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Abstract
Limiting Spectral Distributions (LSDs) of real symmetric patterned matrices have been

well-studied. In this article, we consider skew-symmetric/anti-symmetric patterned random
matrices and establish the LSDs of several common matrices.

For the skew-symmetric Wigner, skew-symmetric Toeplitz and the skew-symmetric
Circulant, the LSDs (on the imaginary axis) are the same as those in the symmetric cases.

However, for the skew-symmetric Hankel and the skew-symmetric Reverse Circulant,
we obtain new LSDs. We also show the existence of LSDs for the triangular versions of these
matrices.

We then introduce a related modification of the symmetric matrices by changing the
sign of the lower triangle part of the matrices. In this case, the modified Wigner, modified
Hankel and the modified Reverse Circulant have the same LSDs as their usual symmet-
ric counterparts while new LSDs are obtained for the modified Toeplitz and the modified
Symmetric Circulant.
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1. Introduction

Suppose An is an n × n matrix with eigenvalues λ1, . . . , λn. The empirical spectral
measure µn of An is the random measure

µn = 1
n

n∑
i=1

δλi , (1)

where δx is the Dirac delta measure at x. The corresponding random probability distribution
(on R or R2, depending on whether the eigenvalues are real or complex) is known as the
Empirical Spectral Distribution (ESD) and is denoted by FAn .

The sequence {FAn} is said to converge (weakly) almost surely to a non-random dis-
tribution function F if, outside a null set, as n→∞, FAn(·)→ F (·) at all continuity points
of F . F is known as the Limiting Spectral Distribution (LSD).

There has been a lot of recent work on obtaining the LSDs of large dimensional pat-
terned random matrices. These matrices may be defined as follows (Bose and Sen (2008)).
Let (ai)i≥1 be a sequence of random variables, called an input sequence. Let Z be the set of
all integers and Z+ be the set of all positive integers. Let

Ln : {1, 2, . . . n}2 → Z (or Z2), n ≥ 1, (2)

be a sequence of functions. We shall write Ln = L and call it the link function. By a slight
abuse of notation, we shall write Z2

+ as the common domain of {Ln}n≥1. Matrices of the
form

An = n−1/2((aL(i,j)))1≤i,j≤n (3)
are called patterned matrices. If L(i, j) = L(j, i) for all i, j, then the matrix is symmetric.
We shall denote the LSD of {n−1/2An}, if it exists, by LA.

The real symmetric patterned matrices that have received particular attention in the
literature are the Wigner, Toeplitz, Hankel, Reverse Circulant and the Symmetric Circulant
matrices. Their link functions are given in Table 1.

Table 1: Some common symmetric patterned matrices and their link functions.

Matrix Notation Link function
Wigner Wn LW (i, j) = (min{i, j},max{i, j})
Toeplitz Tn LT (i, j) = |i− j|
Hankel Hn LH(i, j) = i+ j

Symmetric Circulant SCn LSC(i, j) = n
2 − |

n
2 − |i− j||

Reverse Circulant RCn LRC(i, j) = (i+ j)(mod n)

While the LSDs of the Wigner, Reverse Circulant and the Symmetric Circulant are
known explicitly, very little is known about the LSDs of the Hankel and the Toeplitz (see,
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Table 2: Skew-symmetric patterned matrices and their LSDs.

Matrix Notation (M) LSD of iM
Skew-symmetric Wigner W̃n Same as Wn

Skew-symmetric Toeplitz T̃n Same as Tn
Skew-symmetric Hankel H̃n New LSD

Skew-symmetric Circulant S̃Cn Same as SCn
Skew-symmetric Reverse Circulant R̃Cn New LSD

e.g., Bose (2018)). Existence of LSD is also known for the upper triangular versions of these
matrices, though the nature of these limits is not known.

In this article, we study the existence of the LSDs of skew-symmetric/anti-symmetric
patterned matrices. Recall that a matrix S is called skew-symmetric if S = −S>. In the
Physics literature, the term “anti-symmetric” is more common. Technically, if S is a skew-
symmetric matrix, then iS is called an anti-symmetric matrix, where i is the imaginary unit.
Note that iS is Hermitian. Anti-symmetric Gaussian matrices appeared in the classic work
of Mehta (2004) who, among other things, gave an expression for the joint distribution of
their eigenvalues. Singular values of skew-symmetric Gaussian Wigner matrices are useful
in Statistics too, e.g., in the paired comparisons model (see Kuriki (1993, 2010)). Recently,
Dumitriu and Forrester (2010) obtained tridiagonal realizations of anti-symmetric Gaussian
β-ensembles.

We first establish the existence of the LSDs of several real skew-symmetric patterned
random matrices and identify the limits in some cases. For the skew-symmetric Wigner,
skew-symmetric Toeplitz and the skew-symmetric Circulant, the LSDs (on the imaginary
axis) are the same as those in the symmetric cases. However, for the skew-symmetric Hankel
and the skew-symmetric Reverse Circulant, we obtain new LSDs (see Figure 1). See Table 2
for a summary. We also show the existence of the LSDs for the triangular versions of
these matrices that were introduced in Basu et al. (2012). While the LSDs are known for the
Hermitian versions of some of these matrices, we show that the limits for the skew-symmetric
versions may be derived from the proofs for symmetric matrices using simple arguments.

We also introduce a related modification of the symmetric matrices by changing the
sign of the lower triangle part below the main anti-diagonal. In this case, the modified
Wigner, the modified Hankel and the modified Reverse Circulant have the same LSDs as
their symmetric counterparts whereas new LSDs are obtained for the modified Toeplitz and
the modified Symmetric Circulant (see Figure 2). See Table 3 for a summary.

2. Preliminaries

We shall use the method of moments to establish the existence of LSDs. For any matrix
A, let βh(A) denote the h-th moment of the ESD of A. We quote the following lemma from
Bose (2018) which is easy to prove.
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Table 3: Modified patterned matrices and their LSDs.

Matrix Notation LSD
Modified Wigner Ŵn Same as Wn

Modified Toeplitz T̂n New LSD
Modified Hankel Ĥn Same as Hn

Modified Symmetric Circulant ŜCn New LSD
Modified Reverse Circulant R̂Cn Same as RCn
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Figure 1: Histograms and kernel density estimates of the spectra of n−1/2Hn,
n−1/2iH̃n, n−1/2RCn and n−1/2iR̃Cn with n = 1000 and N (0, 1) entries.

Lemma 1: Let {An} be a sequence of random matrices with all real eigenvalues. Suppose
there exists a sequence {βh} such that

(i) for every h ≥ 1, E(βh(An))→ βh,

(ii) ∑∞n=1 E[βh(An)− E(βh(An))]4 <∞ for every h ≥ 1 and

(iii) the sequence {βh} satisfies Carleman’s condition, ∑ β
−1/2h
2h =∞.

Then the LSD of FAn exists and equals F with moments {βh}.
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Figure 2: Histograms and kernel density estimates of the spectra of n−1/2Tn,
n−1/2T̂n, n−1/2SCn and n−1/2ŜCn with n = 1000 and N (0, 1) entries.

To prove the existence of any LSD, we shall make use of the general notation and
theory developed in Bose and Sen (2008) for patterned matrices (see also Bose (2018)).
First observe that all the link functions in Table 1 satisfy the so called Property B: the total
number of times any particular variable appears in any row is uniformly bounded. Moreover,
the product of the total number of different variables in the matrix and the maximum number
of times any variable appears in the matrix is O(n2). These two facts imply that the general
theory applies to the link functions in Table 1.

We shall consider the following sets of assumptions on the input sequence.

(A1). (ai)i≥1 are independent and uniformly bounded with mean 0, and variance 1.

(A2). (ai)i≥1 are i.i.d. with mean 0 and variance 1.

(A3). (ai)i≥1 are independent with mean 0, variance 1, and uniformly bounded moments of
all orders.

Note that Assumption (A1) implies Assumption (A3). Traditionally, LSD results are
stated under Assumption (A1) while Assumption (A3) is appropriate for studying the joint
convergence of more than one sequence of matrices. It turns out that, for the matrices under
our consideration, if LSDs exist under Assumption (A1), then the same LSDs continue to
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hold under Assumptions (A2) or (A3). Thus in our proofs, without loss of any generality,
Assumption (A1) is assumed to hold. Below we give a brief outline of the reasoning. The
reader may consult Bose (2018) for detailed justifications in the similar context of symmetric
patterned matrices.

(i) When the entries satisfy Assumption (A1), the main idea is to show that the expected
moments of the ESD of An converge and these limit moments determine a unique distribu-
tion. Moreover, these limit moments depend only on the pattern and not on the specific
distribution of the entries. We thus call this limit universal.

(ii) If the entries of the matrix under consideration satisfy Assumption (A2), then one con-
siders the same matrix but where the entries are truncated suitably and standardized to
have mean 0 and variance 1. This matrix satisfies Assumption (A1) and hence has the same
(universal) limit. Then one shows that the original matrix and the modified matrix are close
in a suitable metric as n → ∞. This leads us to conclude that the same universal limit
persists under Assumption (A2).

(iii) Finally, suppose that the entries satisfy Assumption (A3). Then we compute the mo-
ments of the ESD again. Using the “uniformly bounded moments” assumption and Property
B of the link function, it can be shown that the third or higher order moments of the vari-
ables do not influence the LSD (somewhat like the central limit theorem, for example), and
we have the same limit as obtained under Assumption (A1).

The Moment-Trace Formula plays a key role in this approach. A function

π : {0, 1, · · · , h} → {1, 2, · · · , n}

with π(0) = π(h) is called a circuit of length h. The dependence of a circuit on h and n is
suppressed. Then, for any n× n square matrix A = ((aL(i,j))), we have

βh(A) = 1
n

tr(Ah) = 1
n

∑
π circuit of length h

aπ,

where
aπ := aL(π(0),π(1))aL(π(1),π(2)) . . . aL(π(h−1),π(h)).

If L(π(i − 1), π(i)) = L(π(j − 1), π(j)), with i < j, we shall use the notation (i, j) to
denote such a match of the L-values. From the general theory, it follows that circuits where
there are only pair-matches are relevant when computing limits of moments.

Two circuits π1 and π2 are equivalent if and only if their L-values respectively match
at the same locations, i.e. if, for all i, j,

L(π1(i− 1), π1(i)) = L(π1(j − 1), π1(j))⇔ L(π2(i− 1), π2(i)) = L(π2(j − 1), π2(j)).

Any equivalence class can be indexed by a partition of {1, 2, · · · , h}. We label these
partitions by words w of length h of letters where the first occurrence of each letter is in
alphabetical order. For example, if h = 4, then the partition {{1, 3}, {2, 4}} is represented
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by the word abab. This identifies all circuits π for which L(π(0), π(1)) = L(π(2), π(3)) and
L(π(1), π(2)) = L(π(3), π(1)). Let w[i] denote the i-th entry of w. The equivalence class
corresponding to w is

Π(w) := {π | w[i] = w[j]⇔ L(π(i− 1), π(i)) = L(π(j − 1), π(j))}.

By varying w, we obtain all the equivalence classes. It is important to note that, for any
fixed h, even as n → ∞, the number of words (equivalence classes) remains finite but the
number of circuits in any given Π(w) may grow indefinitely. Henceforth we shall denote the
set of all words of length h by Ah.

Notions of matches carry over to words. A word is pair-matched if every letter appears
exactly twice in that word. The set of all pair-matched words of length 2k is denoted by
W2k. For technical reasons, it is often easier to deal with a class larger than Π(w):

Π∗(w) := {π | w[i] = w[j]⇒ L(π(i− 1), π(i)) = L(π(j − 1), π(j))}.

Any i (or π(i) by abuse of notation) is a vertex. It is generating if either i = 0 or
w[i] is the first occurrence of a letter. Otherwise, it is called non-generating. For example, if
w = abbcab, then π(0), π(1), π(2), π(4) are generating and π(3), π(5), π(6) are non-generating.
The set of generating vertices (indices) is denoted by S. By Property B, a circuit is completely
determined, up to finitely many choices, by its generating vertices.

From the general theory for symmetric random matrices it follows that the LSD exists
if, for each w ∈ W2k, the following limit exists:

p(w) = lim
n
n−(k+1)#Π∗(w).

3. A Unified Framework for Real Skew-symmetric Matrices

If A is an n×n skew-symmetric matrix, then all its eigenvalues {λj} are purely imagi-
nary (and has one zero eigenvalue when n is odd), and every eigenvalue occurs in conjugate
pairs. As discussed in the introduction, the Hermitian matrix iA will then have real spec-
trum. Consider the ESD of iA on R:

F iA(x) = 1
n

n∑
j=1

1{iλj≤x}.

Note that F iA is a symmetric (about zero) distribution. Therefore, in order to apply the
moment method, it suffices to deal with only the even moments. Note that

β2k(iA) =
∫
x2k dF iA(x)

= 1
n

n∑
j=1

(iλj)2k = (−1)k 1
n

n∑
j=1

λ2k
j = (−1)k 1

n
tr(A2k).

Let {An} be a sequence of n×n patterned random matrices with the symmetric link function
L. Let

sij = (1− δij)(−1)1{i>j} ,
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where δij is the Kronecker-delta. Let Sn = ((sij)) be the n× n matrix

Sn =



0 1 . . . 1
−1 0 . . . 1
... ... . . . ...
−1 −1 . . . 0


n×n

.

Then we can construct Ãn, the skew-symmetric version of An by

Ãn = Sn � An,

where � denotes the Schur-Hadamard/entrywise product.

We shall assume without loss of generality that (A1) holds. The moment-trace formula
for iÃn may be written as

β2k(n−1/2iÃn) = (−1)k 1
n1+k

∑
π circuit of length 2k

sπaπ.

Therefore
Eβ2k(n−1/2iÃn) = (−1)k 1

n1+k

∑
π circuit of length 2k

sπEaπ.

Using the concept of words, we may rewrite the above equality as

Eβ2k(n−1/2iÃn) = (−1)k 1
n1+k

∑
w∈A2k

∑
π∈Π(w)

sπEaπ.

Suppose L satisfies Property B. Let CL
h,3+ denote the set of L-matched h-circuits on {1, · · · , n}

with at least one edge of order ≥ 3. Then Lemma 1(a) of Bose and Sen (2008) says that
there is a constant C depending on L and h such that

#CL
h,3+ ≤ Cnb(h+1)/2c.

Combining this with the observation that |sπ| ≤ 1 it is easy to see that

lim
n

1
n1+k

∑
π∈CL2k,3+

sπEaπ = 0.

Therefore
lim
n

Eβ2k(n−1/2iÃn) = (−1)k lim
n

1
n1+k

∑
w∈W2k

∑
π∈Π(w)

sπEaπ.

Since, by our assumptions, Eaπ = 1 for any pair-matched circuit π, the above expression
reduces to

lim
n

Eβ2k(n−1/2iÃn) = (−1)k
∑

w∈W2k

lim
n

1
n1+k

∑
π∈Π(w)

sπ, (4)
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provided the limits on the right-hand side exist. In fact, since Π∗(w) \ Π(w) ⊆ CL
2k,3+, one

has
lim
n

1
n1+k

∑
π∈Π(w)

sπ = lim
n

1
n1+k

∑
π∈Π∗(w)

sπ,

and thus one can write

lim
n

Eβ2k(n−1/2iÃn) = (−1)k
∑

w∈W2k

lim
n

1
n1+k

∑
π∈Π∗(w)

sπ, (5)

provided the limits exist for each w. If we define

p
Ã

(w) := (−1)k lim
n

1
n1+k

∑
π∈Π(w)

sπ,

then (5) becomes
lim
n

Eβ2k(n−1/2iÃn) =
∑

w∈W2k

p
Ã

(w). (6)

In this context, we recall the analogous expression for symmetric matrices An from Bose and
Sen (2008):

lim
n

Eβ2k(n−1/2An) =
∑

w∈W2k

pA(w),

where
pA(w) := lim

n

1
n1+k#Π(w) = lim

n

1
n1+k#Π∗(w)

is assumed to exist for each w ∈ W2k.

It is not difficult to show that if the limits exist in (5), then Condition (iii) of Lemma 1
follows (see Theorem 3 of Bose and Sen (2008) for the argument in the symmetric case; in
the skew-symmetric case too, one can use their argument verbatim because |sπ| ≤ 1). In
fact, the limiting moments are sub-Gaussian, i.e. the even moments are dominated by the
even moments of some Gaussian distribution. The verification of Condition (ii) is also easy
since

4∏
j=1

E(sπjaπj − Esπjaπj) = sπ1sπ2sπ3sπ4

4∏
j=1

E(aπj − Eaπj)

and the arguments given in the proof of Lemma 2 of Bose and Sen (2008) apply with minor
modifications.

In the next section, we shall consider several skew-symmetric patterned matrices and
show that Condition (i) of Lemma 1 holds by arguing that the limits on the right-hand side
of (4) holds in each case.

4. Some Specific Matrices

First note that

sπ = (−1)
∑2k

j=1 1{π(j−1)>π(j)}
2k∏
j=1

(1− δπ(j−1),π(j)).
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It is convenient to use some graph theoretic terminology to deal with the above expression.
Consider the complete directed graph DKn on V = {1, · · · n}. Note that π defines a directed
circuit of length 2k on this graph. Call the numerical value of each vertex its level. Associate
with each π a marking-vector (ε1, · · · , ε2k), where

εj = (−1)1{π(j−1)>π(j)}(1− δπ(j−1),π(j)).

Note that if a traveler moves along the circuit π, starting from π(0), and marks each move
π(j − 1)  π(j) by εj, then moving to a higher (respectively lower) level corresponds to a
mark of 1 (respectively −1) and remaining at the same level corresponds to marking with 0.
Then

sπ =
2k∏
j=1

εj.

Note that a circuit π contains a loop if and only if sπ = 0.

We first tackle the skew-symmetric Wigner matrix n−1/2W̃n. To do so recall the concept
of Catalan words from Bose (2018). A Catalan word of length 2 is just a double letter aa.
In general, a Catalan word of length 2k, k > 1, is a word w ∈ W2k containing a double
letter such that if one deletes the double letter the reduced word becomes a Catalan word of
length 2k− 2. For example, abba, aabbcc, abccbdda are Catalan words whereas abab, abccab,
abcddcab are not. The set of all Catalan words of length 2k will be denoted by C2k. It is
known that

#C2k = 1
k + 1

(
2k
k

)
,

the ubiquitous Catalan number from Combinatorics. It is known that #C2k also equals the
2k-th moment of the semi-circular law, the LSD of the Wigner matrix.

Theorem 1: If the input sequence satisfies (A1) or (A2) or (A3), then the LSD of n−1/2iW̃n

is the semi-circular law.

Proof: It is well known (see, e.g., Bose (2018)) that, for the symmetric Wigner matrix, only
Catalan words contribute in the limit. In fact, one has

pW (w) = lim
n

1
n1+k#Π∗(w) =

0 if w /∈ C2k,

1 if w ∈ C2k.

From this and the fact that |sπ| ≤ 1 it follows that

|p
W̃

(w)|

= 0 if w ∈ W2k \ C2k,

≤ 1 if w ∈ C2k.

We shall prove that if w is a Catalan word, then p
W̃

(w) exists and equals 1. Then (5) would
imply that

lim
n

Eβ2k(n−1/2iW̃n) = #C2k,

establishing the semi-circular limit for the ESD of {n−1/2W̃n}.
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We first observe that if we replace the diagonal entries by 0, then the LSD does not
change. It follows from this observation that circuits with loops do not have any contribution
to p

W̃
(w). It now suffices for our purpose to prove that if w ∈ C2k and π ∈ Π∗(w), then

sπ =

(−1)k if π is loopless,
0 otherwise.

(7)

To prove this, suppose that a double letter appears at the i-th and the (i+ 1)-th positions.
Consider a loopless π ∈ Π∗(w). Since, w[i] = w[i+ 1], we must have

LW (π(i− 1), π(i)) = LW (π(i), π(i+ 1)).

Since π is loopless, it follows that we must have π(i − 1) = π(i + 1) 6= π(i). There are two
possibilities: either π(i−1) < π(i) or π(i−1) > π(i). In the first case, εi = 1 and εi+1 = −1,
while, in the second case, εi = −1 and εi+1 = −1. In either case, we have

εiεi+1 = −1.

Now delete the double letter and think of π as a circuit of length 2k − 2 by identifying the
vertices (i − 1) and (i + 1) as identical and deleting the vertex i. The resulting word w′

is still Catalan and the resulting circuit π′ is loopless and lies in Π∗(w′). Apply the above
procedure again. Clearly, we will need k iterations of this procedure to empty the word w
and each such iteration contributes one −1, which proves (7) and hence the theorem.

Remark 1: Basu et al. (2012) considered upper/lower triangular versions of the Wigner,
W∆
n . Its LSD LW∆ is different from the semi-circular law, but its free convolution with

itself is the semi-circular law. It follows from the proof of Theorem 1 and their moment
calculations that the LSD of iW̃∆ is again LW∆ .

The existence of the LSD of the symmetric Toeplitz matrix Tn was first established by
Hammond and Miller (2005) and Bryc et al. (2006). The properties of the limit law LT are
not well understood. We now consider the skew-symmetric Toeplitz T̃n.

Theorem 2: If the input sequence satisfies (A1) or (A2) or (A3), then the LSD of n−1/2iT̃n
is LT , the LSD of the symmetric Toeplitz.

Proof: Let w ∈ W2k and s(i) := π(i)− π(i− 1). Define

Π∗∗(w) := {π | w[i] = w[j]⇒ s(i) + s(j) = 0}.

Then Bose and Sen (2008) show that

pT (w) = lim
n

1
n1+k#Π∗(w) = lim

n

1
n1+k#Π∗∗(w). (8)

As in the Wigner case, circuits with loops do not contribute and to establish our goal it
suffices to prove that if w ∈ W2k and π ∈ Π∗∗(w), then

sπ =

(−1)k if π is loopless,
0 otherwise.

(9)
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The proof of this is much easier than the Wigner case as all the difficulty is relegated to the
proof of (8). Consider a loopless circuit π ∈ Π∗∗(w). Note that w[i] = w[j] implies that
s(i) + s(j) = 0 and since π is loopless, we have

s(i)s(j) = −s(j)2 < 0.

This immediately implies that

εiεj = (−1)1{s(i)<0}+1{s(j)<0} = −1.

Since w is pair-matched, there are exactly k matches from each of which comes one −1. This
establishes (9) and completes the proof.

Remark 2: Basu et al. (2012) considered upper/lower triangular versions of the Toeplitz,
T∆
n . They proved the existence of the LSD but it could not be identified. It follows from

the proof of Theorem 2 and their moment calculations that the LSD of iT̃∆ is again LT∆ ,
exactly paralleling the Wigner case.

The Symmetric Circulant matrix SCn and the Palindromic Toeplitz matrix PTn have
the standard Gaussian distribution N (0, 1) as their LSD (see Bose (2018)). We now consider
the skew-symmetric versions S̃Cn and P̃ T n.

Theorem 3: If the input sequence satisfies (A1) or (A2) or (A3), then the LSDs of n−1/2iS̃Cn

and n−1/2iP̃ T n are the same as the LSDs of their symmetric counterparts, i.e. the standard
Gaussian distribution.

Proof: We first tackle S̃Cn. From Bose and Sen (2008), it is known that, for any w ∈ W2k,
if one defines

Π′(w) := {π | w[i] = w[j]⇒ s(i) + s(j) = 0,±n},

then one actually has

pSC(w) = lim
n

1
n1+k#Π∗(w) = lim

n

1
n1+k#Π′(w) = 1.

Once again, circuits with loops have no role to play and to prove the desired result it suffices
to prove that if w ∈ W2k and π ∈ Π′(w), then

sπ =

(−1)k if π is loopless,
0 otherwise.

(10)

Due to the similarity with the Toeplitz link function, the proof of the above is similar to
that in the Toeplitz case. Let π be a loopless circuit from Π′(w). Suppose that w[i] = w[j].
Then we have s(i) + s(j) = 0,±n. We treat each of these three cases separately:

1. s(i) + s(j) = 0. This is the same as the Toeplitz case and we conclude that εiεj = −1.
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2. s(i) + s(j) = n. Note that s(i) = n− s(j) and since π is loopless,

|s(j)| = |π(j)− π(j − 1)| ≤ n− 1.

Therefore s(i) = n−s(j) > 0. By symmetry, s(j) > 0. Therefore, in this case, εiεj = 1.

3. s(i) + s(j) = −n. Note that s(i) = −(n + s(j)), and therefore s(i), and by symmetry
s(j), are both negative ceding εiεj = 1.

Therefore, combining the above cases,

sπ = (−1)k−eπ ,

where eπ is the number of matches (i, j) where s(i) + s(j) = ±n. It suffices to show that eπ
is even. But note that

2k∑
i=1

s(i) = π(2k)− π(0) = 0,

which cannot occur unless eπ is even. This establishes (10) and completes the proof for S̃Cn.

To prove the same for P̃ T n we take the approach of Bose and Sen (2008). We need the
following version of the well known interlacing inequality. We omit its proof.

Suppose A is a real skew-symmetric matrix with eigenvalues iλj with λ1 ≥ λ2 ≥ · · · ≥
λn. Let B be the (n − 1) × (n − 1) principal submatrix of A with eigenvalues iµk with
µ1 ≥ µ2 ≥ · · · ≥ µn−1. Then one has

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ λn,

i.e. the imaginary parts of the eigenvalues of B are interlaced between the imaginary parts
of the eigenvalues of A.

As a consequence
||FA − FB||∞ ≤

1
n
. (11)

Now note that the n×n principal submatrix of S̃Cn+1 is P̃ T n. Therefore, from (11), we can
conclude that n−1/2iP̃ T n also has the standard Gaussian law as its LSD.

Remark 3: Basu et al. (2012) considered the upper/lower triangular versions of the sym-
metric Circulant, SC∆

n . They proved the existence of the LSD but it could not be identified.
It follows from the proof of Theorem 3 and their moment calculations that the LSD of iS̃C∆

is again LSC∆ .

The skew-symmetric matrices considered so far have the same LSD (on the imaginary
axis) as their corresponding symmetric versions. However, simulations suggest that the LSDs
of n−1/2iH̃n and n−1/2iR̃Cn exist and are different from those of n−1/2Hn and n−1/2RCn
respectively. See Figure 1. We now establish this rigorously.
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In this context, symmetric words play the key role. A word w ∈ W2k is called symmetric
if each letter in w occurs once each in an odd and an even position. For example, the word
aabb is symmetric and the word abab is not. We shall denote the set of symmetric words of
length 2k by S2k. All Catalan words are symmetric. An example of a non-Catalan symmetric
word is abcabc. It is easy to prove that

#S2k = k!.

Theorem 4: If the input sequence satisfies (A1) or (A2) or (A3), then the LSDs of n−1/2iH̃n

and n−1/2iR̃Cn exist and are different from the LSDs of n−1/2Hn and n−1/2RCn respectively.

Proof: We first consider the skew-symmetric Hankel. First suppose w ∈ C2k. It is known
that then pH(w) = 1. By an argument similar to that given in the proof of Theorem 1 one
can show that p

H̃
(w) = 1.

Now suppose that w is not symmetric. It is known that then pH(w) = 0. Since,
|sπ| ≤ 1, it follows that p

H̃
(w) also vanishes.

More generally, for any pair-matched word w, the limit p
H̃

(w) can be shown to exist
using the same Riemann approximation technique that is used in the Hankel case (see, for
example, Bose and Sen (2008)). We omit the details.

We now show that this LSD is not the same as in the symmetric Hankel case. Since
|sπ| ≤ 1, it is clear that the limit is sub-Hankel, i.e. limn β2k(n−1/2iH̃n) ≤ limn β2k(n−1/2Hn)
for all k ≥ 1. It is thus enough to show that limn β2k(n−1/2iH̃n) < limn β2k(n−1/2Hn) for
some k ≥ 1. Since Catalan words contribute 1 to both of these and non-symmetric words
do not contribute at all, we need to look at non-Catalan symmetric words. The first such
word is w = abcabc. We shall show that p

H̃
(abcabc) < 1

2 = pH(abcabc).

So let us consider the word w = abcabc and its four generating vertices, viz., π(0), π(1),
π(2), π(3). Writing νi = π(i)/n and expressing the 1

n4 #Π∗(w) as a Riemann sum, we know
from Bose and Sen (2008) that, for the Hankel matrix,

pH(w) =
∫
I4

1{0<ν0+ν1−ν3<1, 0<ν2+ν3−ν0<1}dν3dν2dν1dν0,

where I4 is the unit 4-cube. Let P be the subset of I4 where the integrand above is positive.
For the skew-symmetric case, however, there are many π ∈ Π∗(w) such that sπ = −1, which
means that there are lots of cancellations. More formally, for any π ∈ Π∗(w), we have

ν4 = ν0 + ν1 − ν3,

ν5 = ν2 + ν3 − ν0.

If we define
g(ν) = sπ = (−1)

∑2k
j=1 1{νj−1<νj} ,

then by resorting to the Riemann approximation technique it is easy to see that

p
H̃

(w) = (−1)3
∫
I4
g(ν)1{0<ν0+ν1−ν3<1, 0<ν2+ν3−ν0<1}dν3dν2dν1dν0.
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We shall show that on a subset of P of positive Lebesgue measure, g(ν) = 1. Consider the
set U = P ∩ {(ν0, ν1, ν2, ν3) | 0 < ν0 < ν1 < ν2 < ν3 < 1} ⊆ I4. We claim that on U , one
has g(ν) = 1. To see this, note that we automatically have νj − νj−1 > 0 for j = 1, 2, 3.
Moreover,

ν4 − ν3 = ν1 + ν0 − 2ν3 < 0,
ν5 − ν4 = (ν2 − ν1) + 2(ν3 − ν0) > 0,

ν6 − ν5 = 2ν0 − ν2 − ν3 < 0.

Therefore, on U , we have g(ν) = (−1)1+1+1+(−1)+1+(−1) = 1. It now suffices to show that∫
U

1{0<ν0+ν1−ν3<1, 0<ν2+ν3−ν0<1}dν3dν2dν1dν0 > 0.

With some easy manipulations with the constraints it is easy to show that

∫
U

1{0<ν0+ν1−ν3<1, 0<ν2+ν3−ν0<1}dν ≥
∫ 1

2

1
3

∫ 1
2

ν0

∫ 1+ν0
2

1−ν1

∫ 1+ν0−ν2

ν2
dν3dν2dν1dν0

= 19
62208 > 0.

This completes the proof for the skew-symmetric Hankel.

Now consider the skew-symmetric Reverse Circulant. By following the arguments in
the Hankel case, it is easy to see that each word limit exists, thereby proving the existence
of the LSD. Moreover, it is known that, for the Reverse Circulant, pRC(w) = 1 if w is
symmetric and 0 otherwise. In the present case, p

R̃C
(w) ≤ 1 for all symmetric words and

the non-symmetric words continue to contribute zero. It is also easy to show that if w ∈ C2k,
then p

R̃C
(w) = pRC(w) = 1. Thus, as before, it remains to seek out a symmetric non-Catalan

word w such that p(w) < 1. Once again, we may look at w = abcabc and prove this. Due to
the similarity with the Hankel case, we skip the details.

5. A Related Class of Symmetric Matrices

We have seen that skew-symmetry does not change the LSDs of the Wigner, Toeplitz
and the Symmetric Circulant, whereas it changes the LSDs of the Hankel and the Reverse
Circulant. We now investigate this issue a little more.

Let Mn be the n × n symmetric matrix whose upper and lower triangle entries are
respectively +1 and −1, the anti-diagonal consisting of 0’s. Then Mn = ((mij)) where

mij =


1 if i+ j < n+ 1,
0 if i+ j = n+ 1,
−1 if i+ j > n+ 1.

We show that an LSD exists for the Schur-Hadamard product of Mn with each of the above
five matrices. For a patterned matrix An, we denote by Ân its modified version Mn � An.
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Note that, for the Wigner and the Hankel cases, the Schur-Hadamard product is also
of the same type (with a modified input sequence where the signs have changed for some
elements of the sequence)–the fact that the anti-diagonal is zero does not affect the LSDs.
Hence their LSDs remain unchanged due to the universality of LSDs with respect to the
input variables as long as they satisfy Assumptions (A1) or (A2) or (A3). As we shall see,
the LSD remains unchanged for the modified Reverse Circulant matrix too.

Note that n−1/2T̂n and n−1/2ŜCn are not Toeplitz and Symmetric Circulant matrices.
We show that LSDs exist for both and are different from LT and N (0, 1) respectively. See
Figure 2 for simulations.

Similar to the skew-symmetric case, define

εi = (1− 1{π(i−1)+π(i)=n+1})(−1)1{π(i−1)+π(i)>n+1} ,

and
mπ =

n∏
i=1

εi.

Then we have the following analogue of (6):

limEβ2k(n−1/2Ân) =
∑

w∈W2k

p
Â

(w), (12)

where
p
Â

(w) := lim
n

1
n1+k

∑
π∈Π(w)

mπ = lim
n

1
n1+k

∑
π∈Π∗(w)

mπ

is assumed to exist for each w ∈ W2k. First we consider the LSD of n−1/2R̂Cn.

Theorem 5: If the input sequence satisfies (A1) or (A2) or (A3), then the LSD of n−1/2R̂Cn

is the same as the LSD of n−1/2RCn, i.e. LRC .

Proof: To prove this theorem, note that, by (12), it is enough to prove that mπ = 1 for
each π ∈ Π∗(w), where w ∈ W2k. Define

t(i) = π(i− 1) + π(i) and u(i) = t(i)− (n+ 1).

Call a circuit π good if mπ 6= 0. It is enough to consider only such circuits.

If w[i] = w[j], then we have

t(i) ≡ t(j) (mod n),

which implies that u(i) ≡ u(j) (mod n). Now note that

−(n− 1) = 2− (n+ 1) ≤ u(i) ≤ n+ n− (n+ 1) = n− 1,

and hence
|u(i)− u(j)| ≤ 2(n− 1).

So, we must have
u(i)− u(j) = 0,±n.

Observe that
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1. If u(i)− u(j) = 0, then εi = εj, which yields εiεj = 1.

2. If u(i)− u(j) = n, then u(i) = n+ u(j) > 0, and u(j) = u(i)− n < 0, as |u(l)| ≤ n− 1
for any l. So, in this case, εiεj = −1.

3. If u(i)− u(j) = −n, then, again, εiεj = −1 by interchanging the roles of i and j in the
previous argument.

As a consequence
mπ = (−1)eπ ,

where eπ is the number of matches (i, j) in π for which u(i)− u(j) = t(i)− t(j) = ±n. Let
further e+

π be the number of matches (i, j) in π for which t(i)− t(j) = n and e−π = eπ − e+
π .

First notice that
2k∑
i=1

t(i) = 2
2k∑
i=1

π(i).

The same sum can be written as ∑
(i,j) match

(t(i) + t(j)).

Notice then that ∑
(i,j) match

(t(i) + t(j)) =
∑

(i,j) match
(t(i)− t(j)) + 2

∑
(i,j) match

t(j)

= (e+
π − e−π )n+ 2

∑
(i,j) match

t(j)

= neπ − 2ne−π + 2
∑

(i,j) match
t(i).

It follows from the above considerations that neπ is always even. Now suppose that n is odd.
It then follows that eπ is even and therefore mπ = 1. The case with n even seems to be more
complicated. It is not clear why eπ has to be even. We shall use a little trick to bypass the
need to pinpoint the parity of eπ in this case. Define, for w ∈ W2k,

qn(w) := 1
n1+k

∑
π∈Π∗(w)

mπ,

pn(w) := 1
n1+k#Π∗(w).

Then it is known from Bose and Sen (2008) that

pn(w) = pRC(w) + o(1),

which implies, since |qn(w)| ≤ |pn(w)|, that

|qn(w)| = O(1). (13)
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We have already proved that (as we have proved that mπ = 1 for n odd)

q2n+1(w) = pRC(w) + o(1). (14)

In the following lemma, we shall write Π∗n(w) instead of Π∗(w) to explicitly denote the
dependence on n.

Lemma 2: We have
#Π∗n+1(w)−#Π∗n(w) = o(n1+k).

Proof: We have
pn(w) = 1

n1+k#Π∗n(w) = p(w) + o(1),

which can be rewritten as

#Π∗n(w) = p(w)n1+k + o(n1+k).

As a consequence

#Π∗n+1(w)−#Π∗n(w) = p(w)((n+ 1)1+k − n1+k) + o(n1+k),

from which the lemma follows since the first term is O(nk). We need another lemma.

Lemma 3: We have
qn+1(w)− qn(w) = o(1).

Proof: We have, using the triangle inequality,

|qn+1(w)− qn(w)|

=
∣∣∣∣∣ 1
(n+ 1)1+k

∑
π∈Π∗n+1(w)

mπ −
1

n1+k

∑
π∈Π∗n(w)

mπ

∣∣∣∣∣
=
∣∣∣∣∣ 1
(n+ 1)1+k

∑
π∈Π∗n(w)

mπ + 1
(n+ 1)1+k

∑
π∈Π∗n+1(w)\Π∗n(w)

mπ −
1

n1+k

∑
π∈Π∗n(w)

mπ

∣∣∣∣∣
≤
∣∣∣∣∣ 1
(n+ 1)1+k

∑
π∈Π∗n(w)

mπ −
1

n1+k

∑
π∈Π∗n(w)

mπ

∣∣∣∣∣+
∣∣∣∣∣ 1
(n+ 1)1+k

∑
π∈Π∗n+1(w)\Π∗n(w)

mπ

∣∣∣∣∣
=: (I) + (II).

Using (13), we get

(I) ≤
∣∣∣∣∣
(

n

n+ 1

)1+k
− 1

∣∣∣∣∣× |qn(w)| = o(1)×O(1) = o(1).

On the other hand, by Lemma 2, we have

(II) ≤ 1
n1+k#(Π∗n+1(w) \ Π∗n(w)) = o(1).
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Together, the above two estimates imply the lemma. Coming back to the original
problem, because of Lemma 3 and (14), we can write

q2n+2(w) = q2n+1(w) + o(1)
= pRC(w) + o(1).

This establishes, irrespective of the parity of n, that

qn(w) = pRC(w) + o(1),

which completes the proof of the theorem. Finally, we give the result on the LSDs of
n−1/2T̂n and n−1/2ŜCn.

Theorem 6: If the input sequence satisfies (A1) or (A2) or (A3), then the LSDs of n−1/2T̂n
and n−1/2ŜCn exist and are different from the LSDs of n−1/2Tn and n−1/2SCn respectively.

Proof: We shall outline the proof only for n−1/2T̂n. The proof for n−1/2ŜCn is similar and
is omitted.

Once again, the existence of the LSD, say L
T̂

, may be proven using the Riemann
approximation technique. We show that L

T̂
does not equal LT . As in the proof of Theorem 1

we can show that, for each Catalan word w, p
T̂

(w) = 1 = pT (w). Thus we need to look at
a non-Catalan pair-matched word. The first such word is w = abab. We shall show that
p
T̂

(abab) 6= pT (abab) = 2/3, which would conclude proof. Using the Riemann approximation
argument, it is easy to show that

p
T̂

(w) =
∫
I3

(−1)
∑4

i=1 1{νi+νi−1>1}1{0≤ν0−ν1+ν2≤1}dν2dν1dν0,

where ν3 = ν0 − ν1 + ν2 and ν4 = ν0. Now, similar to the skew-symmetric Hankel case, one
can show that on a subset of positive Lebesgue measure the integrand above is negative. In
fact, a calculation in Mathematica reveals that p

T̂
(abab) = 2/9. This proves the theorem

completely.
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