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Abstract

In this work, we are interested in constructing small composite design for
a second-order response surface. A two-stage method is proposed. A proper
first-order design with small number of runs would be first selected and then the
remaining design points are added, according to an optimal criterion. When the
second-order polynomial model is adopted in the second stage, unlike the previous
works for small composite designs, not only the proposed method reduces the
number of runs for the first-order designs but also decrease the number of adding
design points. Here our two-stage method is to find the conditionally optimal small
composite designs with only one center point, and a simulated annealing algorithm
is used for finding these designs numerically. Based on various types of first-order
designs, the corresponding composite designs are found according to D-optimal
criterion. These designs are then compared with other small composite designs and
minimal-point designs. It is shown that the proposed composite designs perform
well in general. In cases where they are not D-optimal, they have reasonably high
D-efficiencies. Furthermore, our construction method can be easy extended to the
composite designs with more than one center points and to adopt other optimal
criteria.

Key words: Central composite design; D-optimality; Point efficiency; Simulated

annealing algorithm.

1 Introduction

Response surface methodology (RSM) is connected with fitting a
local response surface by a typically small set of observations, and one
of the main purposes of RSM is to determine which level combinations
of the k input variables (or factors), x1, · · · , xk, will optimize the re-
sponse, y. The challenge of RSM is that the functional relationship
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between y and x1, · · · , xk is “unknown”. Under certain smooth condi-
tions, this response function may be approximated well by lower-order
polynomial models over a limited experimental region, X . Usually the
first-order polynomial model is employed at the initial stage, i.e.

y = β0 + β1x1 + · · ·+ βkxk + ε,

where ε is a white noise. If surface curvature exists, then the first-order
polynomial model would be modified by adding higher-order terms
into the model. Therefore, we might fit a second-order polynomial
model of

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

∑

1≤i<j≤k

βijxixj + ε,

and there are totally p = 1
2
(k + 1)(k + 2) parameters in the second-

order polynomial model.
One of the popular second-order designs is the central composite

design (CCD) introduced by Box and Wilson (1951). There are three
portions of a CCD: a 2k factorial (or fractional factorial with resolu-
tion V ) design; 2k axial points at a distance α from origin, and center
points. Here the 2k factorial (or fractional factorial with resolution
V ) design and center points are used for fitting the first-order poly-
nomial model and detect the exist of the surface curvature. The 2k
axial points are then added when the second-order terms are further
incorporated. Hence a CCD is extremely useful and powerful in se-
quential experimentations. However, the total number of the design
points (runs) of a CCD is fairly large, especially when k is large. Thus,
small composite designs seem more appropriate, especially when ex-
perimentation is expensive, difficult, or time-consuming. Searching
small composite designs has received a great deal of attention in the
literature. Keeping the 2k axial points fixed, the first-order designs
of CCDs have been replaced by the other small designs, for example:
fractional factorial designs with resolution III∗ (Hartley, 1959; Draper
and Lin, 1990b); irregular fractions of 2k factorial designs (Westlake,
1965), and Plackett and Burman designs (Draper, 1985, and Draper
and Lin, 1990a). From Table 1 in Draper and Lin (1990a), the num-
ber of design points of these small composite designs are close to p
(the minimal number of design points). For example, with one center
point, the small composite designs of Hartley (1959) for k = 2, 3 and
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6 contain p + 1 supports. But for the other cases, the number of sup-
ports is larger than p + 1, because of the limitation of the number of
runs for the combinatorial designs.

The axial points are added when the second-order polynomial
model is employed in the second stage. It is unclear to us why the
2k axial points are the only choice. Is it possible to selected fewer
added points which still contains “sufficient” information about the
true model? In fact, the idea of optimal design could be used to se-
lect the added points, since the response model is known at this time.
Basically we intend to combine the advantages of both the combina-
torial designs and the optimal designs. Thus unlike previous works,
our composite designs are constructed in two stages: first choosing
a proper combinatorial design to be our first-order design and then
adding remaining support points according to an pre-specified optimal
criterion over a compact design space.

From optimal design point of view, generally a design ξ is a prob-
ability measure over the design space, X . That is the design ξ is
represented as

ξ =

{
x1 x2 . . . xn

p1 p2 . . . pn

}
,

where xi ∈ X , i = 1, · · ·, n, are the distinct support points of ξ, and
p1, . . . , pn are the weights of ξ that satisfy

∑
i pi = 1 and pi ≥ 0. Let

β̂ be the least-square estimator of the p×1 parameter vector β of the
model. Then the covariance matrix of β̂ is

Cov(β̂) ∝ (M(ξ))−1,

where M(ξ) =
∫

f(x)f
′

(x)dξ(x) is the information matrix of ξ and
f(x) is the p×1 vector of regressors. By an optimal design, it is to find
a design that is “best” with respect to a criterion of the information
matrix. For example, a design, ξ∗, is called a D-optimal design if and
only if

ξ∗ = arg max
ξ

|M(ξ)|

among all possible designs ξ in X .
Based on our two-stage method, designs considered here can be

represented as

ξ =
nc

n
ξc +

n1

n
ξ1 +

n2

n
ξ2, (1)

where ξc is the one-point design at center point, 0, with nc replications;
ξ1 is the selected first-order design and n1 is the number of supports
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of this first-order design; ξ2 is the equal-weight design for n2 added
points, and n = n1 + nc + n2. In particular, ξ can also be written as

ξ =

{
0 x1 . . . xn1 a1 . . . an2

nc/n 1/n . . . 1/n 1/n . . . 1/n

}
, (2)

where x1, . . . , xn1 are the distinct supports of the pre-specified first-
order design, and a1, . . . , an2 are the unknown added design points.
Hence the goal of this work is to find these ai’s according to a par-
ticular optimal criterion in a compact design space X . It is clear
that the composite design proposed here may not be the optimal de-
sign directly derived from the second-order polynomial model, because
the all weights and partial design points are fixed. For example, the
weight of the center points in the D-optimal designs for the second-
order polynomial model with k factors on spherical design spaces,
found in Kiefer (1961), is 2/{(k + 1)(k + 2)} which may not be equal
to nc/n. In a way, our composite design is treated as a “condition-
ally” optimal design problem. Namely, given a first-order design with
nc center points, and given a second-order polynomial as the under-
lying model, what is the optimal design (i.e., optimal design points
to be added)? Since our designs are not necessary the optimal design
in term the full second-order model, the equivalence theorem in the
theory of optimal design can not be used here for identifying these de-
sign points. Hence our objective is to directly maximize the objective
function derived form the optimal criterion. A simulated annealing
algorithm is proposed to find these added supports numerically.

In this work, the composite designs with p + nc supports are pro-
duced, where p = n1 + n2 and nc is set to be 1. Thus our small com-
posite design contains n = p + 1 supports. This paper is organized
as follows. In Section 2, our methodology for constructing the small
composite designs with p + 1 supports is introduced, and a modified
simulated annealing algorithm is proposed for finding added supports.
In Section 3, due to the spherical design space and D-optimal crite-
rion, these small composite designs for k = 2, · · · , 8 are found. In
Section 4, we compare our proposed designs with other small compos-
ite designs and minimal-point designs. Our designs perform well due
to the higher D-point efficiencies than these of other small composite
designs and minimal-point designs. Finally a conclusion is given in
Section 5.
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Table 1: The number of supports for the different first-order designs
Factors, k 2 3 4 5 6 7 8
Parameters for second-order polynomials, p 6 10 15 21 28 36 45

2k full factorial design 4 8 - - - - -
2k−t resolution V design - - - 16 - - -
Plackett and Berman type design - 4 8 11 16 22 30

2 Proposed methodology

In this section, our two-stage method is introduced. Given a com-
pact design space X and a optimal criterion, our construction method
is in the following:

Stage 1. Choose a proper first-order design and add one center point.

Stage 2. Select the remaining support points according to the opti-
mal criterion over X .

Intuitively, our composite designs combine the advantages of both
combinatorial designs and optimal designs: at the first stage of RSM,
we use the combinatorial design for factor screening and finding the
steepest ascent, and then when the model is known as the second-
order polynomial model, the optimal design points are added for the
additional experiments. Hence our design problem can be formulated
as

ξ∗ = arg max
ξ2

φ(M(
1

p + 1
ξc +

n1

p + 1
ξ1 +

n2

p + 1
ξ2)), (3)

where ξ2 is the equal-weight design of the n2 added design points,
a1, . . . , an2 , and n2 = p − n1. The function, φ, is dependent on what
criterion we choose. Thus, the goal is to find these unknown added
points according to Equation (3).

Here we limit the proper first-order designs to be the 2-level or-
thogonal designs, and the number of support points of the first-order
design is less than p, i.e. n1 < p. The first-order designs that we will
consider are shown in Table 1. In CCDs, the distance of axial points
from origin is usually set to be

√
k, the square root of the number

of factors. Then except the center points, all the other design points
(including the first-order design and star portion) are on the surface
of the k-ball with radius

√
k, the so-called spherical CCD. Thus, our
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design space for the case of k factors is set to be the k-ball with radius√
k.
Since added design points are in k-ball with radius

√
k, these points

can be represented in polar coordinate (or spherical coordinate), for
example, when k = 2, that is

(x1, x2) = (
√

r cos θ,
√

r sin θ), (4)

where θ is the counterclockwise angle from the x1 axis, and
0 < r ≤ k. Then the function of the information matrix now is
also the function of angles and radiuses, and our problem here be-
comes finding the “best” angles and radiuses, i.e. that maximize (or
minimize) a function of the information matrix. As previously men-
tioned, when the closed form of φ(M(ξ)) can not be derived, we want
to search for the added support points numerically.

Since we consider our design problem as an “optimization” prob-
lem whose objective function is dependent on what optimal criterion
is chosen, then we would like to use a simulated annealing (SA) type
algorithm for finding the conditionally optimal composite design de-
signs. The SA algorithm is proposed in Metropolis et al. (1953) and
is introduced by Kirkpatrick et al. (1983) as an optimization tech-
nique. Since the SA algorithm is a simple procedure for optimization,
there are many works applying the SA algorithm to the optimal de-
sign problems. For instance, Haines (1987) applied a SA algorithm to
construct the exact D-, I- and G-optimal designs for polynomial re-
gression models with uncorrelated errors; Schilling (1992) proposed a
SA algorithm for optimal spatial designs with correlated observations,
and Angelis et al. (2001) used a SA algorithm to find optimal exact
designs in the case of continuous observations with known covariance
function. However, these SA algorithms are not suitable for solving
our problem here.

First we introduce our SA algorithm. Suppose m is the total num-
ber of angles which are to be decided. For simplicity, we use θ1, · · · , θm

to index all the angles. Let θ = (θ1, · · · , θm) and
r = (r1, . . . , rn2). As mentioned before, the objective function φ(θ, r)
is dependent on the pre-specified criterion. Suppose the objective
function, φ(θ, r), is to be maximized, we define a density

πT (t)(θ, r) ∝ exp(φ(θ, r)/T (t)),

where T (t) is the “temperature” at time t and is a decreasing function
from initial temperature, T (0) > 0, to 0+. At the tth iteration, the
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SA algorithm samples θ and r from πT (t)(θ, r) by a Markov Chain
Monte Carlo (MCMC) method. For more information about the SA
algorithm, see Chapter 10 of Liu (2001). Here the MCMC method
applied for sampling θ and r is the systematic scan Gibbs sampler.
Hence, to maximize φ(θ, r) with respect to θi, i = 1, . . . , m and rj , j =
1, . . . , n2, the Best Angle and Radius (BAR) sampler is:

1. Select the initial state, θ
(0) and r

(0).

2. Run Nt iterations of the Gibbs sampler to sample θ and r from
πT (t)(θ, r).

3. Set t to t + 1, go to step 1 until t is sufficiently large.

3 Second-order small composite designs

for D-optimal criterion

Applying our construction method, the small composite designs
with n = p + 1 supports for the second-order response surfaces are
shown in this section. As mentioned before, there is only one cen-
ter point in our small composite designs. Therefore, our composite
designs are only useful for estimating the parameters for the second-
order polynomial directly.

Here D-optimal criterion is used for illustration. The objective
function is that

φ(θ, r) = φ(ξ) = |M(ξ)| ∝ |X(ξ)
′

X(ξ)|, (5)

where X(ξ) is the model matrix of ξ for the second-order polynomial
model with respect to θ and r. The value

Peff(ξ) =
|X(ξ)

′

X(ξ)|1/p

n
(6)

is the D-point efficiency (or D-efficiency) of ξ, which is considered
as the “information per point” for ξ, and can be used to make the
comparisons among designs (see, for example, Qu (2007)).

Due to the properties of the D-optimal criterion, except the center
point, we assume all the support points are on the surface of the cor-
responding design space. Therefore, for each k, our small composite
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design contains one center point and p design points on the surface
of the k-ball with radius

√
k. Hence ri = k, for all i = 1, . . . , n2, and

to find these added points is to search the corresponding best angles.
Thus our algorithm can be simplified by sampling angles only, and
our objective becomes d(θ) = φ(θ, rk), where rk = (k, . . . , k). Our
algorithm is thus called “Best Angle” (BA) sampler.

3.1 Two factors

As seen from Table 1, the first-order design for k = 2 is the 22 full
factorial design. According to the structure of our composite design
with only one center point, two added support points are required,
because there are 6 parameters in the second-order polynomial model
and 4 support points for the 22 factorial design. These two added
points are represented by polar coordinate, i.e.

(x11, x12) = (
√

2 cos θ11,
√

2 sin θ11) and (x21, x22) = (
√

2 cos θ21,
√

2 sin θ21),

where −π ≤ θij < π. Thus the determinant of the information matrix
of the small composite design is proportional to

|X(ξ)
′

X(ξ)| = 128[15 + 7 cos(4θ11) + 7 cos(4θ21) − 2 cos(θ11 − θ21)

−2 cos(2(θ11 − θ21)) − 2 cos(3(θ11 − θ21)) − cos(4(θ11 − θ21))

−2 cos(2(θ11 + θ21)) − 2 cos(θ11 + 3θ21) − 2 cos(3θ11 + θ21)].

In order to find the added D-optimal added points, we take the
derivative of |X(ξ)

′

X(ξ)| with respect to angles, θ11 and θ21, and set
them to zeros. Using the “solve” function in MATLAB, there are the
two candidate classes of angles, θ11 and θ21. One class of angles is
(θ11, θ21) = ±(1.4942, 0.0766) and ±(0.0766, 1.4942). Then the two
added D-optimal design points are

{(1.4101,±0.1082), (0.1082,±1.4101)} or {(0.1082,±1.4101), (1.4101,±0.1082)},

and the corresponding D-efficiency, Peff = 0.5733. The other class of
angles is (θ11, θ21) = ±(−π/2, π/2), ±(π, 0), ±(0, π), ±(π/2, π) and
±(π, π/2) with D-efficiency, Peff = 0.5714. Then the corresponding
added points are any two of four axial points,

{±(
√

2, 0),±(0,
√

2)}.

Even though this design is not the best design we want, this design
still has very high relative efficiency, 0.5714/0.5733 = 0.9968. The
response surface of |X(ξ)

′

X(ξ)| with respect to θ11 and θ21 is in Figure
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Figure 1: For k = 2, the response surface of |X(ξ)
′

X(ξ)| with respect
to θ11 and θ21
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1. The asterisk points are the angle positions for added D-optimal
points, and the circle points are the angle positions for the added
supports selected from four axial points.

3.2 Three factors

From Table 1, there are two available first-order designs for k = 3,
the 23 full factorial design and Plackett and Burman design for three
factors. Based upon the different first-order designs, the correspond-
ing small composite designs are found as follows.

3.2.1 23 full factorial design

For k = 3, the design space is the 3-ball with radius
√

3. There are
8 design points for the 23 factorial design. Thus two added points are
required for our small composite design. The spherical coordinates of
the two support points are

(xi1, xi2, xi3) = (
√

3 sin θi2 cos θi1,
√

3 sin θi2 sin θi1,
√

3 cos θi2), i = 1, 2,

where 0 ≤ θij < 2π. Thus the determinant of the information matrix
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Figure 2: The determinants of X(ξ)
′

X(ξ) for 200 × 10 × 14 = 28000
steps when k = 3 and the first-order design is the P-B design for three
factors
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of our small composite design is proportional to

|X(ξ)
′

X(ξ)| = 165888[4 cos 2θ11 − 4 cos 2θ21 − 2 cos(2(θ11 − θ12)) − 6 cos(2(θ21 − θ12))

−2 cos(2(θ11 + θ12)) − 6 cos(2(θ21 + θ12)) + 6 cos(2(θ11 − θ22))

+2 cos(2(θ21 − θ22)) − 3 cos(2(θ11 − θ12 − θ22)) + 3 cos(2(θ21 − θ12 − θ22))

−3 cos(2(θ11 + θ12 − θ22)) + 3 cos(2(θ21 + θ12 − θ22)) + 6 cos(2(θ11 + θ22))

+2 cos(2(θ21 + θ22)) − 3 cos(2(θ11 − θ12 + θ22)) + 3 cos(2(θ21 − θ12 + θ22))

−3 cos(2(θ11 + θ12 + θ22)) + 3 cos(2(θ21 + θ12 + θ22))]2.

We take the derivative of |X(ξ)
′

X(ξ)| with respect to θ11, θ12, θ21

and θ22. Then set these equations to zeros and solve them by the
“solve” function in MATLAB. There are twelve solutions of angles.
Unlike the case of two factors, the added points are any two perpen-
dicular points selected from 6 axial points, for example: (

√
3, 0, 0) and

(0,
√

3, 0). The point efficiency of the resulting small composite design
is Peff = 0.6048.

3.2.2 Plackett and Burman design for three factors

For k = 3, another first-order design is formed by columns (1,
2, 3) from the 4-run P -B design. Six added support points are re-
quired in this case, and the coordinates of these added points are
xi = (xi1, xi2, xi3), i = 1, . . . , 6. where xi1 =

√
3 sin θi2 cos θi1, xi2 =√

3 sin θi2 sin θi1, and xi3 =
√

3 sin θi2. At this time, the close form
of the objective function is difficult to write it down. So we find the
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optimal added points by the BA sampler with T (t) = (10t)−2/3 and
Nt = 10. After 200 iterations, the best point efficiency we get is
Peff = 0.6680, and the optimal added support points are





0.2314 1.7041 0.2058
1.6997 0.2182 0.2519
0.2441 0.2502 1.6964

−1.0936 0.7804 −1.0931
−1.1209 −1.0568 0.7917

0.7962 −1.0902 −1.0852




,

where each row is one added design point. From Figure 2, it is clear
that an extreme value of d(θ) is found.

3.3 Four and more factors

For 4 ≤ k ≤ 8, the first-order designs are usually formed by P -
B designs, except for the case of five factors (k = 5), where a 25−1

fractional factorial design is also a candidate design. In all these cases,
the closed form of the objective function is hard to derive. Thus,
the BA sampler is used here for finding these added design points
numerically. As shown before, for BA sampler, we need to set T (t)
and Nt first. Currently T (t) is set to be proportional to t−2/3 and
Nt = 10. Here we always check the trend of |X(ξ)

′

X(ξ)| to see if the
number of iterations for the BA sampler is large enough for each case
we study, and we still suggest that for each case, we should repeat
the BA sampler several times with different initial states to avoid the
effect of initial angles for the BA sampler.

For k = 5 and 25−1 fractional factorial design as its first-order
design, after 400 iterations of our BA sampler, the optimal added
design points are





0.0035 2.2353 0.0126 −0.0507 0.0292
−0.0166 0.0300 0.0278 −2.2327 0.1141

2.2342 0.0404 −0.0109 −0.0753 −0.0296
0.0168 0.0220 0.0630 −0.0191 2.2349

−0.0156 0.0010 2.2343 −0.0699 0.0525





with the point efficiency, Peff = 0.7667, and these support points are
close to five axial points, (0,

√
5, 0, 0, 0), (0, 0, 0,−

√
5, 0), (

√
5, 0, 0, 0, 0),

(0, 0, 0, 0,
√

5) and (0, 0,
√

5, 0, 0). Hence for this case, we believe that
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Table 2: The point efficiencies of CCDs and our small composite de-
signs for k = 2, · · · , 8

k p n†
CCD P ‡

eff (CCD) Peff (2k) Peff (V ) Peff (P -B)
Peff (Small)

Peff (CCD)

2 6 8 0.6285 0.5733 ND ND 0.9122 2k

3 10 14 0.7116 0.6048 ND 0.6680 0.8499 2k

0.9387 P -B
4 15 24 0.7673 ND ND 0.7115 0.9273 P -B
5 21 26 0.8002 ND 0.7667 0.7580 0.9581 V

0.9473 P -B
6 28 44 0.8384 ND ND 0.7810 0.9313 P -B
7 36 78 0.8547 ND ND 0.6886 0.8057 P -B
8 45 80 0.8787 ND ND 0.6278 0.7145 P -B

* ND means “No Design is available”.

‡ Peff = |X′X|1/p

n , where n is the number of supports of the design.

† nCCD is the numbers of supports of CCDs without center points, while

excluding one center point, the number of support points of our small

composite design is equal to p.

optimal added points are any five perpendicular axial points from orig-
inal axial points (±

√
5, 0, · · · , 0), · · ·, and (0, · · · , 0,±

√
5). Thus our

composite design is a 25−1 fractional factorial design with resolution
V , one center point and five perpendicular points from original ten
axial points. For the other cases, the added design points found by
our method are shown in Appendix.

When k ≥ 9, our two-stage method and the BA sampler could
also be applied to get the small composite designs. It may take longer
computing time to find the added optimal points, however. We would
suggest choosing larger Nt and increasing the number of iterations of
the BA sampler because the structure of |X(ξ)

′

X(ξ)| would be more
complicated.

4 Comparisons with related work

The point efficiency, Equation (6), can be used to compare designs
having different numbers of support points, and the value of Peff is
between 0 and 1. The larger Peff value, the better the design is. The
Peff values for all our small composite designs are in Table 2. We
compare our designs with the spherical CCDs for k = 2, · · · , 8. Here
Peff(CCD) is the point efficiency of the spherical central composite
design with one center point; Peff(2

k) is the point efficiency of our
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Table 3: The relative efficiencies between the small composite designs
(SCD) of Hartely (1959), and Draper and Lin (1990a) vs. the pro-
posed small composite designs (Small)

k Type of Peff(SCD) 1st-order Peff(Small)
Peff (SCD)

Peff (Small)

design† design‡

2 III∗ 0.5714 22 0.5733 0.9967
3 III∗ 0.5908 23 0.6048 0.9769
3 III∗ 0.5908 P -B 0.6680 0.8844
4 III∗ 0.6503 P -B 0.7115 0.9140
5 P -B 0.5899 V 0.7667 0.7694
5 P -B 0.5899 P -B 0.7580 0.7782
6 III∗ 0.6684 P -B 0.7810 0.8558
7 III∗ 0.7721 P -B 0.6886 1.1213§

7 P -B 0.5067 P -B 0.6886 0.7358
8 P -B 0.4832 P -B 0.6278 0.7697

† “Type of design” indicates what small composite design is. The composite designs with

resolution III∗ designs are proposed by Hartley (1959) and the designs with P -B designs are

proposed by Draper and Lin (1990a).

‡ the first-order design of our small composite design.

§ In this case, Hartley’s design used 10 more support points than the proposed design(47 Vs 37).

small composite design based on the 2k factorial design; Peff(V ) is the
point efficiency of our small composite design based on the resolution
V design; and Peff(P -B) is the point efficiency of our small composite
design based on the Plackett-Burman design. To compare CCDs with
our small composite designs, we use the relative efficiency, i.e.

Peff(Small)

Peff(CCD)
,

and the relative efficiencies are shown in the last column of Table 2.
It is shown that the relative efficiencies are quite large, except k = 8.
For the case of k = 8 factors, the relative efficiency is 0.7145, but our
small composite design require 40% fewer support points than the
CCD.

Next, the proposed small composite designs are compared with
small composite designs of Hartley (1959) and Draper and Lin (1990a).
This is typically done by choosing a good the first-order design of res-
olution III∗ designs and P -B designs and then adding the full 2k
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axial points. From Table 3, we see that every Peff(Small) is higher
than the corresponding Peff(SCD). Therefore, the proposed small
composite designs are superior than these small composite designs.
There is an exception, however. For k = 7, the point efficiency of
Hartley’s design with one center point is 0.7721, which is higher than
the proposed design, 0.6886. But the number of support points of
Hartley’s design is 32(first-order) + 14(axial) + 1(center) = 47 which
is 10 more support points than our design.

Finally, the proposed small composite designs are compared with
other existing minimal-point second-order designs. Here we compare
our designs with the designs of Lucas (1974); Notz (1982); Mitchell
and Bayne (1976); Box and Draper (1974); Rechtschaffner (1967) and
Katsaounis (1999) by point efficiency. The results are shown in Ta-
ble 4, and the point efficiencies of all these designs were previously
published in Katsaounis (1999). From Table 4, the proposed small
composite designs are better than the other minimal-point designs,
judged by the higher point efficiencies. The proposed designs are
better than those minimal-point designs may be due to the follow-
ing reasons: first, our design is constructed directly to maximize the
determinant of the information matrix; secondly, for each k, our de-
sign space (spheres) is bigger than the spaces of these minimal-point
designs (hypercubes).

Table 4: The comparisons of Peff for selected minimal-point designs

k Lucas Notz Mitchell and Bayne Box and Draper
(1974) (1982) (1976) (1974

3 0.152 0.400 0.410 0.423
(0.251,0.228) (0.661,0.599) (0.678,0.614) (0.699,0.633)

4 0.096 0.392 0.425 0.423
(0.135) (0.551) (0.597) (0.594)

5 0.066 0.459 0.456 0.374
(0.086,0.087) (0.598,0.606) (0.595,0.602) (0.488,0.493)

6 0.048 0.446 ND 0.317
(0.061) (0.571) (0.406)

7 0.036 ND ND 0.227
(0.052) (0.329)

8 0.028 ND ND 0.193
(0.045) (0.307)

Parentheses indicate the relative efficiencies
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k Rechtschaffine Katsaounis (1999) D-optimal Composite
(1967) design

V III∗

3 0.400 0.400 0.410 0.605 V

(0.661,0.599) (0.661,0.599) (0.678,0.614) 0.668 P -B
4 0.392 0.393 0.425 0.712 III∗

(0.551) (0.552) (0.597)
5 0.450 0.459 0.459 0.767 V

(0.587,0.594) (0.598,0.606) (0.598,0.606) 0.758 P -B
6 0.428 0.446 0.460 0.781 III∗

(0.548) (0.571) (0.589)
7 0.383 0.448 0.451 0.689 P -B

(0.556) (0.650) (0.655)
8 0.336 0.434 0.446 0.628 P -B

(0.535) (0.691) (0.710)
Parentheses indicate the relative efficiencies

5 Conclusion and discussion

A two-stage method for constructing the small composite designs
for second-order polynomial models is proposed. When we only have
few information about the response surface, a combinatorial design
with one center point is chosen for fitting the first-order polynomial
model, and then when the second-order polynomial is employed, the
remaining supports are selected by a pre-specified optimal criterion.
The conditionally optimal designs for k = 2, . . . , 8 are given in de-
tails when D-optimal criterion is chosen here. Due to spherical design
spaces, the polar coordinate and spherical coordinate are used here
to represent the experimental points. When |X(ξ)

′

X(ξ)| is very com-
plex, we introduce the Best Angle and Radius sampler to find the
optimal added points numerically over spherical design spaces, and
the results are presented. Other algorithms (such as exchange algo-
rithm in Fedorov (1972) or the procedure OPTEX in SAS) can be
applied here too. Since the SA type algorithm can not be guaranteed
to find the global extremes of d(θ), (but the local extreme values),
we do not claim our composite designs are the global “D-optimal”
designs. However, from Tables 2 to 4, the performances of our small
composite designs are quite well because the point efficiencies of our
designs are larger than those of other small composite designs and
minimal-point designs.

In this work, the first-order designs are chosen from the 2-level fac-
torial designs; resolution V designs and P -B designs. When factorial
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designs (k = 2, 3) and resolution V design (k = 5) are our first-order
designs, added design points usually can chosen from 2k axial points.
However, when P -B designs are employed as the first-order designs,
from our numerical results, axial points should not be the proper
choice in terms of D-optimal criterion, but our added design points
also contain too many levels. Therefore, to round off levels of our
added points should be a way to do. For example, when k = 3 and
the P -B design is the first-order design, our numerical added points
can be rounded as





0.2500 1.6956 0.2500
1.6956 0.2500 0.2500
0.2500 0.2500 1.6956

−1.0000 1.0000 −1.0000
−1.0000 −1.0000 1.0000

1.0000 −1.0000 −1.0000





with the point efficiency, Peff = 0.7667. Besides 2-level designs, other
combinatorial designs also can be used as our first-order design, be-
cause the only one criterion for choosing the first-order design is that
n1 < p.

D-optimal criterion is used here for illustrating our method. In
fact, any optimal criterion could be employed in stead of D-optimal
criterion, for example, φp-optimal criteria in (Pukelsheim, 1993) or
Ds-optimal criterion. Finally our construction method is easy to ex-
tend to search the added design points for the composite designs with
more than one center point. The case of two factor is demonstrated
here. Given the 22 full factorial design as the first order design, the two
D-optimal added points are found numerically by the BA algorithm
for nc = 2, 3, 4. From our numerical results, no matter what nc is,
the D-optimal added points are (1.4101, 0.1082) and (0.1082, 1.4101)
(the same as the result of nc = 1), and the corresponding D-point ef-
ficiencies are 0.5628, 0.5355 and 0.5056 for nc = 2, 3 and 4 respectively.

Authors’ Notes. Dr. Aloke Dey is a true scholar and has been a clear
leader in our profession. His work in design of experiment, notably
his book co-authored with Mukerjee, has a significant impact in our
work. It is our privilege to contribute this work to this special issue
in honor of his retirement.
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A Appendix

k = 4: The first-order design is formed by columns (1,2,3,6) from the
8-run P -B design. The coordinates of 7 added points are





0.2889 −1.9586 0.2831 −0.0206
1.9639 −0.2494 0.2817 0.0412
−1.2623 1.2410 0.9262 0.0920
0.9158 1.2631 −1.2504 0.0481
−1.1981 −0.9541 −1.2845 0.0658
−0.0030 0.0009 0.0322 1.9997
0.2856 −0.2836 1.9579 0.0687





,

and the corresponding point efficiency is Peff = 0.7115.

k = 5: The first-order design is to choose columns (1, 2, 3, 5, 8) from
the 12-run P -B design without Run 11. Therefore, there are 11
support points in the first-order design, and 10 added support
points are need to be found. After 200 iteration of BA sampler,
the best point efficiency we have is 0.7580, and the optimal
added support points are





−0.9568 1.1070 −0.9502 −0.9480 −1.0282
2.1733 0.2335 0.2856 0.2635 0.2672
0.2500 2.1765 0.2578 0.2556 0.2616
1.1741 −0.9144 −1.0339 −0.9394 −0.9132
−0.9399 −0.9814 1.1618 −0.9492 −0.9501
−0.8767 −0.9506 −1.0020 1.1415 −1.0103
−1.0142 −0.9468 −0.9340 −0.9756 1.1184
0.2171 0.2339 2.1760 0.3156 0.2519
0.2234 0.2465 0.2391 2.1885 0.2068
0.1634 0.2391 0.2239 0.2233 2.1946





.
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k = 6: The first-order design is formed by columns (1,2,3,4,5,14) from
the 16-run P -B design. After 200 iterations, the best point
efficiency is Peff = 0.7810, and the optimal added points are





−2.3790 0.4152 0.3995 −0.0425 0.0417 0.0705
0.0003 0.0050 0.0193 1.4715 −1.4813 1.2805
−1.1891 −1.5103 −1.5154 −0.0287 0.0134 0.0876
−0.3940 2.3887 0.3697 −0.0204 0.0373 0.0168
1.4935 −1.4573 1.2755 −0.0949 0.0841 −0.0517
1.4429 1.2447 −1.5390 0.0152 0.0068 0.0152
−0.0410 0.0002 0.0041 −2.3972 0.3292 0.3784
−0.0648 −0.0189 −0.0207 −0.3473 2.3971 0.3582
0.0241 0.0054 −0.0026 1.4462 1.2828 −1.5042
−0.3619 0.3687 2.3942 −0.0265 0.0004 0.0004
−0.0873 0.1007 −0.0151 −1.2489 −1.4741 −1.4997
−0.0132 0.0389 0.0194 −0.3793 0.3358 2.3961





.

k = 7: For k = 7, the first-order design is formed by columns (1, 2,
5, 6, 7, 9, 10) from the 24-run P -B design without Run 3 and
Run 20. After 600 iterations, the best point efficiency we have
is Peff = 0.6886, and the optimal added points are





−0.6139 0.7851 0.2010 −1.4406 0.5812 −1.6563 0.8999
−0.1813 0.2884 −0.1198 2.5734 0.2302 0.3296 0.2929
0.0902 −0.4367 −1.3680 0.7627 −1.1665 −0.8486 1.5057
−0.1654 0.1182 2.6158 −0.1737 0.2195 −0.0656 0.1830
−2.6174 0.1694 0.2086 −0.0754 0.1872 0.1899 −0.0169
−0.3954 −0.1009 0.4915 −0.0443 0.4029 0.3982 2.5038
−0.9594 −0.8425 0.7928 −0.1242 0.4542 −1.3133 −1.6717
−0.9151 −1.0610 −0.2106 0.8952 −1.7295 0.8000 −0.7485
−0.0259 0.3267 0.6102 0.3332 2.5233 0.0060 −0.2054
1.4173 −0.6425 0.2473 −0.6337 0.0765 1.0156 −1.7545
−0.5012 0.0222 0.1394 0.1705 0.1735 2.5538 0.3842
1.0812 1.0560 0.1219 −0.9257 −1.8720 −0.5169 −0.2692
−0.1783 −1.7750 0.8848 −1.4211 0.9667 0.2786 −0.0558
−0.2135 2.5984 0.2424 0.1359 0.2760 0.2153 −0.0558





.
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k = 8: The first-order design is formed by columns (1, 3, 4, 6, 8, 10,
16, 17) from the 36-run P -B design without 6 repeat runs, and
it contains 30 supports (see Draper and Lin, 1990a). After 600
iterations of our BA sampler, the best point efficiency we get is
Peff = 0.6278, and the optimal added support points found by
the BA sampler are





0.4529 0.1818 0.0428 2.7018 0.0229 −0.4102 0.4058 0.3560
0.8844 0.3129 −0.1311 −0.1769 2.6225 0.3264 −0.2952 0.0167
−0.7646 −0.9677 −1.6676 1.2720 −1.3713 0.2750 −0.1752 0.3056
0.3224 −0.1543 −0.0468 0.3437 −0.0341 −2.7440 0.3402 0.3249
1.0090 −0.1643 −0.0284 1.1301 0.1559 −0.7308 −1.8454 −1.3088
0.5852 0.0633 2.2280 0.2740 0.3268 1.1059 −0.9189 0.6637
0.2753 0.0924 −0.1168 0.2357 −0.0243 −0.3760 2.7649 0.2445
1.0021 0.3363 −0.1116 0.8878 0.1645 1.8034 0.7905 −1.4758
0.6249 0.5341 −2.5706 0.0130 0.5149 −0.0591 −0.5878 0.3193
−1.7917 −0.2162 0.0631 1.1246 −0.2783 −1.0204 1.0522 −1.1173
−1.0074 −0.0302 0.0404 −1.4944 0.0079 1.3561 −1.2892 1.1173
2.7788 0.0001 −0.0040 0.2951 0.2162 −0.2337 0.2251 0.1980
0.4574 2.6645 −0.3403 0.1879 0.4196 0.5598 0.1305 0.1831
1.0901 −0.1960 0.0269 −2.0193 0.2239 −0.7220 0.9578 −1.0982
0.2375 0.0086 −0.1047 0.2319 0.0261 −0.3652 0.4717 2.7427





.


