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Abstract

A highly cited and inspiring article by Bates et al. (2024) demonstrates that the
prediction errors estimated through cross-validation, Bootstrap or Mallow’s C'p can all be
independent of the actual prediction errors. This essay hypothesizes that these occurrences
signify a broader, Heisenberg-like uncertainty principle for learning: optimizing learning and
assessing actual errors using the same data are fundamentally at odds. Only suboptimal
learning preserves untapped information for actual error assessments, and vice versa, rein-
forcing the ‘no free lunch’ principle. To substantiate this intuition, a Cramér-Rao-style lower
bound is established under the squared loss, which shows that the relative regret in learning
is bounded below by the square of the correlation between any unbiased error assessor and
the actual learning error. Readers are invited to explore generalizations, develop variations,
or even uncover genuine ‘free lunches.! The connection with the Heisenberg uncertainty
principle is more than metaphorical, because both share an essence of the Cramér-Rao in-
equality: marginal variations cannot manifest individually to arbitrary degrees when their
underlying co-variation is constrained, whether the co-variation is about individual states
or their generating mechanisms, as in the quantum realm. A practical takeaway of such a
learning principle is that it may be prudent to reserve some information specifically for error
assessment rather than pursue full optimization in learning, particularly when intentional
randomness is introduced to mitigate overfitting.

Key words: C. R. Rao; Cramér-Rao bound; Cross validation; Epistemology; Heisenberg
uncertainty principle; Machine learning; Quantum mechanics; Uniformly minimum variance
unbiased estimator.
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1. A Rao-esque apology and a quantum-leap excuse

Many of the advances in statistics and machine learning are about using data as
efficiently and reliably as possible to achieve a host of learning objectives, such as inference,
prediction, classification, etc. Being statistically efficient typically means to optimize over
some criterion that amounts to minimizing learning errors based on the data at hand, whether
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in a brute-force fashion, such as minimizing a x? distance or adopting the L?-loss directly on
the target of learning, or through deeper principles, e.g., by maximizing a likelihood function
or a posterior density. Since the actual learning errors themselves cannot be known without
an external benchmark, we seek clever and reliable ways to assess them, whether for training
machine learning algorithms, constructing confidence intervals, or checking Bayesian models.

Naturally, we wish to be able to optimally use our data for both purposes: to most
efficiently learn whatever we can learn, and to most reliably assess the errors in whatever
we cannot learn. However, since any information on the actual learning error can be used
to improve the learning itself, we should be mindful that optimizing one endeavor comes at
the expense of the other. To emphasize this no-free lunch principle, this essay first revisits
seemingly quaint examples and classical results to remind ourselves that this principle has
been in action for as long as statistical inference exists. However, such an issue has not
received much emphasis apparently because principled statistical methods, such as likelihood
or Bayesian methods, automatically prioritize optimal learning over error assessment.

Yet time has changed. Machine learning and other pattern-seeking methods require
much intuition and judgment to tune well, when their theoretical guiding principles are not
well developed or digested. Substituting—mnot merely supplementing—virtual trials and er-
rors for sapient contemplation and introspection is becoming increasingly habitual, making us
more vulnerable to wishful thinking, misinformed intuitions, and misguided common sense.
To better prepare students and newcomers to our progressively empiricism-slanted culture of
learning, this essay then recasts a classical result regarding UMV UE to the broader class of
problems of unbiased learning, and establishes a mathematical inequality that captures the
aforementioned Heisenberg-esque uncertainty principle for simultaneous learning and error
assessment under the squared loss.

This inequality is a low-hanging fruit in establishing a general theory for understand-
ing the competing nature between optimal learning and actual error assessing. Nevertheless,
it can help us anticipate and better appreciate further results such as those obtained in Bates
et al. (2024), which show that the error estimates from cross validation and other popular
methods can be independent of actual learning error. The uncertainty principle tells us
that this should not come as a surprise. Rather, the independence is an indication that the
corresponding learning is optimal in some sense.

Since this essay was prepared for this special issue in memory of Professor C. R. Rao,
it seems fitting to quote Rao (1962), a discussion article presented! to the Royal Statistical
Society in England (RSS):

“While thanking the Royal Statistical Society for giving me an opportunity to
read a paper at one of its meetings, I must apologize for choosing a subject which
may appear somewhat classical. But I hope this small attempt intended to state
in precise terms what can be claimed about m.l. estimates, in large samples, will
at least throw some light on current controversies.”

Rao (1962) was a paper on “Efficient estimates and optimum inference procedures in

'As a reminder of C. R. Rao’s remarkable personal and professional longevity, this presentation took
place before my parents had decided to conceive me.
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large samples” (and his “m.1.” referred to maximum likelihood, not machine learning), one
of a series of fundamental articles that he authored during what is now considered an era
of classical mathematical statistics. Therefore, initially I was somewhat surprised by Rao’s
apologetic sentiment—one that I ought to adopt myself for bringing up UMVUE in an era
where few statistics students would recognize the acronym without Googling it. However,
upon reflection, and considering his training under R. A. Fisher and the characteristically
wry culture of RSS discussion at that time, I suspect Rao’s apology was more of a gentle
reminder to not ignore established literature or wisdom when facing new problems. I am
therefore grateful to the editors of this special issue, especially Bhramar Mukherjee, for
the opportunity to honor Professor C. R. Rao with one more example of the value of such a
reminder: how classical statistical results can offer insights and contextualization for modern
work in data science like Bates et al. (2024).

[ am also deeply grateful to Bhramar for her extraordinary patience in allowing me
two extra months to complete this essay, without which I would have embarrassed myself sig-
nificantly more by writing about the Heisenberg Uncertainty Principle (HUP) while knowing
almost surely nothing even about classical mechanics?. The connection between Cramér-Rao
inequality and HUP has long been suspected, but I was unaware of any statistical literature
on the connection between the two (however, during this work, I was made aware of such
results in information theory—see Section 7).

Unfortunately, I had found neither the time nor the courage to explore quantum
physics. Bhramar’s invitation gave me a great excuse to delve into it, though clearly it has
been a quantum leap (or dive). I am therefore deeply grateful to the physicists, philosophers,
and statisticians (see acknowledgment) who generously took the time to educate and inspire
me, introducing me to numerous articles that, no doubt, will require another quantum-leap
excuse to digest fully. These include physics literature on quantum Cramér-Rao bounds and
quantum Fisher information (e.g., Téth and Petz, 2013; Téth and Frowis, 2022), as well as
statistical writings on the relevance of quantum uncertainty to statistics (e.g., Gelman and
Betancourt, 2013), to name just a few.

Nevertheless, to set readers’ expectations realistically, this essay offers nothing about
HUP that isn’t already in Wikipedia. I wrote much of it as reading notes to educate myself,
so, paraphrasing a most memorable chiasmus from an RSS discussion: “The parts of the
paper that are true are not new, and parts that are new are not true” (McCullagh, 1999).
My hope, however, is that these notes may still be of use to those who share my curiosity
(and innocence). I also hope that my attempt to extend the notion of covariance to quantum
operators might encourage us to step out of our comfort zones without stepping out of our
minds.

Intellectually, quantum indeterminacy is a captivating and challenging topic, espe-
cially for those of us who have been probability-law abiding citizens. To my knowledge,
currently only a few statisticians—most notably Richard Gill>—have studied it systemati-
cally. Therefore, even if everything “new” in this essay ends up merely demonstrating that
humans can out-hallucinate ChatGPT, I'd still be content dedicating it to the legendary C.

2Majoring in pure math in 1980s China means that I had taken no courses outside of mathematics, with
the exception of mandatory ones for regulating students’ bodies or minds.
3See https://www.math.leidenuniv.nl/ gillrd/
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R. Rao. Throughout his extraordinary career, Professor Rao applied his statistical insight
and mathematical skills to establish and solidify the foundations of statistics. As quantum
computing looms on the horizon, some statisticians should be leading the way in building the
foundations of quantum data science, as articulated in the discussion article “When Quan-
tum Computation Meets Data Science: Making Data Science Quantum” by Wang (2022),
a prominent statistician exploring quantum computing’s role in data science. Thus, even
if this essay inspires only one future C. R. Rao of quantum data science, it won't take a
quantum leap to believe that Professor Rao would embrace my dedication.

More broadly, I would find great professional satisfaction (and justification for my
insomnia) if this essay serves as a reminder that time-honored statistical theory and wisdom
have much to offer as we statisticians are increasingly called to step outside our comfort
zones—from embracing machine learning to anticipating quantum computing. By learning
from and contributing to other fields, especially time-tested ones such as philosophy and
physics, we can enhance the intellectual impact of our discipline.

2. A paradox of error assessment?

Let us start with an excursion to the classical statistical sanctuary most frequently
adopted in statistical research and pedagogy: we have an independently and identically dis-
tributed (i.i.d) normal sample, Xi,---, X, Y N(u,0?), and we are interested in making
inferences about p. It is well-known that the maximum likelihood estimator (MLE) for p
is the sample mean X,,. The actual error of the MLE then is § = X,, — p. It is textbook
knowledge that the sample mean X,, and the sample variance S? are independent under the
normal model N (yu,0?). This fact is critical for establishing perhaps the most celebrated
pivotal quantity in statistics, t = \/n(X — p)/S,, i.e., the t statistic, because of the exis-
tence of the parameter-free distribution of ¢ for any n > 2, thanks to the aforementioned

independence.

But this independence also implies a seemingly paradoxical fact that has received
no mention in any textbook (that I am aware of): that 62 = S2/n apparently is the worst
estimate of the square of the actual error 62 = ()_(n — 11)?, because 62 and 4? are independent
of each other for any choice of § = {u,0?}. In what other context would a statistician
(knowingly) suggest estimating an unknown with an independent quantity?

The article by Bates et al. (2024) reminds us that this seemingly paradoxical phe-
nomenon is far more prevalent than we may have realized. To recast their findings in a
broader setting but with a scalar estimand for notational simplicity, consider the possibly
heteroscedastic linear regression setting,

Y; =0X;+ ¢, where E[g|X]=0,V(e|X)=07, i=1,...,n. (1)

and conditioning on X = {Xy,..., X, }, {€1,...,€,} are mutually independent. As Bates
et al. (2024) reminds us, when {ey, ..., ¢,} are i.i.d N(0,0?), the least-squares estimator for
0, Ors = "L YX /S X2 is independent of the residual R = {#; = Y; — 0X;i=1,... ,n},
for any given {6, 0?}. Consequently, since the true predictive error depends on the data only
through éLS, and cross-validation error estimators are functions only of the residuals, the
true and estimated errors are independent of each other. The results obviously apply to any
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error estimates that depend on data only through R, which is the case virtually for all the
common estimators in practice, as demonstrated in Bates et al. (2024).

It is well-known (e.g., Casella and Berger, 2024) that under the i.i.d normal setting,
frs is the MLE and indeed UMVUE (uniformly minimum variance unbiased estimator)
because its variance reaches the Cramér-Rao bound. Even without the normality, we know
that ds is BLUE (best linear unbiased estimator) and it is linearly uncorrelated with the
residual R under the squared loss, because it is the orthogonal projection of Y onto the space
expanded by X when o; is invariant of 7.

Although rarely mentioned in textbooks, this optimality-orthogonality duality ap-
pears in essentially all inferential paradigms. Geometrically speaking, the equivalence is due
to the fact that the linear correlation between two variables is the cosine of the angle between
them in the L? space, and optimal projection is the orthogonal projection. Probabilistically,
the ubiquity of this duality is manifested by the so-called “Eve’s law” (Blitzstein and Hwang,
2014), an instance of the Pythagorean theorem in the L? space.

That is, under any joint distribution, p(H,G), as long as it generates finite second
moments, Cov|H — E(H|G),E(H|G)] = 0, because E(H|G) is the orthogonal projection of
H to the space of L? functions that are measurable with respect to the o-field generated by
G. Consequently, the Pythagorean theorem is in force:

V(H) =E[H — E(H)]" = E[H — E(H|G)]* + E[E(H|G) — E(H))*
= E[V(H|G)] + VIE(H|G)], (2)

which is Eve’s law. The ubiquity of the duality is due to the fact that the expectation
operator in (2) can be taken with any kind of distribution: posterior (predictive) distributions
for Bayesian inferences, super-population distributions as typical for likelihood inference (as
in the N(p, 0?) example), or randomization distributions as in finite-population calculations
(as adopted in Meng, 2018).

Nevertheless, this duality is a qualitative statement, as it does not quantify what
happens for non-optimal estimation or learning. As demonstrated below, this duality can be
extended quantitatively by tethering the deficiency in learning with the relevancy in assess-
ing the actual learning errors. This quantification crystallizes the reason for the apparent
paradox, and it can help reduce wasted efforts in pursuit of the impossible. It also makes
it clearer that there is no real paradox, much like how Simpson’s paradox is not a paradox
once its workings are revealed and understood (e.g. Liu and Meng, 2014; Gong and Meng,
2021).

The title of the next section says it all: there is no free lunch. If there is any
data information left—after learning—for assessing the actual error, then we can reduce the
actual error by removing the part that can be predicted by the untapped data information.
This implies our learning is not optimal, and vice versa. Section 3 illustrates this fact in
the context of heteroscedastic regression, followed by a broad reflection in Section 4 on its
implications in the context of error assessment without external benchmarks, a statistical
magic. Sections 5 and 6 then establish respectively the exact and asymptotic inequalities
that capture the learning uncertainty principle under the squared loss.

To facilitate a formal comparison with HUP using the notion of co-variation, Sec-
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tion 7 discusses the generalization of the measure of co-variance from real-valued variables
to complex-valued variables and functions. Section 8 then applies the generalization to the
case of HUP by defining co-variances between mechanisms (e.g., the position and momen-
tum operators) rather than between the states they generate (e.g., the actual position and
momentum states). With these preparations, Section 9 compares the learning-error inequal-
ity, Cramér-Rao inequality, and HUP inequality, highlighting their shared essence from a
statistical perspective.

Section 10 reflects on various philosophical issues surrounding uncertainty principles
in general, and HUP in particular, with insights from the encyclopedic essay by Hilgevoord
and Uffink (2024). Section 11 briefly touches on the trade-off between quantitative and
qualitative studies, prompted by a discussion in Hilgevoord and Uffink (2024), and how
intellectual inquires can benefit from their happy marriage. This leads to a piece of advice
from Professor Rao on living a happy life, which serves as a fitting conclusion to this essay in
his memory. However, to encourage students to engage with this essay to the fullest extent
of their attention spans, Section 12 provides a prologue, especially for those who may not
enjoy technical appendices but wish the essay were even longer.

3. Once again, there is no free lunch

Consider the heteroscedastic setting (1), where we know that BLUE is given by the
weighted LS, in the form of

w T )
i wiX7
when the weights w; oc 0;%,i = 1,...,n. Now consider an arbitrarily weighted éw, and its

correlation—denoted by p—with the corresponding residual R, = {f,; = Y; — éin;i =
1,...,n}. For conveying the main idea, the case of n = 2 is sufficient. As a special case of
the general expression given in Appendix A, we have, conditioning on X (but we suppress
this conditioning notation-wise unless necessary),

2 2 —1 ~1)2
A X7 X5 (w0105 — weo907 )

2 A~ .
911)7 w,i) — — G TR == ]., 2, 4
PO ) (W2 X202 + wiX203) (X202 + X2032) (4)

which is zero if and only if w; o< ;2,4 = 1,2 (as long as X; # 0,4 = 1,2). That is, 0, is
BLUE (or the MLE if we assume normality) if and only if 6,, is uncorrelated with #,,,. More

importantly, expression (4) tells us exactly how the statistical efficiency of 0, is directly
linked to this correlation.

Specifically, let OpLur be the optimally weighted LS estimator with weight w; o
o;%,i=1,2, and RR,, be the relative regret of an arbitrarily weighted 6,, under the squared
loss, that is,

rp — V0u) = V(sion) _ | (w1 X7 + wy X3)? 5)
’ V(0u) (wiXto? + wiXiod)(Xioy” + Xioy®)

Whereas it may not be immediate from (4) and (5), one can verify directly that

p*(0y, 7pi) = RRy, i=1,2, (6)
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for any choice of weights w or values of {¢?,i = 1,2}. This means that if we want to increase

the magnitude of the correlation between 9 and 7, ;, we must sacrifice the efficiency of Hw,
and vice versa.

However, why might we want to increase |p(f,, 7u)|? Consider the case where our
learning target is ¢, with ¢ being a constant. For example, we take ¢ = 1 when the regression
coefficient 6 is the target, or ¢ = X* when the learning target is the mean of Y when X = X*.
In such cases, the actual error is given by ¢, = c(éw — 6). We can assess 0,, via S,w = Cly,1
for some choice of ¢ (recall 7,1 + 7,2 = 0 and hence a single residual suffices). Because

/02(511” Sw) = IOZ(Céwa éfw,l) == pz(éwa fw,l)a (7)
we see that by moving pQ(QAw,fw,l) away from zero, we will have an assessment 8, of the

actual error J,, that has a degree of conditional relevancy, that is, dp is at least correlated
with d,, conditioning on the setting (1). But this gain of relevancy is achieved necessarily by

increasing the relative regret (recall the relative regret for cf,, is invariant to the value of c),
that is, by sacrificing the efficiency of 6, because

P (6, 00) = RR,, (8)
thanks to (6)-(7).

If our learning target is to predict (a new) Y* when X = X* then the actual pre-
diction error is 0 = Y* — 60, X*. In such cases, the prediction risk under the squared loss

E(Y* — 0,X*)? = V(Y*) + (X*)?V(0,,).

Because V(Y*) and (X*)? are invariant to the weights, we obtain the relative regret for
prediction RR! = yRR,, where RR,, is from (5) and the adjustment factor v is given by

X*)2V(8,,
G A TS N o
V(Y*) + (X*)*V(0w)
Furthermore, because 0y = ¢y is independent of Y*, Cov(éjj),gw) = —X*Cov(éw,gw).
Hence,
. 2 X*)2Cov?(Oy, 00 PO
P2 (6%, 00) = (X) ( A ) =50 (O, 0)- (10)

V(Y?) + (X*)2V(0u)] V(5)

Consequently, the identity (8) holds for both estimation and prediction, implying the same
trade-off between optimal learning and relevant error assessment.

Section 5 below will provide a general inequality that captures this trade-off under
squared loss, for which identity (8) is a special case. But before presenting that result, we
must ask: if we cannot relevantly assess the actual error 9, then what kind of errors have
we been assessing? And that is exactly one of the two questions raised in the title of Bates
et al. (2024): Cross-validation: what does it estimate and how well does it do it? The
following section supplements Bates et al. (2024) to answer this question more broadly and
more pedagogically.
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4. Jay Leno’s irony and a statistical magic

During one of the years the United States census took place (likely 2000-2001), co-
median Jay Leno brought up the issue of under-counting on his Tonight Show. He began by
informing the audience that the U.S. Census Bureau had just reported that approximately
p percentage of the population had not been counted. With an arch smile, he then quipped,
“But I don’t understand—if they knew they missed p percentage of people, why didn’t they
just add it back?” (The actual value p he used now lies deep in my memory.)

The audience was amused, as was I, though perhaps for different reasons—what
amused me was the very appearance of such a nerdy joke on a mainstream comedy show.
Humor is often rooted in life’s ironies, and whoever crafted this joke clearly understood the
irony in announcing both an estimate and its error. In the case of the U.S. Census, the
irony—or more accurately, the magic—is not as profound as it may seem. The estimation of
undercount relies on external data, such as demographic analysis, post-enumeration surveys,
administrative records, and other sources. The term magic is used here because statistical
inference can appear magical to uninitiated yet inquisitive minds. How can one estimate
an unknown quantity, and then estimate the error of that estimation, without any external
knowledge of the true value?

The magic begins with a sleight of hand—in this case, the word error does not refer to
the actual error, as a layperson might assume. Instead, we aim to understand the statistical
properties of the actual error by imagining its variations across hypothetical replications. The
construction of these replications depends on the philosophical framework one subscribes to,
with the two main schools being frequentist and Bayesian (but see Lin (2024b) for a spectrum
between them). Perhaps surprisingly, the key to resolving the apparent paradox in Section 2
lies in adopting insights from both perspectives.

To see this, consider again the normal example where the true error is § = X, — p.
In the frequentist framework, the hypothetical replications consist of all possible copies of
D =X = {Xj,...,X,} generated from N(u,0?) with the same but unknown parameter
values 6 = {p, 0*}. In this replication setting, the expected value of §?, which is the sampling
variance of X,,, equals 0%/n. It is well-known that under the same replication framework,

the expectation of 6> = S2/n is also o2 /n.

Thus, while 6% and 2 are independent of each other for any given 6 = {u,oc?},
they share the same expectation within the frequentist framework. By invoking the same
leap of faith that underpins the frequentist approach—trusting and transferring average
behaviors to assess individual cases—we justify 62 as an estimate of 2. Such a leap of faith
exists regardless of the goal of our data exercise, be it prediction, estimation, or attribution
(significance testing), albeit with increased levels of intolerance to the inaccuracy in error
assessing, as revealed by the insightful article of Efron (2020).

For Bayesians, such a leap of faith is unconvincing or even “irrelevant” in the sense
of Dempster (1963), as the actual error can differ significantly from its expectation. The
independence between 6% and 62 suggests that accepting this leap would require a religious
level of faith. In the Bayesian framework, the relevant hypothetical replications include all
possible values of § = {y, 0} (and their associated probabilities) that could have generated
the same data set D, and therefore the same {X,,, S?}.
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However, for such a replication setting to be realized—for instance, via a simula-
tion—a prior distribution for § = {u, 02} must be assumed. This postulation represents the
Bayesian leap of faith in actual implementations, since it is virtually certain that a part of
the assumption is faith-based instead of knowledge-driven; for a broader discussion on the
necessity of such leaps across all major schools of statistical inference—Bayesian, Fiducial,
and Frequentist (BFF)—see Craiu et al. (2023) and more comprehensively the Handbook on
BFF Inference edited by Berger et al. (2024).

Although we shall not take a Bayesian excursion here, we can borrow the Bayesian
concept of allowing 6 = {u, 02} to have a distribution in order to establish a joint replication
setting, where both D and 6 = {u,0?} vary. This framework is relevant (for frequentists)
when recommending the same statistical procedure across multiple studies with normal data,
where both D and 6 = {u,0?} may differ from study to study. In the machine learning
world—or any domain reliant on training data—such a joint replication setting can be visu-
alized as potential training datasets drawn from related populations, which makes transfer
learning a meaningful endeavor (e.g., Abba et al., 2024).

For our normal example, given any proper prior on 6, it can be shown (see Appendix
B) that over any proper joint replication of {D, 0},

2
N )
p(6%,6%) = z : (11)
Visnk + 230k +2

where 7,2 is the coefficient of variation of o with respect to the (proper) prior distribution
of 0. This correlation is non-negative, providing a plausible measure of how relevant 5% is
for assessing §2. It is zero if and only if V(0?) = 0, meaning that we revert to the situation
of conditioning on a fixed o%: since S is invariant to y, 62 and 62 remain independent when
conditioned on o2 alone. The fact that (11) is a monotonic increasing function of 7,2 implies
that the relevance of §2 for assessing 02 increases as the heterogeneity among the studies—in
terms of the within-study variation indexed by o?—grows. This monotonicity is intuitive,
given that S2 is an unbiased and asymptotically efficient estimator of o2, and 2 is useful
for comparing the magnitudes of 62 across studies with different o2 values. However, the
fact that this correlation can never exceed 1/ V3 ~ 0.577 is unexpected. For those of us
who believe that mathematical results are never coincidental, contemplating the intricacies
of this bound might induce insomnia (while serving as a cure for many others).

This joint replication framework clarifies the role of 6% as an adaptive benchmark for
assessing the statistical properties of §% over the hypothetical replications. That is statisti-
cal magic—the ability to establish cross-study comparisons based on a single study. More
broadly, the magic lies in creating hypothetical “control” replications {D, 8} from the actual
“treatment” {D, 8} at hand, as elaborated in Liu and Meng (2016), borrowing the metaphor
of individualized treatment.

Generally speaking, the magic relies on two tricks: (I) creating replications within
D, and (II) linking those replications to the imagined variations of D through the within-D
replications from (I). The first trick is applicable when the mechanism generating the data
D inherently includes (higher resolution) replications, either by design (e.g., simple random
sampling) or by declaration (e.g., imposing an i.i.d. structure as a working assumption).
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The second trick is enabled by theoretical understanding (e.g., the relationship between
the distribution of the sample mean and the distribution of the individual samples) or by
simulations and approximations that are enabled by (I), such as the Bootstrap (see Craiu
et al., 2023, for a discussion).

The magic metaphor also serves as a reminder that magic relies on illusions, and
interpreting average errors as actual ones is one such illusion. With that understanding, we
might wonder if it’s possible to assess the actual error with greater relevance. For example,
in the normal case, one might ask whether a different error estimate 5 could be more relevant
for 6 = — p, in the sense that p(d,8) > 0 given any value of = {1, 02}. The classical
statlstlcal hterature offers a fairly clear answer to this question, as discussed below.

5. From UMVUE to an uncertainty principle for unbiased learning

The celebrated Cramér—Rao bound, more broadly known as the information inequal-
ity (see Lehmann and Casella, 2006, Ch. 2), tells us that if f is an unbiased estimator for 0
under a parametric model f(D|#), then under mild conditions, V(#) > I-1(6), where I(0) is
the expected Fisher information. For the normal example, when we take § = p (temporarily
assuming o? is known), we have V(X,,) = 0?/n = I"'(u), where I(u) is the expected Fisher
information from f(Xy,..., X,|n). Thus, we know X,, is UMVUE for p.

It is well-known that an estimator § is UMVUE if and only if it is uncorrelated with
any unbiased estimator U for zero for any 6 (see Lehmann and Casella, 2006, Ch. 2), that
is, Eg[(0 — 0)U] = 0, whenever Eg(U) = 0. Since  — 6 is simply the actual error 4, this
result implies that conditioning on #, it is impossible to have an error assessment § for &
that is both unbiased and relevant at the same time, i.e., Eg() = 0 and p2(4,8) > 0 cannot
hold simultaneously for any €, where we inject the subscript 6 in py to explicate that the
correlation is with respect to f(D|0) for fixed 6.

Intuitively, if any unbiased error assessment 5 is correlated with § , then some part of
the actual error ¢ is predictable by 5. This means that we could improve 6 without losing its
unbiasedness, which contradicts the fact that 0 is already an UMVUE. An astute reader may
quickly recognize that this insight has much broader implications than merely for UMV UEs.
The following result is a proof of this realization, using the same proof strategy as for
UMVUE, but establishes a broader quantitative result than the aforementioned qualitative
“if and only if” result for UMVUE. The result is presented in the scalar case for simplicity,
but its multivariate counterpart can be derived easily using corresponding matrix notation.

Specifically, let @ € R be our target of learning, which could represent a future
outcome, a model parameter, a latent trait, efc. Suppose the state space of our data D is
Q) and Q 2 — R is our learning algorlthm or a learner for Q. For any learner Q, let
5@ Q — R be an assessment (e.g., an estimator) of the exact (additive) error of Q, namely,

0o = Q — Q. Let L(Q, @) be the loss function, and P = {P;(D;Q),s € S} be the family of

distributions under which we calculate the learning risk: R,(Q) = E,[L(Q, Q)]. Note that Q
may be a function of s (e.g., when estimating the model parameter s) or it may be a random
variable itself (e.g., a future realization), in which case the notation P,(D; Q) represents the
joint distribution over D and Q).
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Theorem 1: Let L(Q, Q) = (Q — Q)? be the squared loss, and let L2 denote the collection
of all square-integrable functions with respect to P. Define

Q={Q(D) € L% :EJ(Q—Q)=0,Vs € S} (12)
as the collection of unbiased learners of Q with respect to P. For any Q € Q, define
£(Q) = {05(D) € L} : E4(dp) = 0,Vs € S} (13)

as the collection of corresponding unbiased error assessors for d5. Suppose there exists an
optimal learner Q°* € Q, with risk R%"" < co under f,,s € S. Then:

(I) For any Q € Q and any corresponding 5Q e& (Q), we have

P2(3g,0¢) < }W = RR,(Q), Vs€S5, (14)

where RRS(Q) is the relative regret of Q under distribution Py, and it is set to zero if

A

(IT) Equality pZ(d, 3Q) — RR,(Q) holds for any particular s if and only if R%" is attainable
in the sub-class Q(Q, SQ) = {0 - )\SQ :VAeR} C Q.

Proof: For any given Q € Q (which is non-empty since Q°** € Q) and any SQ € £(Q)
(which is non-empty since 0 = 0 is always included), we define Q) = @ — Adg for any
constar}t A € R. Under our assumptions, ES(Q)\ — Q) =0, and QA € L%, implying Q,\ € Q.
Since Q) — Q = 65 — Adgy and it has mean zero under f(D;Q), we have

RP' < Ry(Q) = Vildg — Adg) = Vi(65) + A2V,(d5) — 2ACov,(55,0), Vs €S (15)

Since the left-hand side of this inequality is free of A, the inequality holds when we minimize
the right-hand side over A € R, which is achieved at A = A* = Cov4(dy,05)/Vs(0p), assuming

VS(%) > 0. (When Vs(gé) =0, ps(%,g@) = 0; hence (14) holds trivially, and we can set
A* =0.) Thus, we obtain

R < V. (05) [1 = p2(0g,0)], Vs €S,

which yields (14) since R,(Q) = Vs(dg) when Eg(d5) = 0. This proves part (I).

Part (IT) follows from (15) as well, because the equality holds there if and only if RP*
is attainable by Qi € Q(Q,05). This includes the case with V(d5) = 0, where the result

holds trivially, because then p,(dq, SQ) =0 and RS(Q) = R j.e., Q itself is optimal. [

S Y

The immediate implication of inequality (14) is that there is no free lunch. If we want
to increase the relevance of our assessment o4 for the actual error §; by increasing their
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correlation, we must also increase the relative regret for Q. effectively sacrificing degrees
of freedom of learning for the error assessment. Conversely, the less regret in Q, the less
relevant its error assessment will be to the actual error. In the extreme case, when Q QOpt
we arrive at the following result, where by a relevant error assessor we mean it is linearly
correlated with the actual error of the learner.

Corollary 1: Under the same setup as in Theorem 1, the following two assertions cannot
hold simultaneously:

(A) Q € Q is an optimal and unbiased learner for () under P,; and

(B) Q has an unbiased and relevant error assessor SQ € 5(@)

6. Beyond unbiased learning and error assessing

A key limitation of Theorem 1 is the requirement that both the learner and error
assessor must be unbiased. An immediate generalization is to consider cases where both
are asymptotically unbiased, under an asymptotic regime with respect to some information
index ¢, such as the size of data. Mathematically, given a sequence of error order e, such
that limsup,_, . |e,| = 0, we can modify the classes of the learners and error assessors in (12)
and (13) respectively by

—{Q(D) € L : E,[Q(D) — Q] = O(e,), Vs € S}, (16)
£.(Q) ={0(D) € L} : Ey(d5) = O(e,), Vs € S}, (17)

where O(e,) is the standard notation for being of the same order as e,. That the error
assessor 3(9 must share the same order of expectation as the actual error o4 is a necessary
requirement to render the term ‘error assessor’ meaningful, as otherwise anything could be
regarded as SQ. With these modifications, we have the following asymptotic counterpart of
Theorem 1.

Theorem 2: Assume the same setup as Theorem 1, but with Q and & (Q) extended respec-
tively to Q, and &,(Q)). We then have

P2(60.55) < RR(Q) +0(2). Vs €S, (18)
where e, is a sequence of vanishing error rates that determines the asymptotic regime.
Proof: For Q € Q, and SQ € &(Qb), we can write E5(5Q) = q, and ES((%) = b, where
a, = O(e,) and b, = O(e,) by our assumption. Hence for Q) = Q — )\3@, E.(Qr — Q) =

—Ab, = Q(e,) for any A, implying that Q» € Q,. Let \* be the minimizer of V, [5 — Mg }
as defined in the proof of Theorem 1. The optimality of R%* then implies that

R < Ru(Que) = Vi[5 = M) + [Buig = 1dg)]
(0) [1 = 206, 09)] + (a0 = A°b)*,
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But this proves the inequality (18) because (a, — A*b,)* = O%*(e,) = O(e?). O

L

A major application of Theorem 2 is for the maximum likelihood estimator QMLE,
which under regularity conditions is efficient and asymptotically normal (e.g., Lehmann and
Casella, 2006) and hence it is asymptotically optimal under the squared loss. Theorem 2
says that asymptotically, there cannot be any relevant error assessor SnrE € &(QMLE) that
is asymptotically correlated with the actual error dy g = QMLE — (). When {3MLE, OMLE }
are jointly asymptotically normal, then Theorem 2 would imply that any such dure will be
asymptotically independent of dyrg. It is worthy noting that the same would hold for any
estimator that is asymptotically normal and optimal (under quadratic loss), such as those
studied in the classic work by Wald (1943) and Le Cam (1956).

Because the asymptotic variance of the MLE can be well approximated by the inverse
of Fisher information, especially the observed Fisher information (Efron and Hinkley, 1978),
the preceding result might lead some readers to wonder if the MLE and the observed Fisher
information are asymptotically independent, or at least the MLE and the inverse of the
observed Fisher information I ,(Q) are asymptotically uncorrelated. The normal example
given in Section 2 may be especially suggestive, since the MLE for u, X,,, is independent
of IL(0) = n/63 s = n?/[(n — 1)S?]. However it will be a mistake to generalize from this
example.

Consider the same normal model N(u,o?), but our goal now is to estimate the vari-
ance 0. The MLE for o2 is 635 = (n — 1)5%/n, and the corresponding observed Fisher
information (pretending p is known) is I 71 (635) = 264s/n; hence they have a determin-
istic relationship. However, this is not a contradiction to Theorem 2 because I~!(63; ) is
not an unbiased assessment of the actual error, but rather its variance. Since the variance
is effectively an index of the problem difficulty for estimation (as termed in Meng, 2018), it
is entirely natural to expect that the variance can vary closely with the value of the esti-
mand. The normal mean problem is a special case because it is a location family, for which
shifting the mean only changes the value of the estimand, but does not alter the difficulty of
its estimation. This point is reinforced if we reparameterize o2 via n = log o2, which yields
e = log 63 and I (N3 ) = 2/n, and they are now trivially independent of each other,

because Ayrg — 1 ~ log x?_; —log (n — 1) is a location family.

The consideration of the relationship between the MLE and the Fisher information
provides a natural segue to the following discussion involving the relationship between in-
equity (14) and the Cramér-Rao low bound. As is well documented?, the seminal work by
Rao (1945) was prompted by a question raised during a lecture Rao gave in 1943 on whether
there could be a small-sample counterpart of the asymptotic efficiency for MLE as captured
by the Fisher information. However, the significance of this work goes beyond accenting the
role of Fisher information, because the Cramér-Rao inequality can be viewed as a statistical
counterpart of the fundamental Heisenberg Uncertainty Principle (Griffiths and Schroeter,
2018) via the notion of co-variation, as explored in the next three sections.

4See the video on C.R. Rao: A Life in Statistics IT at https://www.youtube.com/watch?v=eaxjUxoCx5ulkt=324s
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7. Measuring co-variation without probabilistic joint-state specifications

In statistical and (ordinary) probabilistic literature, the most commonly adopted
measure of the co-variation of two real-valued random variables G and H is their covariance
Cov(G, H) (which includes correlation once G and H are standardized) defined via their
joint probabilistic distribution Fg (g, h):

Cov(G. H) = / / (9 — ue)h — 1) Fen(dg, dh) = {(g — wa). (h— m))e,  (19)

where pg and pg are respectively the means of G and H, which, without loss of generality,
we will assume to be zero for the subsequent discussions for notational simplicity. The
subscript F' in the inner product notation highlights the critical dependence of Cov(G, H)
on their joint distribution F'(g,h). The elegant Hoeffding identity (Hoeffding, 1940)

Cov(G,H) = // [Fou(g,h) — Fg(g)Fu(h)] dgdh, (20)

where Fg and Fy are the marginal (cumulative) distributions, further highlights how the
covariance measures the co-variation in G and H as captured by their joint distribution,
with respect to their benchmark distribution under the assumption of independence.

For HUP, it seems natural to take G = x, the position of a particle, and H = p, its
momentum, to follow the standard notation in quantum mechanics. It is textbook knowledge
(e.g. Landau and Lifshitz, 2013; Griffiths and Schroeter, 2018) that densities of the position
x and momentum p are given by |¢(z)|> and |¢(p)|* respectively, where 1 (z) is a complex-
valued position wave function, and the momentum wave function ¢(p) is a scaled Fourier
transform of ¥ (z) in the form of

_L = ) e~ /0 g,
o) == [ wl)e s, @

where the scale factor A = h/(27), with h = 6.6260701 x 10734, the Planck’s constant.
Clearly, ¢ (x) is the inverse Fourier transform of ¢(p), and together x and p form a pair of
the so-called conjugate variables (Stam, 1959).

As a statistician, once I understood how the marginal distributions for x and p were
constructed, I naturally asked for their joint distribution. This is where things become in-
triguing or puzzling to those of us who are trained to model non-deterministic relationships
via probability, because (quantum) physicists’ answer would be that there is no joint prob-
ability distribution for x and p—mnot that they are unknown, but that there cannot be one.
Unlike the mystery of deep learning to statisticians—and its winning of the Nobel Prize in
physics only makes it more intriguing or puzzling—I found good clues to the inadequacy of
ordinary probability for dealing the quantum world by the very fact that its mathematical
modeling involves non-commutative relationships, such as between operators or matrices.

Perhaps the easiest way to see potential complications with non-commutative rela-
tionship is to consider the problem of generalizing the notion of variance to co-variance
with complex-valued variables. With real-valued random variables G and H having a
joint distribution F', we know variance is the co-variance of a variable with itself, that
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is, V(G) = Cov(G,G). In other words, when we link variance with an inner product,
i.e., V(G) = (G, G)F, there is a natural extension for covariance by defining Cov(G, H) =
(G, H)r. However, with the ordinary definition of the co-variance, this extension works only
if the inner product is symmetric, that is, (G, H)r = (H, G) , since Cov(G, H) = Cov(H, G)
in the real world.

This is where the complex world is, literally, more complex than the real world. For
two complex-valued L? functions u(y) and v(y) on y € Q, the inner product is not symmetric,
because it is defined by

(ufo), = / aly)e(y)uldy) £ (vlu), = / o(y)uly)n(dy), (22)

where u is the complex conjugate of u, and p is a baseline measure, which does not need
to be a probabilistic measure. This non-commutative property is at the heart of quantum
mechanics, as reviewed in the next Section. It can also been seen with matrix mechanics,
since for any two matrices A and B or more broadly operators, in general AB # BA. The
very fact that a regular joint probability specificity must render Cov(u, v) = Cov(v, u) should
remind us that whatever ‘joint specification’ of v and v we come up with, it will be more
nuanced than a direct probabilistic distribution for {u, v} whenever (22) rears its head. This
phenomenon is not unique to the quantum world, since a similar situation happens with the
notion of quasi-score functions, which can violate a symmetry requirement for genuine score
functions, as reviewed in Appendix C.

However, this complication does not imply that probabilistic thinking is out the win-
dow. Because (v|u), = (u|v),, we see that if we define Cov(u,v) = (ulv),, then its magni-
tude, |Cov(u,v)| = |Cov(v,u)| is symmetric. Therefore, as long as |Cov(u,v)| is used as a
measure of the magnitude of the co-variation between v and v, we can treat it as if it were the
magnitude of a standard probabilistic co-variance. In other words, the concept, or at least
the essence of co-variance, can be extended to non-probabilistic settings, and this extension
perhaps can help our appreciation of HUP from a statistical perspective, as detailed in the
next Section.

8. A lower resolution co-variation: co-variance of generating mechanisms

In the quantum world, we have seen that a particle’s position and momentum have
their respectively well-defined probability distribution, and we can express V(z) = (f|f), and
V(p) = (g|g)u, where f(z) = z(x) and g(p) = po(p). It is then mathematically tempting
to define Cov(z,p) = (flg), and Cov(p,x) = (g|f),, using the notation of the previous
section. This construction is problematic starting from the very notation Cov(z,p), since it
may suggest that we are measuring the co-variance between the position and momentum as
states, which creates an epistemic disconnect with the understanding that a joint statehood
of z and p does not exist or cannot be constructed in the quantum world.

However, x and p clearly have physical relationships. Indeed the so-called Stam’s
uncertainty principle (Stam, 1959) establishes that

C?V(z)—J(p) >0 and C?V(p) — J(z) >0, (23)

where C' = 47 for standard Fourier transform, and C' = 2/k when we use the fi-scaled Fourier
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transform (21). Here J(p) is the Fisher information for the density of p, f(p), that is,

J(p) = /_ ) [W] 2 f(p)dp, (24)

[e.9]

and similarly for J(z). For readers who are unfamiliar with defining Fisher information for
a density itself instead of its parameter, J(p) is the same as the Fisher information for the
location family f(p — 6), where 6 shares the same state space as p (in the current case, the
real line). In the same vein, the Cramér-Rao inequality can be applied to the density itself,
which leads to V(x) > J~!(z) and V(p) > J~*(p). Consequently, as shown in Dembo (1990)
and Dembo et al. (1991),
h2

V(@)V(p) 2 €7 =, (25)

which is the same as the usual expression of HUP proved in Kennard (1927):

h
Avdp > 3, (26)

where Az and Ap denote respectively the standard deviation of z and p. Dembo (1990) and
Dembo et al. (1991) also used (23) to prove that HUP implies the Cramér-Rao inequality.

The Stam’s uncertainty principle is elegant, and it reveals a kind of relationship
between two marginal distributions that is not commonly studied in statistical literature,
because it bypasses the specification of a joint distribution between z and p. However, this
does not rule out—and indeed it suggests—that we can consider quantifying the relationships
between the mechanisms that generate x and p. A mechanism can generate a single state,
many states, or no states at all—which is equivalent to presenting itself as a whole—at
any given circumstance, such as temporal instance. Hence quantifying relationships among
mechanisms is a broader construct than that for the states they generate.

For statistical readers, a reasonable analogy is to think about the notion of likelihood.
When we employ a likelihood, we can consider a single likelihood value (e.g., at the MLE),
several likelihood values (e.g., likelihood ratio tests), or not any particular value but the
likelihood function as a whole (e.g., for Bayesian inference). By considering co-variations at
the (resolution) level of mechanisms instead of states, we may find it less foreign to contem-
plate indeterminacy of relationship, such as between two sets—including empty ones—of the
states generated by related mechanisms.

Of course, one may wonder if any relationship between two mechanisms itself can
be indeterminable. The logical answer is yes, but fortunately for quantum mechanics we
do not need go that far. As any useful quantum mechanics textbook (Landau and Lifshitz,
2013; Griffiths and Schroeter, 2018) teaches us, the position mechanism and momentum
mechanism can be represented mathematically via the so-called position operator & and
momentum operator p, to follow the notation in quantum mechanics, and they are tethered
together when being applied to the same wave function ¥ (z) (in the position space®), that
is

Zo(xr)=a(x), and po(x)=—il)'(z). (27)

®One can define the operators equivalently in the conjugate momentum space via p o ¢(p) = pp(p) and
% o @(p) = ihy' (p), where the momentum wave function ¢(p) is the Fourier transform of ¢ (x) (Griffiths and
Schroeter, 2018).
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That is, the position operator acts on ¢ by multiplying ) with its argument, and the mo-
mentum operator acts on ¢ by differentiating it, and multiplying it by —ih, where 1 = v/—1.

With these representations of the mechanisms, we can measure their co-variations
induced by changing the state x in real line (as a univariate case) via the inner products,
with respect to a common measure p, typically Lebesgue measure. That is, we can define

Cov(d.) = {80 vlpo v, = —in [ i)' (o) d (28)

Cov(p, z) = Cov(z,p) = ih/oo z(x)) (x) de = —ih (1 + /_OO x(z ) () da:) . (29

—00

Here the last equality is obtained by integration by parts and by using the fact that | (z)|?
is a probability density and that x|y (z)|* vanishes at x = 400 (because physicists assume

the mean position is finite). Together, expressions (28)-(29) imply that
Cov(z,p) — Cov(p, ) = ih, (30)

which is also the consequence of the so-called canonical commutation relation (Griffiths and
Schroeter, 2018),

E%)

op—po =ih, (31)
which holds because o (po f(x)) —po(Zo f(x)) =ihf(x) for any differentiable function f.

An immediate consequence of (30) is that the magnitude of the covariances between
% and p is bounded below regardless of the form of the wave function ¢(z). This is because
for any complex number z, |z|? > |Im(z)|* = |(z — 2)/2i|?. Hence the identity (30) implies
that

Cov(a, p)|? > (32)

Cov(2, ) 1
21 4

—cw@@W?_#

As reviewed in the next section, inequality (32) implies HUP in the form of (26), just as
Stam’s uncertainty principle does. For that purpose, it is worth pointing out that marginally,

V) = (poulou) = [ iawla)is = [ o) 33
Vo) = poulpovn =1 [ F@w@d= [ RlewPa (60

where the last equation in (34) is due to the fact that ¢(p) is the (h-scaled) Fourier transfor-
mation of ¥(x), as given in (21). These two equalities tell us that when we consider either
the position or the momentum by itself, its mechanism-level variance, V(Z) or V(p), and
the state-level variance, V(z) or V(p), are the same. This renders the unity between the
mechanism-level representation (as a distribution or operator) and the state-level represen-
tation (as a observable or latent variable), a distinction seldom made conceptually under the
ordinary probability framework. However, this distinction can be crucial once we go out-
side the regular probability framework, as in the current context of measuring co-variations
between the position and momentum.
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9. Bounding co-variations: A commonality of uncertainty principles

With co-variances constructed broadly, we can study the similarities and differences
between inequality (14) and the Cramér-Rao inequality, as well as their intrinsic connections
with HUP. Specifically, both inequalities are based on bounding joint variations of two ran-
dom objects, say, G and H, by their marginal variations. For (14), under the unbiasedness
assumptions and using the notation given in Section 5, if we write G = 04 and H = SQ, then
inequality (14) is the consequence of (omitting subscript s):

Cov(G, H) < V(H) [V(G) — R™]. (35)

For the Cramér-Rao inequality, we can take the same G' = dp5 = Q — @, where @ is an
unbiased estimator for @). We then let H = S(0|D), the score function from a sampling
model of our data D, f(D|6), with Q@ = Q(0). It is known that the Cramér-Rao inequality
is the same as (e.g., Lehmann and Casella, 2006)

[Q'(0)]* = Cov*(G, H) < V(H)V(G), (36)

where Q'(0) is the derivative for Q(#). (When Q(0) is not differentiable, we can apply the
bound given by Chapman and Robbins (1951)) in terms of likelihood ratio or elasticity.)

Evidently, inequality (36) is an application of the Cauchy-Schwartz inequality. In
contrast, inequality (35) delivers a more precise bound because of the subtraction of the
term R°P*. Indeed, inequality (35) is often an equality because the condition in (II) of
Theorem 1 frequently holds in practice. Given the two inequalities share the same type
of G, the difference must be attributable to something distinctive between the two H's.
Whereas both H’s have zero expectation, the first H = SQ is a statistic, required to be
a function of data D only. In contrast, the second H = S(0|D) is a random function,
depending on both data D and the unknown 6. Since the actual error 6, = Q- Q(0) is also
a random function, the second H can co-variate with G to a greater extent than the first
H can. Consequently, Cov*(G, H) can reach a looser upper bound in (36) than in (35). As
an illustrative example, for estimating the normal mean under N(u,0?), Q = X,, — pu and
H = S(u|X) =n(X, —pn)/o* =nG/c? and hence (36) becomes equality, whereas such an
H is clearly not permissible for (35).

Nevertheless, both inequalities reveal the tension between individual variations—
features of their respective marginal distributions—and their co-variation, which reflects
their relationships, probabilistic or not. For (36), in order to keep Cov?(G, H) at the value
of [Q'(0)]? > 0, the two variances V(H) and V(G) cannot be simultaneously small to an
arbitrary degree, just as a rectangle cannot have arbitrarily small sides simultaneously when
its area is bounded away from zero. This restriction leads to the Cramér-Rao lower bound.
In (36), we purposefully write the Fisher information as the variance of the score function
instead of the expectation of its negative derivative. The variance expression makes it clearer
the co-variation essence of Cramér-Rao inequality, and draws a direct parallel with the
inequality underlying HUP.

Specifically, using the notation and the inequality (32) of Section 8 and taking G = &
and H = p, we have

if < [Cov(G, H)]* < V(H)V(G), (37)
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Comparing (37) with (36), we see that the Cramér-Rao bound and the Heisenberg uncer-
tainty principle are consequences of essentially the same statistical phenomenon, that is,
two marginal variances necessarily compete with each for being arbitrarily small, when the
corresponding covariance is constrained in magnitude from below.

In contrast, for (35), the trade-off is between the covariance and one of the marginal
variances. To see this clearly, we can assume V(H) = 1, which does not offend the assumption
that E(H) = 0. Inequality (35) then becomes

Cov?(G,H) < V(G) — R = Rg, (38)

where R is the regret of G. On the surface, the changes of covariance and V(G) appear to
be coordinated instead of in competition, because the larger Cov?(G, H), the larger V(G).
The reverse holds when the inequality is equality (which often is the case), and more broadly
larger V(G)—and hence larger regret—at least allows more room for Cov?(G, H) to grow.
But this is exactly where the tension lies when we want to improve both the learning and
error assessment; improving learning means to reduce Rg and hence have a smaller V(G),
but improving error assessment requires a larger C0V2<G, H).

10. Elementary mathematics, advanced statistics, and inspiring philosophy

Mathematically, the proof of either (36) or (37) is elementary, yet the implications
of either inequality, as we know, are profound. Similarly, the inequality (35) is built upon
equally elementary mathematics, and the work of Bates et al. (2024) has already suggested
its potential impact. However, many more studies remain, particularly regarding alternative
loss functions, where the relevance of error assessment may not align with covariance. From
a probabilistic standpoint, a thorough theoretical exploration of the relevance of an error
assessor, 0, for the true error ¢ should involve investigating the joint distribution of § and 6.
In this context, irrelevance can be characterized by the independence between § and 4.

On a broader level, formulating a general trade-off between learning and error assess-
ment remains a complex task. This challenge stems from the need to define and measure the
actual information utilized during learning and to identify relevant replications when assess-
ing errors. Both ‘information’ and ‘learning’ are elusive notions, having taken on numerous
interpretations throughout history, many of which require a refined understanding. For in-
stance, even in the case of classical likelihood inference within parametric models, the role
of conditioning in error assessment continues to provoke theoretical and practical debates.

I was reminded of this reality by an astrostatistics project involving correcting con-
ceptual and methodological errors in astrophysics for conducting model fitting and goodness-
of-fit assessment via the popular C-statistics, which is the likelihood ratio statistic under a
Poisson regression model (Cash, 1979). When the project started, I naively believed that
it would be merely an exercise of applying classical likelihood theory and methods, perhaps
with some clever computational tricks or approximations to render them practically efficient
and hence appealing to astrophysicists.

As reported in Chen et al. (2024), however, the issue about whether one should
condition on the MLE itself or not in the context of goodness-of-fit testing, is a rather
nuanced one. The issue is closely related to the issue of conditioning on ancillary statistics,
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since for testing distributional shape, the parametric parameters are nuisance objects (as
termed in Meng, 2024) and their MLE can be intuitively perceived as locally ancillary (Cox,
1980; Severini, 1993) because the distribution shape of the MLE will be normal to the
first order (under regularity conditions) despite the shape of the distribution being tested.
However, it is not exactly ancillary, and to decide when conditioning is beneficial (e.g.,
leading to a more powerful test) in any sample settling is not a straightforward matter.
Higher order asymptotics can help provide insight, but communicating them intuitively is
a tall order even for statisticians, let alone for astrophysicists or any scientists (including
data scientists). However, regardless of whether low-level mathematics or high/tall order of
statistics are involved, the ultimate challenge of contemplating and formulating uncertainty
principles is epistemological, or even metaphysical. For readers interested in philosophical
contemplation—and I'd expect that statisticians should be in that group because statistics
is essentially applied epistemology®, 1 highly recommend the over 50 pages entry titled “The
Uncertainty Principle” by Hilgevoord and Uffink (2024) in The Stanford Encyclopedia of
Philosophy.” Tt is an erudite and thought-provoking essay about the intellectual journey
of Heisenberg’s uncertainty principle. Even or perhaps especially the name “uncertainty
principle” has an interesting story behind it, because initially the name did not contain
either ‘uncertainty’ or ‘principle’.

As Hilgevoord and Uffink (2024) discussed, the term uncertainty has multiple mean-
ings, and it is not obvious in which sense the phenomena revealed by Heisenberg (1927)
qualifies as ‘uncertainty’; indeed, historically terms such as “inaccuracy, spread, imprecision,
indefiniteness, indeterminateness, indeterminacy, latitude” were used by various writers for
what is now known as HUP. More intriguingly, Heisenberg did not postulate the finding
as any kind of principle, but rather as relations, such as “inaccuracy relations” or “inde-
terminacy relations”. The discussions in Section 8 certainly reflect the relational nature of
HUP, because it is fundamentally about the co-variation of position and momentum at the
mechanism level.

The entry by Hilgevoord and Uffink (2024) invites readers to consider a fundamental
question that underpins these onomasiological reflections: Is the HUP a mere epistemic con-
straint, or a metaphysical limitation in nature? Unsurprisingly, this question is a source of
ongoing dispute among philosophers of physics and even among physicists themselves. The
most well-known historical debates are Heisenberg and Bohr’s Copenhagen interpretation
emphasizing the metaphysical indeterminacy, and the contrasting deterministic interpreta-
tion developed by de Broglie and Bohm, known as Bohmian mechanics (Hilgevoord and
Uffink, 2024).

Given I have already greatly exceeded the deadline to submit this essay, I will refrain
from revealing any further thrills provided in Hilgevoord and Uffink (2024), such as more
recent debates about HUP, leaving readers to enjoy their own treasure hunt. But I will

6This was a characterization given by philosopher Hanti Lin during the JSM 2024, where Hanti and I
co-organized a session where each philosopher presented for 20 minutes followed by a 15-min discussion by a
statistician, and there were three pairs in total. (I made a mistake that embodied the statisticians’ modesty:
the estimated room size I provided to the JSM meeting department had an unacceptably negative bias.)

"SEP is simply a fountain of afflatus and a Who’s Who in philosophy. Indeed SEP was
where I came across Hanti Lin’s 115-page entry on “Bayesian Epistemology” (Lin, 2024a), and led
to my invitation to Hanti to serve as a co-editor to establish the “Meta Data Science” column
(https://hdsr.mitpress.mit.edu/meta-data-science) for Harvard Data Science Review.
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mention that this question has prompted me to wonder whether inequality (14) also suggests
that any effort to assess the actual error is antithetical to probabilistic learning.

This is because the crux of probabilistic learning—unlike deterministic approaches,
such as solving algebraic equations—Ilies in using distributions as our fundamental mathe-
matical vehicles for carrying our states of knowledge (or lack thereof) and for transporting
data into information that furthers learning. From this distributional perspective, assessing
the actual error means to assess the distribution of the actual error, which is all we need
to, for example, provide the usual confidence regions. It does suffer from the leap of faith
problem as discussed in Section 4, but then that is a universal predicament to any form of
empirical learning, as far as I can imagine.

11. From uncertainty principles to happy marriages...

A further inspiration from Hilgevoord and Uffink (2024) is its discussion on the re-
lationship between the original semi-quantitative argument made by Heisenberg (1927) and
the mathematical formalism established by Kennard (1927). Kennard’s inequality (26) is
precise, but can be perceived as narrow, for instance, in its reliance on standard deviation
to describe “uncertainty.” A similar limitation applies to inequality (14), which assesses rel-
evance through linear correlation, a measure that surely is not universally appropriate for
capturing the notion of relevance.

More broadly, much remains to be examined regarding the trade-offs between the
flexibility of qualitative frameworks, which embrace the nuances and ambiguities of natural
language, and the rigor of quantitative formulations, which offer the precision of mathemati-
cal language but often at the risk of being overly restrictive or idealized. Reflecting on these
trade-offs is essential to learning. Statisticians and data scientists, in particular, can draw
from centuries of philosophical inquiry into epistemology, as exemplified by the discussions
surrounding the HUP and the like. In truth, when thoughtfully practiced, data science em-
bodies—or ought to embody—a harmonious blend of quantitative and qualitative thinking
and reasoning. This was the central theme of my Harvard Data Science Review editorial,
“Data Science: A Happy Marriage of Quantitative and Qualitative Thinking?” (Meng, 2021),
inspired by Tanweer et al. (2021)’s compelling article, “Why the Data Revolution Needs
Qualitative Thinking.” Maintaining this harmony, akin to sustaining a functioning marriage,
requires commitment from all parties and a willingness to compromise. Ultimately, it calls
for the wisdom to recognize that individual fulfillment and happiness—whether in marriage,
mentorship, or mind melding or mating—depends profoundly on collective well-being. Pro-
fessor Rao certainly embodied this wisdom.

I vividly recall my first visit to Pennsylvania State University as a seminar speaker,
shortly after Professor Rao’s 72nd birthday on September 10, 1992. During the seminar
lunch, Professor Rao graciously joined us. We—students and early-career researchers (myself
included, back when my hair was dense almost surely everywhere)—felt honored by his
presence. All questions naturally revolved around statistics, except for one that made us all
chuckle: “Professor Rao, how does one live a long and happy life?”

Without missing a beat, and with his characteristic paced, confident cadence, Rao
replied, “Keep your wife happy.”
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12. A prologue or an invitation

For those who would like this article to conclude with a statistical Q&A: During the
elevator ride following my seminar, which carried the seemingly oxymoronic title “A Bayesian
p-value” (a deliberate contrast to the title of Meng (1994)), Professor Rao turned to me and
asked, “Do people still use p-values?” To which I responded. ..

Well, I'll leave that as a missing data point, inviting you to impute your own favorite
answer. Alternatively, if you prefer, find a deliberately embedded mathematical (but petty)
error in this article and exchange it for the answer by emailing meng@stat .harvard.edu (as
long as God permits me to respond).
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APPENDIX

Appendix A: Derivations for the regression example in section 3

In general, the weighted estimate of # can be written as
0 — i wiX;Y;
Y wXE
with OLS corresponding to choosing w; = 1 and BLUE given by w; = o; 2, for all i. Con-

ditioning on X but for notational simplicity we suppress the conditioning notation in all
expectations below, we have

S wiXPo? Ty
[Zyzlwl i]2 B 12 .

Let 7, ; = Y; — éjo. Because E(7,, ;) = 0, to calculate p, we only need to calculate

V(b,) =

5 5 Y wiXEYY)]  E[XL wiXiYi]X;
. Z?:l ’lez[COV(}/Z, Y}) + GQX,LX ] [Z;ﬂ 1 w2X202 + QQTQ]
B T, T2
_ (0°T, + w;o?) X [T +0PTE)X; _X; [wa? B va(,] .
T, 12 T, 77 T,]
and
P wX (XY — XY, o |8
V(i) = v [ER S Z X0 gy |5 w0 - %)

w i#]

sz (XY, — X, Y)Y, sz (XY — X,Y)|Y;

=T.’E {

o

}

i#]
{ XQZwQXQ 2l +V szXQ }
i#] i#]

= 1,2 {[X} (T, — wiX}0D)] + [T — w; X703}
=T, {X} Ty, + 03 [T2 — 2T,w; X7} .

Putting all the pieces together, we have

X; (w0 Ty = Ty )

Corr (B, o ;) = j=1,2. (39)

\/ng X2T,,, + 02(T2 — 2T, w3X2)}
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For n = 2,5 = 1, expression (39) simplifies to the desired (4) because
X1 X2wy (w03 — wy03)
VIXRw3 X303 + wiXio?)[wi X0t + wiXFo}]
X1|X2|("LU1% - w2%)

VX201 + X307 [wiXPo? + wiX3o?]

Corr(éw, Tw1) =

To calculate the relative regret (RR), we have

which also implies, by taking w; o< o} 2,
N 1
V(@BLUE) = (41)

(Xfor” + Xioy™)
Putting together (40) and (41) yields the desired (5).

Appendix B: Derivation of (11) in section 4

Because 62 and 6 are independent given 6 = {1, 02} and hence Cov(82, 62|p, 0%) = 0,
we see over the joint replication,

Cov(9?,6%) = E [Cov(8%,6°|p, 0®)| + Cov [E(8?|n, 0%), E(0|p, 0%)| = ;vw),

as long as the prior distribution for § = {u,c?} is proper. Furthermore, conditioning on
0 = {u,o%}, 6% ~ a*x3/n and 6% ~ o%x%_,/[n(n — 1)] (where the two chi-square variables
are independent of each other), we have

2 4 1 2y.
WE (0 ) + EV(U )

nQE (04> + ;2\/(02).

2

V(8%) =E [V(8%|u, 0?)| + V [E(8%|, 0?)]

V(8%) =E [V(&*|j1,0*)] + V [E(@%|s, 0*)]
Consequently, we see over the joint replication,
V(c?)
V/2(n — 1)7E(0%) + V(02),/2E(0*) + V(0?)
which yields (11) because E(c%) = V(0?) + [E(c?)]%.

Corr(?,6°) =

Appendix C: A quasi-score analogy for understanding the lack of joint probability

For statistically oriented readers, an instructive—though far from being perfect—analogy
to the issue of the non-existence of a probabilistic model due to violations of symmetry or
commutativity is the generalization from likelihood inference via the score function to esti-
mation based on quasi-score functions. The correct score function, when available, provides
the most efficient inference asymptotically (under regularity conditions). However, specify-
ing the correct data-generating model often requires more information and resources than
we typically possess.
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In contrast, a quasi-score function only requires the specification of the first two mo-
ments of the data-generating model. This makes it a more practical and robust alternative
to exact model-based inference, particularly in the presence of model misspecification. How-
ever, this robustness comes at the cost of reduced efficiency, reflecting the trade-off inherent
in this approach.

Broadly speaking there are three types of pseudo scores: (I) those that are equivalent
to the actual score; (IT) those that are not equivalent to the actual score, but are equivalent to
the score from a misspecified data generating model, and (III) those that cannot be derived
from any probabilistic model.

Type (IT1) exists because any (differentiable) authentic score vector (S;(6), . .., S4(6))"
for a d-dimension parameter 6 = (6y,...,60,)" must satisfy
0Si(0)  0S;(0) .
= v =1,...,d 42
ae] 802 ) 27 ..7 ) ) ) ( )
because the corresponding (observed) Fisher information matrix, _%(9@7 is symmetric. How-

ever, even some most innocent looking quasi-scores, such as for certain 2 x 2 contingency
tables, the symmetry requirement of (42) can be easily violated, as demonstrated in Chap-
ter 9 of McCullagh and Nelder (1989), which is an excellent source for understanding quasi
scores and estimation equations in general.

The fact that violating the symmetry condition (42) rules out the possibility of being
an actual score may help some of us imagine how the lack of symmetry or commutativity
might rule out the existence of a probability specification, at least from a mathematical
perspective. Furthermore, just as one can generalize from likelihood to quasi-likelihood of
many shapes and forms—again see McCullagh and Nelder (1989)—the non-existence of a
probabilistic distribution does not prevent us from forming quasi-distributions for various
purposes, such as the Wigner quasiprobability distribution, which permits negative values,
for position and momentum (z,p) (Hillery et al., 1984; Lorce and Pasquini, 2011). Whether
the mechanism-level covariances as given in (28)-(29) have the same magnitude as that from
the Wigner quasiprobability distribution will be left as a homework exercise.
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