n1, n2, n3 p S1 S2 S3 S1 S2 S3 S1 S2 S3

10, 20, 30 50 0.061 0.044 0.060 0.048 0.060 0.052 0.062 0.058 0.065
100 0.051 0.051 0.057 0.052 0.054 0.056 0.055 0.055 0.058
300 0.048 0.055 0.054 0.055 0.055 0.053 0.057 0.052 0.054
500 0.050 0.056 0.049 0.051 0.055 0.053 0.055 0.057 0.057

1000 0.044 0.052 0.051 0.046 0.048 0.051 0.052 0.054 0.055
20, 30, 50 50 0.050 0.048 0.045 0.049 0.052 0.045 0.049 0.057 0.054

100 0.052 0.057 0.046 0.056 0.055 0.047 0.047 0.055 0.052
300 0.054 0.053 0.054 0.052 0.048 0.051 0.055 0.054 0.053
500 0.047 0.050 0.048 0.055 0.052 0.052 0.058 0.056 0.055

1000 0.051 0.053 0.055 0.053 0.053 0.048 0.051 0.048 0.051
30, 50, 100 50 0.054 0.053 0.048 0.051 0.054 0.052 0.056 0.049 0.048

100 0.057 0.049 0.055 0.050 0.051 0.055 0.055 0.054 0.052
300 0.055 0.048 0.052 0.055 0.054 0.050 0.053 0.052 0.052
500 0.055 0.047 0.050 0.054 0.052 0.051 0.053 0.050 0.047

1000 0.049 0.051 0.053 0.049 0.051 0.052 0.049 0.053 0.051

valid for any Tq defined for qth contrast, using corresponding A11q and A12q. We therefore
leave the unnecessarily repetitive details, and rather focus on the following important re-
marks which highlights the essential differences with the single contrast case.

First, the emphasis on making an orthogonal set of contrasts is due to the fact that
such a set picks all information from the data without retaining much redundancies. It
is further substantiated by the orthogonality condition, ∑g

i=1 ciqciq′ = 0, which, because of∑g
i=1 ciq = 0, mimics the numerator of a covariance.

Second, the theory of set of orthogonal contrasts pertains to the case of planned
comparisons within the ambit of multiple testing. It differs from, e.g, Scheffé’s method of all
possible contrasts (Scheffé, 1959, Ch. 3), originally devised as a post-hoc strategy after global
univariate ANOVA hypothesis is rejected. Scheffé’s method allows infinitely many contrasts,
although practically only a finite set is recommended and practically used in order to keep
better error control.

Third, since many hypotheses are tested simultaneously, an error control mechanism is
called for. With g relatively small or moderate in practice, a simple Bonferroni adjustment
would suffice, which controls the family wise error rate in the strong sense. Otherwise,
some researchers recommend a comparison-wise error control. For comprehensive theoretical
results on multiple testing and error control procedures, see Dickhaus (2014). For a high-
dimensional multiple testing framework, see Ahmad (2019a) and the references therein.

4. Simulations

We assess the accuracy of the proposed test statistics, particularly focusing on its
robustness to normality assumption and validity under high-dimensional settings. For sim-
plicity, we consider T̃ in Theorem 2 for g = 3. We generate p-dimensional random vectors
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of sizes (n1, n2, n3) from normal, exponential and uniform distributions, where

n1 ∈ {10, 20, 30}, n2 = {20, 30, 50}, n3 = {30, 50, 100}, p = {50, 100, 300, 500, 1000}.

All (n1, n2, n3, p) quadruplets are used under three triplets of covariance structures, denoted,
S1: (CS, AR, UN), S2: (CS1, CS2, AR) and S3: (CS, AR1, AR2), which are composed of
compound symmetric (CS), Autoregressive of order 1, AR(1), and unstructured (UN) ma-
trices. They are defined as CS: Σ = (1 − ρ)Ip + ρJp, AR: Cov(Xk, Xl) = κρ|k−l|, ∀ k, l, and
UN: Σ = (σij)p

i,j=1 with σij = 1(1)p (i = j) and ρij = (i − 1)/p (i > j), respectively. Here,
I denotes identity matrix and J is a matrix of 1s. We use κ = 1 for all three triplets, where
CS1, CS2, and AR1, AR2, refer to CS and AR with ρ = 0.3 and ρ = 0.7, respectively.

The nominal level is set at α = 0.05, for both size and power. Moreover, for power, we
set H1 by letting µ1 deviate from H0 in a monotonically increasing fashion, i.e., µ1 = δrp1,
p1 = (1/p, . . . , p/p), δr = 0.2(0.2)1. Finally, we used two contrast vectors, (c1, c2, c3) = (1,
0, -1) and (1, -2, 1), and due to similarity of results, only the first case is discussed here.

The estimated size and power are obtained by averaging over 2000 simulations. Table
1 reports the size for all distributions and Tables 2-3 report the power, respectively, for normal
and uniform distributions. The power results for exponential distributions were very similar
to those for uniform, and are therefore not reported.

All simulations are carried out in SAS/IML where data for the three multivariate dis-
tributions are generated by using appropriate arguments for corresponding built-in SAS/IML
functions. For this, first, by using the square root of the assumed covariance matrix (e.g,
compound symmetry), a sequence of multivariate normal vectors is generated which follows
this structure. Then, by probability integral transform, it is converted into a uniform se-
quence, say U , which is adjusted for its mean and variance by subtracting a mean vector
of length p (with each entry 1/2) and multiplying by the square root of a p × p diagonal

Table 2: Estimated power of T̃ for normal distribution with three covariance triplets

S1 S2 S3
n1, n2, n3 p/δ 0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

10, 20, 30 50 0.151 0.963 1.000 0.146 0.962 1.000 0.131 0.923 1.000
100 0.203 0.998 1.000 0.195 0.985 1.000 0.187 0.998 1.000
300 0.351 1.000 1.000 0.329 1.000 1.000 0.345 1.000 1.000
500 0.441 1.000 1.000 0.461 1.000 1.000 0.438 1.000 1.000

1000 0.528 1.000 1.000 0.545 1.000 1.000 0.582 1.000 1.000
20, 30, 50 50 0.263 1.000 1.000 0.269 1.000 1.000 0.252 1.000 1.000

100 0.385 1.000 1.000 0.392 1.000 1.000 0.368 1.000 1.000
300 0.700 1.000 1.000 0.699 1.000 1.000 0.714 1.000 1.000
500 0.865 1.000 1.000 0.866 1.000 1.000 0.831 1.000 1.000

1000 0.942 1.000 1.000 0.998 1.000 1.000 0.917 1.000 1.000
30, 50, 100 50 0.426 1.000 1.000 0.435 1.000 1.000 0.423 1.000 1.000

100 0.637 1.000 1.000 0.647 1.000 1.000 0.649 1.000 1.000
300 0.956 1.000 1.000 0.948 1.000 1.000 0.947 1.000 1.000
500 1.000 1.000 1.000 0.994 1.000 1.000 0.999 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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covariance matrix (with each diagonal entry 1/12). The exponential distribution follows by
an additional log-transformation of U followed by its corresponding adjustment.

We observe accurate size control under all parameters. In particular, the performance
for small or moderate sample sizes and for increasing dimension, for all covariance triplets,
is noteworthy. A slight fluctuation of size can be seen for the exponential distribution but it
stabilizes itself for even moderate sample sizes. Of particular mention is the power which is
not only reasonably high, but also increases for increasing p as well as for increasing ni.

The performance of the statistic for non-normal cases further implies its robustness
under the general model. The overall performance of the statistic supports its use in practice
for high-dimensional data with moderate sample sizes and departures from normality.

Table 3: Estimated power of T̃ for uniform distribution with three covariance triplets

S1 S2 S3
n1, n2, n3 p/δ 0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

10, 20, 30 50 0.143 0.961 1.000 0.134 0.965 1.000 0.142 0.956 1.000
100 0.198 0.995 1.000 0.190 0.998 1.000 0.181 0.999 1.000
300 0.315 1.000 1.000 0.329 1.000 1.000 0.351 1.000 1.000
500 0.463 1.000 1.000 0.472 1.000 1.000 0.446 1.000 1.000

1000 0.586 1.000 1.000 0.619 1.000 1.000 0.530 1.000 1.000
20, 30, 50 50 0.255 1.000 1.000 0.240 0.998 1.000 0.243 1.000 1.000

100 0.349 1.000 1.000 0.368 1.000 1.000 0.368 1.000 1.000
300 0.697 1.000 1.000 0.686 1.000 1.000 0.705 1.000 1.000
500 0.884 1.000 1.000 0.805 1.000 1.000 0.811 1.000 1.000

1000 0.883 1.000 1.000 0.936 1.000 1.000 0.960 1.000 1.000
30, 50, 100 50 0.412 1.000 1.000 0.415 1.000 1.000 0.447 1.000 1.000

100 0.660 1.000 1.000 0.618 1.000 1.000 0.628 1.000 1.000
300 0.957 1.000 1.000 0.958 1.000 1.000 0.954 1.000 1.000
500 0.998 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5. Discussion and remarks

A test statistic for contrast comparison of mean vectors is introduced when the di-
mension of the vectors is large, even exceeding the number of vectors. Relaxing normality
assumptions, properties of the test statistic, including its limit under high-dimensional set
up, is provided for a general multivariate model and a few mild assumptions. The statis-
tic is simple and composed of computationally efficient estimators. Simulations are used
to demonstrate the theoretical properties of the test statistic. An extension to a set of
orthogonal contrasts is also given.

Acknowledgements

The author is thankful to the editors, and particularly to a reviewer whose comments
helped improve the section on simulations.



2024]
SPECIAL ISSUE IN MEMORY OF PROF. C R RAO

TESTING HIGH DIMENSIONAL CONTRASTS 605

References

Ahmad, R. (2014). A U -statistic approach for a high-dimensional two-sample mean testing
problem under non-normality and Behrens-Fisher setting. Annals of the Institute of
Statistical Mathematics, 66, 33-61.

Ahmad, R. (2017). Location-invariant multi-sample U -tests for covariance matrices with
large dimension. Scandinavian Journal of Statistics, 44, 500-523.

Ahmad, R. (2019a). Multiple comparisons of high-dimensional mean vectors under general
conditions. Journal of Statistical Computations and Simulation, 89, 1044-1059.

Ahmad, R. (2019b). A unified approach to testing mean vectors with large dimensions. AStA:
Advances in Statistical Analysis, 103, 593-618.

Ahmad, R. (2022). Tests for proportionality of matrices with large dimension. Journal of
Multivariate Analysis, 189, 104865.

Anderson, T. W. (2003). Introduction to Multivariate Statistical Analysis, 3rd edition, Wiley
New York.

Dickhaus T. (2014). Simultaneous Statistical Inference. Springer, New York.
Hayter, A. J. (2014). Inferences on linear combinations of normal means with unknown and

unequal variances. Sankhya, 76A, 257-279.
Jiang, J. (2010). Large Sample Techniques for Statistics. Springer, New York.
Koroljuk, V. S. and Borovskich, Y.V. (1994). Theory of U-statistics. Kluwer Press, Dordrecht.
Lee, A. J. (1990). U-Statistics: Theory & Practice, Marcel Dekker, New York.
Mardia, K. V, J. T. Kent, and C. C. Taylor (2024). Multivariate Analysis, 2nd edition, Wiley,

New York.
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APPENDIX

A. Some basic results

Lemma 1: For Zik ∈ Rp, k = 1, . . . , ni, defined in Model (11), let ZT
ikZik and ZT

ikZir, k ̸= r,
be quadratic and bilinear form of independent components from sample i, and ZT

ikZjl, k ̸= l,
i ̸= j, be the bilinear form composed of vectors from two independent samples. Also let γ
be as defined in Assumption 1 and ⊙ denotes the Hadamard product. Then E(ZT

ikZir) = 0,
E(ZT

ikZjl) = 0, E(ZT
ikZik) = ∥Γi∥2, E(ZT

ikZir)2 = ∥Σi∥2, E(ZT
ikZjl)2 = ∥ΓiΓj∥2. Further,

E(ZT
ikZik)2 = 2∥Σi∥2 + [∥Γi∥2]2 + M1

E(ZT
ikΣZik)2 = 2∥Σ2

i ∥2 + [∥Σi∥2]2 + M2

E(ZT
ikZir)4 = 6∥Σ2

i ∥2 + 3[∥Σi∥2]2 + M3

E(ZT
ikZjl)4 = 6∥ΣiΣj∥2 + 3[∥ΓiΓj∥2]2 + M4,

with M1 = (γ − 3) tr(Σi ⊙ Σi), M2 = (γi − 3) tr(Σ2
i ⊙ Σ2

i ), M3 = 6(γ − 3) tr(Σ2
i ⊙ Σ2

i ) +
(γi − 3)2 tr(Σi ⊙ Σi)2, and M4 = 6(γ − 3) tr(Σ2

i ⊙ Σ2
j) + (γ − 3)2 tr(Σi ⊙ Σi) tr(Σj ⊙ Σj).

All moments in Lemma 1 reduce to those under normality for γ = 3; see Searle (1971).

Lemma 2: (Jiang, 2010, Page 183) Let Y1, Y2, . . . be iid r.vs. with E(Yi) = 0, Var(Yi) = 1,
and bni be constants, 1 ≤ i ≤ n. Then ∑n

i=1 bniYi
D−→ N(0, 1) as n → ∞, if maxi b2

ni → 0.

B. Main proofs

B.1. Proof of theorem 1

With E(Qi) = ∥Γi∥2/ni, E(Ui) = ∥µi∥2, E(Uij) = ⟨µi, µj⟩, we get, by independence,

E(A11) =
g∑

i=1
c2

i ∥Γi∥2/ni = tr(Σ0)

E(A12) =
g∑

i=1
c2

i ∥µi∥2 + 2
g∑

i=1

g∑
j=1

i<j

cicj⟨µi, µj⟩ =
( g∑

i=1
ciµi

)T ( g∑
i=1

ciµi

)
= ∥µ0∥2.

Var(A12) = Var
 g∑

i=1
c2

i Ui + 2
∑
i<j

cicjUij



= Var
( g∑

i=1
c2

i Ui

)
+ 4 Var


g∑

i=1

g∑
j=1

i<j

cicjUij

+ 4 Cov


g∑

i=1
c2

i Ui,
g∑

i=1

g∑
j=1

i<j

cicjUij


=

g∑
i=1

c4
i Var(U)i + 4

g∑
i=1

g∑
j=1

i<j

c2
i c

2
j Var(Uij) + 8

g∑
i=1

g∑
j=1

g∑
j′=1

i<j<j′

c2
i cjcj′ Cov(Uij, Uij′)

+ 8
g∑

i=1

g∑
i′=1

g∑
j=1

i<i′<j

cici′c2
j Cov(Uij, Ui′j) + 4

g∑
i=1

g∑
j=1

i<j

c3
i cj Cov(Ui, Uij) + 4

g∑
i=1

g∑
j=1

i<j

c3
i cj

Cov(Uj, Uij)
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where the remaining covariances vanish when all indices are unequal. Using the second order
moments of one- and two-sample U -statistics (see e.g Koroljuk and Borovskich, 1994), i.e.,

Var(Uni
) = 2

[
2(ni − 1)µT

i Σiµi + ∥Σi∥2
]

/ni(ni − 1)
Var(Uninj

) = [niµ
T
i Σjµi + njµ

T
j Σiµj + ∥ΓiΓj∥2]/ninj

with (see also Ahmad, 2019b) Cov(Uni
, Uninj

) = 2µT
j Σiµi/ni, Cov(Unj

, Uninj
) = 2µT

i Σjµj/nj,
Cov(Uninj

, Uninj′ ) = µT
j Σiµj′/ni, and Cov(Uninj

, Uni′ nj
) = µT

i Σjµi′/nj, we get

Var(A12) = 2
g∑

i=1

c4
i ∥Σi∥2

ni(ni − 1) + 4
g∑

i=1

g∑
j=1

i<j

c2
i c

2
j∥ΓiΓj∥2

ninj

+ 4
g∑

i=1

c4
i µ

T
i Σiµi

ni

+ 4


g∑

i=1

g∑
j=1

i<j

c2
i c

2
jµ

T
i Σjµi

nj

+
g∑

i=1

g∑
j=1

i<j

c2
jc

2
i µ

T
j Σiµj

ni



+ 8


g∑

i=1

g∑
j=1

i<j

cic
3
jµ

T
i Σjµj

nj

+
g∑

i=1

g∑
j=1

i<j

c3
i cjµ

T
j Σiµi

ni



+ 8


g∑

i=1

g∑
j=1

g∑
j′=1

i<j<j′

c2
i cjcj′µT

j Σiµj′

ni

+
g∑

i=1

g∑
i′=1

g∑
j=1

i<i′<j

cici′c2
jµ

T
i Σjµi′

nj

 .

Slightly re-arranging the terms, we get the required expression as

Var(A12) = 2
g∑

i=1
c4

i

∥Σi∥2

ni(ni − 1) + 4
g∑

i=1

g∑
j=1

i<j

c2
i c

2
j

∥ΓiΓj∥2

ninj

+ 4
g∑

i=1
(ciµi)T c2

i Σi

ni

(ciµi)

+ 4


g∑

i=1

g∑
j=1

i<j

(ciµi)T c2
jΣj

nj

(ciµi) +
g∑

i=1

g∑
j=1

i<j

(cjµj)T c2
i Σi

ni

(cjµj)



+ 8


g∑

i=1

g∑
j=1

i<j

(ciµi)T c2
jΣj

nj

(cjµj) +
g∑

i=1

g∑
j=1

i<j

(cjµj)T c2
i Σi

ni

(ciµi)



+ 8


g∑

i=1

g∑
j=1

g∑
j′=1

i<i′<j

(ciµi)T c2
jΣj

nj

(ci′µi′) +
g∑

i=1

g∑
i′=1

g∑
j=1

i<j<j′

(cjµj)T c2
i Σi

ni

(cj′µj′)


= 2

g∑
i=1

c4
i

∥Σi∥2

ni(ni − 1) + 4
g∑

i=1

g∑
j=1

i<j

c2
i c

2
j

∥ΓiΓj∥2

ninj

. (19)
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B.2. Proof of theorem 2

The strategy, as explained around Theorem 2, is to combine the consistency of A11 and
weak limit of A12. First, E(Ei) = tr(Σi)/ni + ∥µi∥2, E(Ui) = ∥µi∥2, give E(Qi) = tr(Σi)/ni,
independent of µi. As ci are known constants, we get, for A11 = ∑g

i=1 c2
i Qi, by independence,

Var(A11) =
g∑

i=1
c4

i Var(Qi),

where Qi = (Ei −Ui)/ni. It thus suffices to focus on Qi. From Lemma 1 and Sec. B.1,

Var(Qi) ≤ 1
n2

i

{Var(Ei) + Var(Ui)} = 1
n2

i

{
1
ni

Var(∥Xik∥2) + 2∥Σi∥2

ni(ni − 1)

}

≤ 1
n2

i

{
(γi − 1)∥Σi∥2

ni

+ 2∥Σi∥2

ni(ni − 1)

}
= γi + 1

n3
i

∥Σi∥2

≤ (γi + 1)c2
i O

( 1
ni

)
,

under the assumptions. It proves the consistency of Qi, hence of A11, as ni, p → ∞. Now
consider T in (10) which, using the consistency of A11, can be written as

T −1 = A12

tr(Σ0)
· tr(Σ0)

A11
= A12

tr(Σ0)
[1 + oP (1)].

Using moments in Sec. B.1 and, for convenience, ignoring the oP (1) factor, we have

E(T −1) = ∥µ0∥2

tr(Σ0)
, σ2

1 = 2∥Σ0∥2 + R
[tr(Σ0)]2

,

which, under H0, reduce, respectively, to E(T −1) = 0, σ2
0 = 2∥Σ0∥2/[tr(Σ0)]2, where R is

given in Theorem 1. Denote U = (UT
1 , UT

2 )T, where the sub-vectors,

U1 = (c2
1U1, . . . , c2

gUg)T, U2 = (c1c2U12, . . . , c1cgU1g, c2c1U21, c2c3U23, . . . , cg−1cgUg−1,g)T

are composed of one- and two-sample U -statistics of all distinct pairs, respectively. We can
write A12 = 1T

GU, with 1G a vector of all 1s of dimension G = g + g(g − 1) = g2. Note that,
elements in U2 such as U12 and U21 are same, by symmetry of the kernel, but are repeated
to count all possible cases, so that A12 can be represented as a linear combination of the
entire vector U. We note that E(A12) = 1T E(U) = ∥µ0∥2 and Var(A12) = 1T Cov(U)1 =
2∥Σ0∥2 + R, as in Theorem 1, where

Cov(U) =
(

Cov(U1) Cov(U1, U2)
Cov(U2, U1) Cov(U2)

)
.

It follows that Cov(U1) and Cov(U2), on the diagonal of Cov(U), lead to 2∥Σ0∥2 in Var(A12),
where Cov(U1, U2) leads to R. Further, under independence, Cov(U1) is a diagonal matrix,
and off-diagonal elements of Cov(U2), i.e., Cov(Uij, Ui′j′), are also zero when i ̸= i′, j ̸= j′.
The rest of the terms in Cov(U) are of the form, e.g, Cov(Uij, Ui′j) = µT

i Σjµi′/ni, which
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constitute R and, under the assumptions, are uniformly bounded in the limit, and the same
holds for the elements of off-diagonal blocks, Cov(U1, U2). However, R = 0 under H0, and
also R /[tr(Σ0)]2 → 0 asymptotically under H1, so that σ2

1/σ2
0 → 1 in the limit. Hence,

Cov(U)/[tr(Σ0)]2 can be considered as a diagonal matrix for the limit.

Further, E(T −1) is uniformly bounded, and so is 2∥Σ0∥2/[tr(Σ0)]2 ≤ 2, under the
assumptions, where these bounds remain intact for any p, so that we can use a sequential
limit. Writing 1T(U − E(U)) = A12 − E(A12), with corresponding elements Ui − E(Ui) and
Uij − E(Uij), and associated kernels, ⟨Xik, Xir⟩ − ∥µi∥2, and ⟨Xik, Xjl⟩ − ⟨µi, µj⟩, it follows,
from the asymptotic theory of U -statistics (Koroljuk and Borovskich, 1994), that, for any p,

nic
2
i Ui

D−→
p∑

s=1
λis(z2

is − 1) and √
ninjUninj

D−→
p∑

s=1
λisλjsziszjs,

as ni → ∞, where zis, zjs are iid N(0, 1) variables, and independent of each other, and λis

are the eigenvalues of Σi. Now, taking p and the denominator into account, and applying
Lemma 2 for p → ∞, the required limit follows by a simple application of the Cramér-Wold
device and Slutsky’s theorem (van der Vaart, 1998), as was similarly done in Ahmad (2019b).
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