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Abstract
One of the primary goals of time series (TS) modeling is to forecast future observa-

tions. Although point forecasts are the most common type of prediction, interval forecasts
are more informative and are typically obtained as prediction intervals (PIs). For non-linear
TS data, the ARCH model is one of the widely used models. The Sieve Bootstrap method is
a popular method for constructing PIs in TS models. The TS data are not always free from
outliers, whose presence may result in an increase in the length of PIs obtained also with
poor coverage. In this study, two new robust Sieve Bootstrap approaches based on weighted
least squares estimation have been proposed to deal with the presence of outliers for devel-
oping PIs for both returns and volatilities in the ARCH model setup. The performances
of the proposed methods viz., Robust Unconditional Sieve Bootstrap (RUSB) and Robust
Sieve Bootstrap (RSB) for constructing PIs using both simulated as well as real data sets
have been found to be better when compared with their existing counterparts.

Key words: Coverage probability; Innovative outlier; Length of prediction interval; Return;
Volatility; Weighted least squares.

1. Introduction

A time series (TS) is an ordered sequence of data points observed over time, typically
at equally spaced time intervals. The analysis of TS is essential not only in agriculture but
also in other diverse fields such as economics, finance pattern recognition, tourism etc. In all
these areas, TS methodologies are used not only to model TS data, but also to forecast future
values of such processes. TS predictions can be observed either as point or interval estimates.
Point estimation is concerned with predicting a single value from a set of observations,
whereas interval estimation provides prediction intervals (PIs), with some probability, within
which forecasted future values will lie. There are many reasons for preferring PIs over
point estimates. PIs help to assess the future uncertainty in a broad manner for better
risk management decisions, plan different strategies for the range of possible outcomes, and
explore scenarios based on different assumptions more carefully and so on. A good account
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on PIs in TS can be found in many books, to cite a few, Politis et al. (1999), Chatfield
(2000) and Lahiri (2003).

In the context of agricultural commodity price or any financial TS data, generally
linear TS models with homoscedastic error variance are popularly used until it need to deal
with volatile data. Volatility being the sudden unexpected rise or fall in TS, measuring it
plays an important role in assigning risk and uncertainty. While modeling TS, a series is
said to be volatile when a few error terms are larger than the others and are responsible for
the unique behavior of the series, resulting in heteroscedasticity. To deal with volatilities
and non-linear dynamics, the Auto-Regressive Conditional Heteroscedastic (ARCH) model
proposed by Engle (1982) where the idea is to model volatilities as a linear function of
previous returns, is popularly employed. By adding a moving average part, the ARCH model
was generalized by Bollerslev (1986) in the form of the Generalized ARCH (GARCH) model
for the parsimonious representation of ARCH. In the GARCH model, the conditional variance
is also a linear function of its own lags. In this context, the GARCH model became the most
popularly used for modeling volatility and obtaining dynamic PIs for returns and volatilities.
Many recent studies are found on the non-linear TS processes in modeling volatilities (to
cite a few, see, Bhardwaj et al., 2014; Lama et al., 2015; Bentes, 1015; Dyhrberg, 2016).

Existing literature mainly focused on point forecasts of volatilities and little atten-
tion has been given to constructing the PIs (Baillie and Bollerslev, 1992; Andersen and
Bollerslev, 1998; Andersen et al., 2001; Poon, 2005). However, the construction of PIs in
TS models with finite parameters, requires knowledge of the distribution of the observed
data, which is typically unknown in practice. Several studies have shown that when the un-
derlying distributional assumptions are violated the resulting PIs can be adversely affected
yielding poor results (Thombs and Schucany, 1990). The construction of PIs in TS models
with finite parameters and with known innovative processes has been widely discussed in
the literature and it has been found that these PIs are extremely sensitive to the presence
of outliers (Tsay, 1988, 2010). Moreover, over time, several distribution-free methods, using
resampling techniques using Bootstrap method, have been proposed as an alternative for the
construction of PIs. One of the popular and effective Bootstrap procedures is residual-based
resampling i.e. resampling the residuals from the fitted model on the TS (Bühlmann, 2002;
Politis, 2003; Härdle et al., 2003). Miguel and Olave (1999) first proposed a Bootstrap pro-
cedure for a non-linear ARCH model for the construction of PIs for return and volatilities by
directly adding resampled residuals from the ARCH model to the respective point forecasts.
This work was improved by Reeves (2005) by adding an additional step of re-estimating
the ARCH parameters for each Bootstrap realization of the returns, which considered the
variability of the estimated parameters of the ARCH model. Further, Pascual et al. (2006)
extended these procedures for the GARCH model in different ways and obtained the PIs
for both returns and volatilities which were found to be well-calibrated i.e., the number of
observed data falling within PIs coincided with the declared coverage. However, these pro-
cedures involve the estimation of ARCH/GARCH parameters by maximum likelihood (ML)
estimation and are computationally expensive. Hence as an improvement over these, Chen
et al. (2011) proposed a computationally efficient and distribution-free resampling technique
for developing PIs for both returns and volatilities in ARCH and GARCH processes. Their
method was based on the Sieve Bootstrap procedure used in the linear model AR/ARMA
representation of the ARCH/GARCH process. In particular, the squared returns from the
ARCH/GARCH model is a linear process that follows an AR/ARMA process (Tsay, 2010;
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Box et al., 2015). Bose and Mukherjee (2009) proposed a weighted linear estimator (WLE)
to estimate the ARCH parameters, and a corresponding Bootstrap weighted linear estimator
(BWLE). An alternative WLE method in the context of multivariate ARCH models was pro-
posed by Iqbal (2011) and improved results were reported. Later, Iqbal and Chand (2013)
constructed efficient PIs for returns and volatility for ARCH models using a particular ver-
sion of residual Bootstrap. Further Pan and Politis (2016) proposed a Bootstrap algorithm
for developing PIs for ARCH models based on BWLE. However, these above-mentioned ap-
proaches including the Sieve Bootstrap procedure are affected by the presence of innovative
outliers, resulting in an undesirable increase in the length of the PIs. In recent times, Ulloa et
al. (2014) and Allende et al. (2015) have proposed a residual-based resampling technique for
developing robust PIs for returns and volatilities for GARCH models based on the winsorized
residuals. Trućıos et al. (2017) constructed Bootstrap densities for returns and volatilities
using a robust parameter estimator based on variance-targeting implemented together with
an adequate modification of the volatility filter in analyzing the effect of additive outliers.
Beyaztas and Shang (2020) proposed a robust Bootstrap technique for PI construction in
AR models based on weighted likelihood estimates and weighted residuals. The presence
of outliers can have an impact on TS analysis, leading to incorrect model identification
and parameter estimation and TS forecasts obtained from such models could be erroneous.
Hence, there is always a need to develop improved and computationally efficient Bootstrap
methods in computing PIs for TS aimed at providing better forecasts. In this study, the
focus is on developing models robust against the presence of outliers to get improved PIs.
This approach of robust modeling has been applied using the Sieve Bootstrap procedure
for developing PIs for both return and volatilities in the ARCH model setup. In addition,
instead of applying least square estimation (see, Chen et al., 2011), a weighted least squares
(WLS) estimation has been applied. The details of the new WLS method and the proposed
Bootstrap procedure have been described in subsequent sections.

Towards this end, two new Bootstrap approaches for constructing PIs have been
proposed in this study. The remainder of the article is organized as follows. The next
section discusses the two proposed methods by first describing about the ARCH models and
the weighted least squares procedure employed. Thereafter Section 3 deals with the results
of the simulation study conducted followed by Section 4 which contains a case study on a
real data set. The paper is signed off with concluding remarks in Section 5.

2. Methodology

2.1. ARCH models

A non-linear TS model can be expressed as yt = f (εt, εt−1, . . . ) where f (·) is the non-
linear function of past and present random shocks. In such a setup, consider a TS {yt}n

t=1
following ARCH(p) process, p ≥ 1 has the following representation:

yt = σtεt (1)

σ2
t = α0 +

p∑
i=1

αiy
2
t−i (2)

where {εt}n
t=1 is a sequence of independently and identically distributed (i.i.d.) random

variables with zero mean and unit variance and E (ε4
t ) < ∞; the volatility process {σt}n

t=1 is
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a stochastic process assumed to be independent of {εt}n
t=1; α0, αi’s are unknown parameters

satisfying α0, αi ≥ 0, for i = 1, 2, . . . , p. The process is assumed to be weakly stationary
(Tsay, 2010) i.e. ∑p

i=1 αi < 1 is satisfied. Further, it is assumed that the strict stationarity
conditions of {yt}n

t=1 given in Bougerol and Picard (1992a, 1992b) hold.

Despite the non-linear nature of variance in ARCH models, they can be represented
by means of the linear AR model (Tsay, 2010; Box et al., 2015). In particular, the squared
returns of an ARCH model is a linear process that can be written as an AR representation.
From (1) and (2),

y2
t = σ2

t ε2
t (3)

α0 +
p∑

i=1
αiy

2
t−i = σ2

t (4)

Subtracting equation (4) from equation (3),

y2
t −

(
α0 +

p∑
i=1

αiy
2
t−i

)
= σ2

t ε2
t − σ2

t (5)

Let, νt = σ2
t ε2

t − σ2
t = y2

t − σ2
t , and by substituting σ2

t = y2
t − νt in (4) yielding,

y2
t − νt = α0 +

p∑
i=1

αiy
2
t−i

y2
t = α0 +

p∑
i=1

αiy
2
t−i + νt (6)

where {y2
t }n

t=1is an AR(p) process and νt = y2
t − σ2

t is white noise but not i.i.d., in gen-
eral. Under strict stationarity assumptions of {yt}n

t=1, innovations {νt}n
t=1 are identically

distributed.
Let p = 1, then, {yt}n

t=1 follows ARCH(1):

yt = σtεt (7)

σ2
t = α0 + α1y

2
t−1 (8)

Then from equation (6), ARCH(1) can be expressed in AR(1) form:

y2
t = α0 + α1y

2
t−1 + νt (9)

Similarly, suppose {yt}n
t=1 follows an ARCH(2), then it can be rewritten in AR(2) form as:

y2
t = α0 + α1y

2
t−1 + α2y

2
t−2 + νt (10)

2.2. Weighted least squares (WLS) estimation

In this study, following Chen et al. (2011), the AR parameterization of the ARCH
model presented in equation (6) has been considered and estimated using WLS estimation
for constructing the PIs. Let, xt = y2

t and for an ARCH model equation (6) can be written
as,

xt = α0 +
p∑

i=1
αixt−i + νt (11)
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The Least Squares (LS) estimators of an AR(p) model are obtained by fitting a linear
regression of xt onto xt−1, xt−2, . . . , xt−m. In matrix notation, let z and X as follows:

z =


xp+1

...
xn

 and X =


1 xp xp−1 · · · x1
... ... ... . . . ...
1 xn−1 xn−2 · · · xn−p


The LS estimate of parameters Φ̂ = (α̂0, α̂1, . . . , α̂p)

′
is obtained as

Φ̂ =
(
X

′
X
)−1

X
′
z (12)

with X
′
X is non-singular.

It is a known fact that when the TS data are contaminated with outliers, the LS
estimates of model parameters are affected i.e. they produce biased estimates and the
errors computed corresponding to outliers will be large. Thus the Bootstrap PIs based on
LS estimates may not provide reliable results in the presence of outliers. Therefore it is
proposed to construct robust Bootstrap PIs for the ARCH process based on WLS estimates
of parameters, on similar lines to the weighted procedure employed in the case of likelihood
estimation by Markatou et al. (1998) and Beyaztas and Shang (2020); also in partial least
squares estimation by Beyaztas and Shang (2021) to improve the robustness of the estimates.

Now, from equation (11), let νt (Φ) = νt (Φ|xt) = xt − α0 − ∑p
i=1 αixt−i for t =

p + 1, p + 2, . . . , n be the model residuals, where the values of νt for t ≤ p are taken as zero.
Let f ∗ (·) be the non-parametric kernel density estimator and m∗ (·) be the smoothed model
density, respectively, defined as follows:

f ∗
(
νt (Φ) , F̂ν (Φ)

)
=
ˆ

k (νt (Φ) , r, d) dF̂ν (r,Φ) ∀ t = 1, 2, . . . , n

m∗
(
νt (Φ) , σ2

)
=
ˆ

k (νt (Φ) , r, d) dM
(
r, σ2

)
where F̂ν (Φ) is the empirical cumulative distribution function based on νt (Φ) and M (σ2)
is actual assumed model distribution function with variance σ2, such as general normal
distribution with zero mean and variance σ2. Function k (νt (Φ) , r, d) is the kernel density
with bandwidth d. The weight function, say w (·), is defined according to the minimum
discrepancy measure, as a measure of agreement between the parametric model of the error
and the actual residuals. Following Beyaztas and Shang (2020, 2021), the Pearson residual
δt is then defined as:

δt = δ
(
νt (Φ) ; M

(
σ2
)

, F̂ν (Φ)
)

=
f ∗
(
νt (Φ) , F̂ν (Φ)

)
− m∗ (νt (Φ) , σ2)

m∗ (νt (Φ) , σ2) ∀ t = 1, 2, . . . , n

(13)
and weight function w (δt) is then defined as:

w (δt) = w
(
νt (Φ) ; M

(
σ2
)

, F̂ν (Φ)
)

= min
{

1,
[A (δt) + 1]+

δt + 1

}
(14)
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where [·]+ indicates the positive part and A (·) denotes the residual adjustment function
(RAF) of Lindsay (1994) (here in this study, Hellinger RAF A (δ) = 2

[
(δ + 1)1/2 − 1

]
have

been used). Then the WLS estimate for Φ is obtained as:

Φ̂w =
(
X

′
W X

)−1
X

′
W z (15)

where W = diag (w (δt)) and Φ̂w =
(
α̂w

0 , α̂w
1 , . . . , α̂w

p

)’
. From equations (13) and (14), it can

be seen that when the model assumptions are holding good and with no outliers present in
the data, δt converges to zero and w (δt) converges to 1. Similarly, in the presence of outliers,
δt will be larger and corresponding w (δt) will be smaller than 1 i.e. the outlier observations
will get less weight.

2.3. Robust bootstrap procedures

Sieve Bootstrap was first proposed by Buhlmann (1997) as a variation in Bootstrap
process where sieves of linear autoregressive processes are used to approximate the underlying
process to estimate the distribution of a statistical quantity of the process. The idea of Sieve
Bootstrap is that it involves the sampling of the residuals of a fitted autoregressive or AR(pn)
models of order pn, where pn → ∞ as n → ∞, and then new Bootstrap realizations are
generated from the resampled residuals. In this study, two new Bootstrap methods robust
against outliers have been proposed for constructing PIs for an ARCH model. The first one
i.e. robust unconditional Sieve Bootstrap (RUSB) is an improvement of the unconditional
Sieve Bootstrap (USB) method for the ARCH process proposed by Chen et al. (2011) and the
second one i.e. robust Sieve Bootstrap (RSB) is a modification of the SB method described
by Tresch (2015). In both the existing methods, the estimation of parameters was done by
the ordinary least squares method. This estimation yields poor results in the presence of
outliers. To handle such outliers, here the estimations of parameters have been done by the
WLS procedure.

Let {yt}n
t=1 follows the realization of an ARCH(p) process and it has the model

representation given in equation (1), equation (2) and its AR representation in equation (6).
Further letting xt = y2

t for t = 1, 2, . . . n, it can be easily presented by equation (11).

2.3.1. Robust unconditional sieve bootstrap (RUSB) method

The steps involved in this proposed algorithm are as follows:

1. Considering the model representation of equation (11), estimate the ARMA coefficients
Φ̂w =

(
α̂w

0 , α̂w
1 , . . . , α̂w

p

)’
using the WLS method as in equation (15).

2. Estimate the residuals {ν̂t}n
t=p+1 as

ν̃t = xt − α̂w
0 −

p∑
i=1

α̂w
i xt−i (16)

where ν̃t = 0, for t = 1, 2, . . . , p.
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3. Center the estimated residuals ν̂t = ν̃t − (n − p)−1∑n
t=p+1 ν̃t and then calculate the

empirical distribution of the centered residuals as

F̂ν̂t
(x) = (n − p)−1

n∑
t=p+1

I(−∞,x](ν̂t) (17)

4. Resample with replacement, Bootstrap innovations {ν∗
t } from F̂ν̂t

(x).

5. Generate the Bootstrap sample of squared return x∗
t , where x∗

t = y2∗
t , by the recursion

x∗
t = α̂w

0 +
p∑

i=1
α̂w

i x∗
t−i + ν∗

t (18)

where x∗
t = α̂w

0 /{1 −∑p
i=1 α̂w

i } and ν∗
t = 0 for t ≤ p. Generate (n + 200) values of x∗

t

and then drop the first 200 “burn-in” observations to reduce the effect of the starting
values as asymptotically negligible. (Kreiss and Franke, 1992).

6. Now given {x∗
t }

n
t=1 from Step 5, fit the model given by equation (11) then estimate

the coefficients by the WLS method, and let the resultant estimated coefficients be
Φ̂w∗ =

(
α̂w∗

0 , α̂w∗
1 , . . . , α̂w∗

p

)’
.

7. Then Bootstrap sample of volatility {σ2∗
t }n

t=1 is obtained as

σ2∗
t = α̂w∗

0 +
p∑

i=1
α̂w∗

i x∗
t−i for t = p + 1, p + 2, . . . , n. (19)

where σ2∗
t = α̂w

0 /{1 −∑p
i=1 α̂w

i } for t = 1, . . . , p.

8. Again sample with replacement, Bootstrap innovations
{
ν∗

n+h

}s

h=1
, s > 0, from F̂ν̂t

(x)
to obtain future Bootstrap observations.

9. Compute the h-step ahead, h = 1, 2, . . . , s, future Bootstrap observations for squared
returns x∗

n+h and volatility σ2∗
n+h by the recursions

x∗
n+h = α̂w∗

0 +
p∑

i=1
α̂w∗

i x∗
n+h−i + ν∗

n+h (20)

σ2∗
n+h = α̂w∗

0 +
p∑

i=1
α̂w∗

i x∗
n+h−i (21)

where x∗
n+h = xn+h for h ≤ 0.

10. Repeat Steps 4 to 9 B times to generate B Bootstrap replicates.

11. Obtain the empirical Bootstrap distribution function F̂ ∗
x∗

n+h
of x∗

n+h, where x∗
n+h = y2∗

n+h,
to approximate the unknown distribution of xn+k given the observed sample and F̂ ∗

σ2∗
n+h
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of σ2∗
n+h to approximate the unknown distribution σ2

n+h.
The (1 − α) 100% PIs for future returns yn+h is given by[

Q∗
n+h (α/2) , Q∗

n+h(1 − α/2)
]

(22)

where Q∗
n+h (α/2) = −

√
H∗

n+h (1 − α) and Q∗
n+h (1 − α/2) =

√
H∗

n+h (1 − α) where
H∗

n+h (1 − α) is the (1 − α) quantile of F̂ ∗
x∗

n+h
.

Similarly, the (1 − α) 100% PIs for σ2
n+h is given by[

0, K∗
n+h(1 − α)

]
(23)

where K∗
n+h(1 − α) is the (1 − α) quantile of F̂ ∗

σ2∗
n+h

.

2.3.2. Robust sieve bootstrap (RSB) method

It is possible to write that an AR process of {xt}n
t=1, as in equation (11), in the form

of an infinite AR representation:
∞∑

j=0
φj (xt−j − µx) = νt , φ0 = 1, for t ∈ Z (24)

with coefficients satisfying the condition ∑∞
j=0 φ2

j < ∞. Let the parameter µx be estimated
by its empirical mean x = 1

n

∑n
t=1 xt, as has been done by Alonso et al. (2002, 2003, 2004).

The steps involved in the proposed algorithm are as follows:

1. For the given realization of squared return series, {xt}n
t=1, select the maximum order

pmax = p (n) of the AR approximation and using AICC criteria, obtain the optimum
order. The optimum order has been considered as p̂ = pAICC +1 for the order of the AR
model to be fitted to the observed data. In the Monte Carlo simulation, pmax = p (n)
was taken as (n/10), as recommended by Bhansali (1983) where n is the sample size.

2. Estimate the coefficients of AR(p̂) process using the WLS method described in equation
(15). Let the estimates be φ̂w

1 , φ̂w
2 , . . . , φ̂w

p̂ in place of the Yule-Walker method used for
coefficient estimation within Tresch (2015).

3. Compute the (n − p̂) residuals as

ν̃t =
p̂∑

j=0
φ̂w

j (xt−j − x); φ̂w
0 = 1, t ∈ (p̂ + 1, p̂ + 2, . . . , n) (25)

where x is the mean of {xt}n
t=1.

4. Center the residuals as ν̂t = ν̃t − ν̃t, where ν̃t = (n − p̂)−1∑n
t=p̂+1 ν̃t. Then

compute the empirical distribution function of the centered residuals F̂ν̂ (x) =
(n − p̂)−1∑n

t=p̂+1 I(−∞,x] (ν̂t).
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5. Resample with replacement, Bootstrap innovations ν∗
t from this distribution F̂ν̂ (x) for

t = −199, −198, . . . , 0, 1, . . . , n.

6. Generate the Bootstrap series x∗
t , t = −199, −198, . . . , 0, 1, . . . , n by the recursion as:
p̂∑

j=0
φ̂w

j

(
x∗

t−j − x
)

= ν∗
t (26)

where the first p̂ values are taken as x∗
t = x. Then drop the first 200 “burn-in”

observations to reduce the effect of the starting values as asymptotically negligible.

7. Fit an AR (p̂) model to the pseudo-data {x∗
1, x∗

2, . . . , x∗
n}, re-estimate the coefficients

using the WLS method and let the estimated coefficients be φ̂w∗
1 , φ̂w∗

2 , . . . , φ̂w∗
p̂ .

8. Using the new coefficients φ̂w∗
1 , φ̂w∗

2 , . . . , φ̂w∗
p̂ , compute the h-step ahead future Boot-

strap observations by the recursion as:

x∗
n+h − x = −

p̂∑
j=1

φ̂w∗
j

(
x∗

n+h−j − x
)

+ ν∗∗
n+h (27)

where x∗
t = xt when t ≤ n with ν∗∗

n+h for h = 1, 2, . . . , s, resampled from F̂ν̂ (x).
Also, instead of employing fixed x, here the mean of the Bootstrap series x∗ has been
employed as an estimate of the mean µx at individual Bootstrap prediction, following
Mukhopadhyay and Samaranayake (2010), since it includes sampling variability. So
to account for the sampling variability due to the estimate of the mean µx of the TS,
add (x∗ − x) to predict future observations x∗

n+h. Thus the future Bootstrap squared
return is then x̂∗

n+h = x∗
n+h + x∗ − x for h = 1, 2, . . . , s.

9. Using the future values x∗
n+h and the relationship for AR and ARCH/GARCH process,

the future volatility can be calculated by the following recursion:

σ2∗
n+h = x∗ −

p̂∑
j=1

φ̂w∗
j

(
x∗

n+h−j − x
)

(28)

where x∗
n+h−j = xn+hfor h ≤ 0.

10. Repeat steps 4 to 9 B times to generate B Bootstrap replicates. Then obtain the
empirical Bootstrap distribution function F̂ ∗

x∗
n+h

of x∗
n+h, where x∗

n+h = y2∗
n+h, to ap-

proximate the unknown distribution of xn+k given the observed sample and F̂ ∗
σ2∗

n+h
of

σ2∗
n+h to approximate the unknown distribution σ2

n+h.

11. The (1 − α) 100% PIs for future return yn+h is given by:[
Q∗

n+h (α/2) , Q∗
n+h(1 − α/2)

]
(29)

where Q∗
n+h (α/2) = −

√
H∗

n+h (1 − α) and Q∗
n+h (1 − α/2) =

√
H∗

n+h (1 − α) where
H∗

n+h (1 − α) is the (1 − α) quantile of F̂ ∗
x∗

n+h
.

Similarly, the (1 − α) 100% PIs for σ2
n+h is given by:[

0, K∗
n+h(1 − α)

]
(30)
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where K∗
n+h(1 − α) is the (1 − α) quantile of F̂ ∗

σ2∗
n+h

.

In the SB method by Tresch (2015), the future volatilities have been calculated by
the recursion of σ2∗

n+h = x∗
n+h −∑p̂

j=1 φ̂∗
jx

∗
n+h−j for h = 1, 2, . . . , s. This has been changed in

RSB and given in (28). It is also noted that the use of x∗ in the second proposed method
has been done which incorporates the advantage of the Bootstrap sampling variability on
future volatilities.

A schematic diagram of the method in Section 2.3.1. is given in the Figure 1 below.

Figure 1: A Schematic diagram of the algorithm in 2.3.1.

3. Simulation results

To compare the finite sample performance of the proposed Bootstrap methods with
the existing Bootstrap methods, a Monte-Carlo simulation study has been carried out on
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an ARCH(2) model for varying sample sizes and with data having no contamination and
also with contamination (read innovative outliers). Data were generated using the following
ARCH(2) model for heteroscedastic errors:

yt = σtεt (31)

σ2
t = 0.1 + 0.2y2

t−1 + 0.15y2
t−2 (32)

generated separately considering two different distributions for the innovation process {εt}t∈Z
given as (i) N (0, 1) and (ii) (1 − ζ) N (0, 1) + ζN (0, 10). Here the level of contamination
has been taken as ζ = 0.05. The sample sizes considered were 300 and 1000. For each
combination of error distribution and sample size, to start with, the simulated datasets,
yt and σ2

t , from ARCH(2) process were generated and then R = 1000 future values, yn+h

and σ2
n+h, for each future lead h = 1, 2, . . . , 20 were generated from the underlying model

using the true values of the parameter coefficients for each simulation. Furthermore, for
each Bootstrap procedure (both existing and proposed), B = 1000 Bootstrap pseudo-series
were generated to obtain Bootstrap PIs for nominal coverages of 95%. These procedures
were repeated N = 1000 times to calculate the average values of the performance metrics
described subsequently.

The empirical or theoretical length of the PIs of yt+h for ith simulation run, i =
1, 2, . . . N , was calculated as LT,y (i) =

[
y

(R)
n+h (1 − α/2) − y

(R)
n+h(α/2)

]
, the difference between

(1 − α/2) 100th and (α/2) 100th percentile point of the empirical distribution of the R future
returns. Then mean theoretical length of return is LT,y = N−1∑N

i=1 LT,y(i). Similarly
the mean theoretical length of the PIs of σ2

n+h is calculated as: LT,σ2 = N−1∑N
i=1 LT,σ2(i),

where LT,σ2 (i) =
[
σ

2,(R)
n+h (1 − α/2) − σ

2,(R)
n+h (α/2)

]
, the difference between (1 − α/2) 100th and

(α/2) 100th percentile point of the empirical distribution of the R future volatilities.

The coverage probability (CP) of returns yt+h for ith simulation run is then calculated
as the Cy (i) = R−1∑R

r=1 I[
Q∗(α/2)≤y

(r)
n+h

(i)≤Q∗(1−α/2)
], where Q∗ (α/2) is the (α/2)th quantile of

the estimated Bootstrap distribution and y
(r)
n+h(i) is r th future return value, r = 1, 2, . . . , R,

generated at ith simulation, i = 1, 2, . . . N . Similarly, the CP of volatility σ2
n+h for ith

simulation σ
2,(r)
n+h (i) is then calculated as the Cσ2 (i) = R−1∑R

r=1 I[
0≤σ

2,(r)
n+h

(i)≤K∗
n+h

(1−α)
], where

K∗ (α) is the αth quantile of the estimated Bootstrap distribution and σ
2,(r)
n+h (i) is r th future

volatility value, r = 1, 2, . . . , R, generated at ith simulation.

The Bootstrap length of returns yt+h and volatility σ2
n+h for ith simulation run is

calculated as LB,y (i) = [Q∗ (1 − α/2) − Q∗ (α/2)] and LB,σ2 (i) = K∗ (1 − α), respectively.
Finally, the following performance evaluation measures were calculated:

• Mean Return Coverage (CV Rret): Cy = N−1∑N
i=1 Cy (i)

• Mean Volatility Coverage (CV Rvol): Cσ2 = N−1∑N
i=1 Cσ2 (i)

• Standard Error of CV Rret: se
(
Cy

)
=
{

[N(N − 1)]−1∑N
i=1

[
Cy (i) − Cy

]2}1/2
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• Standard Error of CV Rvol: se
(
Cσ2

)
=
{

[N(N − 1)]−1∑N
i=1

[
Cσ2 (i) − Cσ2

]2}1/2

• Mean length of Return (LEN ret): LB,y = N−1∑N
i=1 LB,y (i)

• Mean length of Volatility (LEN vol): LB,σ2 = N−1∑N
i=1 LB,σ2 (i)

• Standard Error of LEN ret: se
(
LB,y

)
=
{

[N(N − 1)]−1∑N
i=1

[
LB,y(i) − LB,y

]2}1/2

• Standard Error of LEN vol: se
(
LB,σ2

)
=
{

[N(N − 1)]−1∑N
i=1

[
LB,σ2(i) − LB,σ2

]2}1/2

CQret =
∣∣∣1 −

(
LB,y/LT,y

)∣∣∣+ |1 − (CV Rret/CV RT,y)|
CQvol =

∣∣∣1 −
(
LB,σ2/LT,σ2

)∣∣∣+ |1 − (CV Rvol/CV RT,vol)|

where CV RT,(.) is the (1 − α) % nominal coverage. Here, CQ is an index of coverage quality.
Therefore the simulation results have been summarized in different tables that contain the
mean coverage (CVR), mean length of the intervals (LEN), standard error of mean coverage
(SE), and standard error of mean length of the intervals (SE) for different combinations.
The performances of the proposed methods were compared to the existing unconditional
Sieve Bootstrap (USB) proposed by Chen et al. (2011) method and Sieve Bootstrap (SB)
by Tresch (2015) for constructing PIs. The proposed approaches are given in Sections 2.3.1
and 2.3.2 respectively.

It is noted that, for the case of h = 1, equations (21) and (28) both will have their
Bootstrap volatilities as constant and hence the computation of PIs of their one-step-ahead
forecast volatilities are not appropriate and hence not given in the following tables.

In Tables 1 through 4, results of the comparisons of PIs for h= 1, 5, 10, 15 and 20
steps ahead of the described methods have been presented for comparison purposes.

Tables 1 and 2 provide the results pertaining to the ARCH(2) model without con-
taminated innovations. From Tables 1 and 2, it can be seen that all methods have almost
similar results in terms of coverage and length of intervals. It can also be seen that the
proposed method RSB is performing almost at par with SB when coverage probabilities are
compared while lengths of PIs of RUSB are always found to be less than the existing method
i.e. USB. The same conclusion can be drawn when we compare the proposed method RUSB
with the existing method USB. When the lengths of PIs of two proposed methods RSB and
RUSB are compared, by and large, RUSB is always better than RSB both for returns and
volatilities.

From Tables 3 and 4, a striking feature of the proposed method RUSB which can be
seen is that the length of PIs across all forecast horizons for both returns and volatilities
have been found to be less as compared to those of the existing methods SB and USB and
also of the proposed method RSB when the data is contaminated. The feature of obtaining
the order of model by Sieve approximation rather than assumed to be fixed beforehand has
yielded better coverage in the case of the proposed method RSB and the existing method
SB (in which such a feature is there) as compared to the other two methods viz. proposed
method RUSB and existing method USB. It can also be seen from Tables 3 and 4 that
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the proposed methods were able to tackle the inflation of variances and at the same time
maintains the length of PIs.

Another inference that can be drawn when the coverage of volatility are considered
is that the proposed methods performed well in case of contaminated data. It can also be
seen that the length of PIs for the proposed method RSB is always less than those of the
existing methods USB and SB. Even though the lengths of PIs of the proposed method RSB
are larger than the RUSB, it can be seen that the coverages obtained from RSB are always
better than RUSB for both returns and volatilities in the case of contaminated data. When
both coverages and lengths of PIs are considered together, as per the combined measure
CQret and CQvol, the RUSB has been found far better than others.

4. Case Study

In this section, the performance of the proposed methods RSB and RUSB in com-
parison with the existing methods USB and SB have been presented with real-time series
data. Monthly onion price (Rs/quintal) data at Delhi market has been used for validating
the methods. It pertains to the period January 2003 to February 2022, with a total of 230
observations. Data were collected from the secondary source available at National Horti-
cultural Research and Development Foundation, New Delhi, India (NHRDF, 2003-2022).
The methods were applied to the return of monthly Onion price at Delhi market data. The
returns are more frequently used than the price time series, because returns do not depend
on units, making the comparison easier. The return series is obtained as follows:

yt = Pt − Pt−1

Pt−1
(33)

where Pt is the monthly onion price at time t. The price series is shown in Figure 2 and
the return series yt is shown in Figure 3. ADF test has been employed on the return series
yt which revealed that it is stationary. From Figure 3 and Figure 4, the data reveals the
presence of outliers. Table 5 presents the summary statistics of the return data series. As
the estimated kurtosis is higher than 3, indicates that the return series is leptokurtic.

Now Lagrange-Multiplier (LM) test confirmed the presence of the ARCH effect on
this return series. It was found that ARCH(1) is a suitable model for return series yt.
The data set has been partitioned into an in-sample estimation set from January 2003 to
December 2020 and an out-sample set from January 2021 to February 2022 for validation.
That is out of 230 sample observations 14 observations have been set aside for predictions
purpose. From equation (9), by fitting AR(1) model on y2

t using LS estimation, the resulting
estimated model is

y2
t = 0.0670 + 0.1026y2

t−1 (34)
i.e. α̂0 = 0.0670 and α̂1 = 0.1026. It can also be seen that α̂2

1 ≤ 1/3, and hence indicates
strictly stationarity (and hence weakly stationarity also) of return series (Tsay, 2010; Box et
al., 2015).

Figures 5 and 6 pertain to the PIs for the returns and volatilities from thevarious
methods. In case of PIs of returns, lower and upper boundaries of the PIs were obtained,
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Table 1: Simulated results of ARCH(2) model for sample size 300 and standard
normal innovation and no contamination

h Method CV Rret (SE) LEN ret (SE) CQret CV Rvol (SE) LEN vol (SE) CQvol

1 - 95% 1.501 - 95% - -
USB 0.9481 (0.0014) 1.514 (0.0065) 0.0098 - - -
SB 0.9461 (0.0012) 1.511 (0.0051) 0.0098 - - -

RSB 0.9462 (0.0012) 1.512 (0.0049) 0.0101 - - -
RUSB 0.9480 (0.0014) 1.514 (0.0065) 0.0096 - - -

5 - 95% 1.535 - 95% 0.274 -
USB 0.9465 (0.0009) 1.542 (0.0063) 0.0082 0.9162 (0.0127) 0.273 (0.0040) 0.0418
SB 0.9468 (0.0006) 1.543 (0.0046) 0.0086 0.9021 (0.0142) 0.273 (0.0032) 0.0563

RSB 0.9467 (0.0006) 1.541 (0.0043) 0.0073 0.9083 (0.0098) 0.272 (0.0027) 0.0519
RUSB 0.9462 (0.0009) 1.539 (0.0061) 0.0069 0.9153 (0.0127) 0.270 (0.0036) 0.0529

10 - 95% 1.539 - 95% 0.273 -
USB 0.9465 (0.0008) 1.542 (0.0063) 0.0057 0.9156 (0.0127) 0.273 (0.0040) 0.0373
SB 0.9462 (0.0006) 1.542 (0.0047) 0.0058 0.9015 (0.0142) 0.275 (0.0034) 0.0576

RSB 0.9463 (0.0006) 1.540 (0.0044) 0.0046 0.9078 (0.0098) 0.274 (0.0028) 0.0463
RUSB 0.9463 (0.0008) 1.540 (0.0061) 0.0044 0.9145 (0.0127) 0.270 (0.0036) 0.0498

15 - 95% 1.535 - 95% 0.274 -
USB 0.9458 (0.0008) 1.541 (0.0062) 0.0082 0.9157 (0.0127) 0.274 (0.0041) 0.0368
SB 0.9468 (0.0006) 1.540 (0.0045) 0.0065 0.9023 (0.0142) 0.275 (0.0033) 0.0520

RSB 0.9468 (0.0006) 1.538 (0.0042) 0.0053 0.9082 (0.0098) 0.273 (0.0021) 0.0473
RUSB 0.9456 (0.0008) 1.539 (0.0059) 0.0068 0.9147 (0.0127) 0.270 (0.0036) 0.0521

20 - 95% 1.535 - 95% 0.2740 -
USB 0.9471 (0.0009) 1.543 (0.0062) 0.0089 0.9163 (0.0127) 0.274 (0.0040) 0.0358
SB 0.9472 (0.0006) 1.546 (0.0047) 0.0106 0.9021 (0.0142) 0.275 (0.0035) 0.0537

RSB 0.9472 (0.0006) 1.544 (0.0044) 0.0093 0.9080 (0.0098) 0.273 (0.0027) 0.0475
RUSB 0.9468 (0.0009) 1.541 (0.0059) 0.0075 0.9153 (0.0127) 0.270 (0.0035) 0.0497

but since the volatility is non-negative, only the upper boundary has been obtained and
the lower boundary has been assumed to be zero. It can be found that the PIs for returns
developed by all methods contained all the future returns. At some points, it is clearly
visible that the proposed methods have smaller lengths as compared to existing methods.
As volatilities are not directly observable, once the parameters were estimated, volatilities
have been estimated using the following equation (Ullao et al., 2014):

σ2
t = α̂0 + α̂1y

2
t−1 (35)

where yt−1 corresponds to the observed past return series. It can be clearly seen that the
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Table 2: Simulated results of ARCH(2) model for sample size 1000 and standard
normal innovation and no contamination

h Method CV Rret (SE) LEN ret (SE) CQret CV Rvol (SE) LEN vol (SE) CQvol

1 - 95% 1.513 - 95% - -
USB 0.9479 (0.0015) 1.522 (0.0053) 0.0080 - - -
SB 0.9471 (0.0011) 1.519 (0.0038) 0.0068 - - -

RSB 0.9473 (0.0011) 1.519 (0.0038) 0.0070 - - -
RUSB 0.9478 (0.0015) 1.522 (0.0052) 0.0081 - - -

5 - 95% 1.538 - 95% 0.275 -
USB 0.9475 ()0.0006 1.539 (0.0038) 0.0031 0.9381 (0.0144) 0.275 (0.0023) 0.0125
SB 0.9482 (0.0004) 1.540 (0.0027) 0.0031 0.9374 (0.0136) 0.274 (0.0017) 0.0144

RSB 0.9481 (0.0004) 1.539 (0.0027) 0.0025 0.9371 (0.0086) 0.272 (0.0015) 0.0216
RUSB 0.9472 (0.0006) 1.537 (0.0037) 0.0038 0.9369 (0.0144) 0.271 (0.0021) 0.0251

10 - 95% 1.537 - 95% 0.274 -
USB 0.9471 (0.0006) 1.537 (0.0039) 0.0031 0.9385 (0.0144) 0.275 (0.0023) 0.0183
SB 0.9483 (0.0004) 1.539 (0.0027) 0.0030 0.9375 (0.0136) 0.275 (0.0017) 0.0183

RSB 0.9482 (0.0004) 1.538 (0.0026) 0.0024 0.9373 (0.0086) 0.273 (0.0015) 0.0170
RUSB 0.9469 (0.0006) 1.535 (0.0038) 0.0046 0.9374 (0.0144) 0.272 (0.0020) 0.0184

15 - 95% 1.537 - 95% 0.274 -
USB 0.9483 (0.0006) 1.538 (0.0038) 0.0024 0.9387 (0.0144) 0.275 (0.0023) 0.0166
SB 0.9482 (0.0004) 1.540 (0.0026) 0.0040 0.9374 (0.0136) 0.274 (0.0016) 0.0155

RSB 0.9480 (0.0004) 1.538 (0.0026) 0.0031 0.9370 (0.0086) 0.272 (0.0015) 0.0195
RUSB 0.9481 (0.0006) 1.536 (0.0037) 0.0027 0.9374 (0.0144) 0.272 (0.0020) 0.0202

20 - 95% 1.539 - 95% 0.274 -
USB 0.9473 (0.0006) 1.535 (0.0039) 0.0054 0.9384 (0.0144) 0.275 (0.0022) 0.0162
SB 0.9475 (0.0004) 1.536 (0.0026) 0.0049 0.9369 (0.0136) 0.274 (0.0016) 0.0167

RSB 0.9474 (0.0004) 1.535 (0.0025) 0.0054 0.9367 (0.0086) 0.272 (0.0015) 0.0191
RUSB 0.9471 (0.0006) 1.534 (0.0038) 0.0068 0.9372 (0.0144) 0.272 (0.0020) 0.0190

proposed method RSB and SB are almost close to each other and cover all future volatilities.
RUSB has a very small length for PIs.

5. Conclusion

In this study, two new robust Sieve Bootstrap approaches based on weighted least
squares estimation have been proposed to deal with the presence of outliers for developing PIs
for both returns and volatilities in the ARCH model setup. The performances of the proposed
methods viz., Robust Unconditional Sieve Bootstrap (RUSB) and Robust Sieve Bootstrap
(RSB) for constructing PIs using both simulated as well as real data sets have been found
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Figure 2: Monthly Onion price at Delhi market data from January 2003 to
February 2022, with a total of 230 observations

Figure 3: Time plot of returns of monthly onion price data of Delhi market
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Figure 4: Box plot of return series of monthly onion price of Delhi market

Figure 5: Prediction intervals for returns of monthly onion price of Delhi market
for forecast horizons h = 1, 2, · · · , 14
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Table 3: Simulated results of ARCH(2) model for sample size 300 with 5%
contaminated normal innovation

h Method CV Rret (SE) LEN ret (SE) CQret CV Rvol (SE) LEN vol (SE) CQvol

1 - 95% 1.820 - 95% - -
USB 0.9607 (0.0017) 2.151 (0.0198) 0.1935 - - -
SB 0.9480 (0.0015) 1.906 (0.0102) 0.0493 - - -

RSB 0.9491 (0.0016) 1.941 (0.0135) 0.0675 - - -
RUSB 0.9423 (0.0022) 1.839 (0.0126) 0.0186 - - -

5 - 95% 1.955 - 95% 0.433 -
USB 0.9626 (0.0009) 2.446 (0.0346) 0.2646 0.9749 (0.0030) 1.138 (0.0641) 1.6523
SB 0.9518 (0.0007) 2.117 (0.0151) 0.0846 0.9441 (0.0069) 0.581 (0.0134) 0.3459

RSB 0.9500 (0.0007) 2.072 (0.0162) 0.0597 0.9465 (0.0056) 0.576 (0.0291) 0.3335
RUSB 0.9440 (0.0009) 1.949 (0.0132) 0.0096 0.9363 (0.0078) 0.436 (0.0084) 0.0200

10 - 95% 1.960 - 95% 0.429 -
USB 0.9636 (0.0009) 2.490 (0.0380) 0.2849 0.9741 (0.0030) 1.216 (0.0788) 1.8600
SB 0.9514 (0.0007) 2.126 (0.0163) 0.0864 0.9433 (0.0069) 0.601 (0.0162) 0.4077

RSB 0.9496 (0.0006) 2.081 (0.0188) 0.0622 0.9455 (0.0056) 0.601 (0.0399) 0.4066
RUSB 0.9447 (0.0009) 1.970 (0.0150) 0.0106 0.9348 (0.0078) 0.443 (0.0094) 0.0479

15 - 95% 1.965 - 95% 0.432 -
USB 0.9626 (0.0009) 2.484 (0.0392) 0.2776 0.9746 (0.0030) 1.234 (0.0861) 1.8824
SB 0.9512 (0.0007) 2.126 (0.0159) 0.0832 0.9430 (0.0069) 0.605 (0.0164) 0.4078

RSB 0.9491 (0.0007) 2.083 (0.0210) 0.0614 0.9451 (0.0056) 0.605 (0.0496) 0.4045
RUSB 0.9438 (0.0009) 1.953 (0.0140) 0.0125 0.9354 (0.0078) 0.440 (0.0089) 0.0341

20 - 95% 1.966 - 95% 0.432 -
USB 0.9628 (0.0009) 2.488 (0.0395) 0.2793 0.9738 (0.0030) 1.241 (0.0885) 1.9020
SB 0.9511 (0.0007) 2.132 (0.0164) 0.0859 0.9431 (0.0069) 0.609 (0.0179) 0.4193

RSB 0.9491 (0.0007) 2.090 (0.0216) 0.0643 0.9450 (0.0056) 0.638 (0.0579) 0.4838
RUSB 0.9444 (0.0009) 1.957 (0.0141) 0.0104 0.9349 (0.0078) 0.438 (0.0087) 0.0307

to be better when compared with their existing counterparts. The results revealed that the
proposed method RSB is performing almost at par with SB when coverage probabilities are
compared while lengths of PIs of RUSB are always found to be less than the existing method
i.e. USB. When the lengths of PIs of two proposed methods RSB and RUSB are compared,
by and large, RUSB is always better than RSB both for returns and volatilities. For the
proposed method RUSB, the length of PIs across all forecast horizons for both returns and
volatilities have been found to be less as compared to those of the existing methods SB and
USB and also of the proposed method RSB when the data is contaminated. The proposed
methods were able to tackle the inflation of variances and at the same time maintain the
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Table 4: Simulated results of ARCH(2) model for sample size 1000 with 5%
contaminated normal innovation

h Method CV Rret (SE) LEN ret (SE) CQret CV Rvol (SE) LEN vol (SE) CQvol

1 - 95% 1.768 - 95% - -
USB 0.9644 (0.0016) 2.155 (0.0164) 0.2072 - - -
SB 0.9535 (0.0011) 1.875 (0.0078) 0.0644 - - -

RSB 0.9517 (0.0012) 1.836 (0.0068) 0.0403 - - -
RUSB 0.9444 (0.0022) 1.806 (0.0096) 0.0278 - - -

5 - 95% 1.948 - 95% 0.422 -
USB 0.9675 (0.0007) 2.491 (0.0294) 0.2922 0.9806 (0.0035) 1.141 (0.0592) 1.7386
SB 0.9557 (0.0005) 2.114 (0.0095) 0.0914 0.9620 (0.0045) 0.594 (0.0083) 0.4220

RSB 0.9511 (0.0005) 2.013 (0.0071) 0.0344 0.9504 (0.0035) 0.474 (0.0057) 0.1242
RUSB 0.9454 (0.0007) 1.928 (0.0091) 0.0154 0.9350 (0.0073) 0.397 (0.0055) 0.0732

10 - 95% 1.959 - 95% 0.428 -
USB 0.9678 (0.0006) 2.519 (0.0333) 0.3103 0.9807 (0.0035) 1.220 (0.0717) 1.8841
SB 0.9555 (0.0005) 2.134 (0.0107) 0.0950 0.9610 (0.0045) 0.616 (0.0101) 0.4520

RSB 0.9506 (0.0004) 2.020 (0.0074) 0.0317 0.9488 (0.0035) 0.476 (0.0058) 0.1128
RUSB 0.9451 (0.0007) 1.921 (0.0088) 0.0249 0.9332 (0.0074) 0.396 (0.0058) 0.0913

15 - 95% 1.959 - 95% 0.431 -
USB 0.9673 (0.0006) 2.528 (0.0342) 0.3037 0.9807 (0.0035) 1.242 (0.0764) 1.9108
SB 0.9552 (0.0005) 2.131 (0.0109) 0.0929 0.9606 (0.0045) 0.626 (0.0111) 0.4626

RSB 0.9503 (0.0005) 2.015 (0.0075) 0.0285 0.9484 (0.0035) 0.478 (0.0059) 0.1090
RUSB 0.9443 (0.0007) 1.924 (0.0089) 0.0240 0.9340 (0.0073) 0.399 (0.0060) 0.0922

20 - 95% 1.955 - 95% 0.433 -
USB 0.9676 (0.0007) 2.528 (0.0348) 0.3120 0.9801 (0.0035) 1.245 (0.0780) 1.9076
SB 0.9555 (0.0005) 2.131 (0.0108) 0.0958 0.9603 (0.0045) 0.626 (0.0116) 0.4562

RSB 0.9506 (0.0004) 2.014 (0.0071) 0.0309 0.9481 (0.0035) 0.476 (0.0060) 0.1016
RUSB 0.9452 (0.0007) 1.931 (0.0095) 0.0171 0.9333 (0.0074) 0.399 (0.0064) 0.0961

Table 5: Summary statistics of return series yt

Mean Median SD Skewness Kurtosis Maximum Minimum
0.0437 0.0158 0.2730 0.8846 5.0058 1.2840 -0.6090

length of PIs. Using the real data set on the monthly onion price of Delhi market, it has been
shown that the PIs for returns developed by all methods contained all the future returns and
that the proposed methods have smaller lengths as compared to existing methods. Hence
the proposed methods can be used as a viable alternative for computing PIs for non-linear
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TS models.

Figure 6: Prediction intervals for volatilities of monthly onion price of Delhi
market for forecast horizons h = 1, 2, · · · , 14
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