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Abstract

This study is concerned with estimating the scale parameter and the reversed hazard
rate of the Inverse Rayleigh distribution based on left censoring, one of the most noticeable
distributions in lifetime studies. Even though different estimation methods are employed,
each method suffers from its problems such as complexity of calculations, high risk, etc.
Results derived under squared error, entropy, and precautionary loss functions. E-Bayesian
and H-Bayesian estimations are obtained based on different priors of the hyper parameters
to investigate the influence on these estimations. We investigated the asymptotic behaviors
of E-Bayesian estimates and relations among them. Finally, a comparison among the Bayes,
H-Bayes, and E-Bayes estimates in different sample sizes made using real and the simulated
data. Numerical study shows that the newly presented method is more efficient than previous
methods and is also easy to operate.

Key words: Inverse Rayleigh distribution; Left censoring; Bayesian estimation; E-Bayesian
estimation; H-Bayesian estimation.
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1. Introduction

Several authors used Inverse Rayleigh (IR) distribution to model applications in the
area of reliability. Voda, (1972) used this distribution to model the lifetimes of several experi-
mental units. Several works related to inference using complete samples based on parameters
of inverse Rayleigh (IR) distribution are available in the literature. |[El-Helbawy and Abd-El-
Monem! (2005) developed Bayes estimators for the parameters of the IR distribution using
different loss functions. For more works related to inference using IR distribution, one can
refer to Soliman et al.| (2010), [Dey| (2012)), Feroze and Aslam (2012)) and Shawky and Badr
(2012). In the context of reliability and survival analysis, censoring is unavoidable, and there
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are different censoring schemes available. One of the practical censoring schemes is the left
censoring, and it occurs when we cannot identify the exact time the event occurred.

Considering the advantage of using the E-Bayesian estimation method recently, many
papers are published in the literature using this approach. [Han| (2009) proposed the E-
Bayesian estimate of the failure rate of exponential distribution using type-1 censoring.
E-Bayesian estimates of Burr type XII distribution parameters using type-2 censoring had
proposed by [Jaheen and Okashal (2011). (Okasha and Wang (2016|) derived E-Bayesian es-
timators of the geometric distribution parameters when samples are available only in the
form of records. |Kizilaslan (2017) discusses the E-Bayesian estimation of the proportional
hazard rate model. E-bayesian and hierarchical bayesian estimates of the power function dis-
tribution parameters had proposed by |Abdul-Sathar and Athirakrishnan| (2019). This paper
aims to propose E-Bayesian and H-Bayesian estimates of the inverse Rayleigh distribution
parameters when left-censored data are available. We additionally provide estimates of the
reversed hazard rate using three different loss functions. The asymptotic performance of the
proposed estimators for different priors is also studied.

The organization of the rest of the works is as follows. We discuss Bayesian estimation
of the scale parameter and reversed hazard rate of the IR distribution using left-censored
data in Section 2. In Section 3, we discuss the H-Bayesian estimation of the scale parameter
and the reversed hazard rate. E-Bayesian estimators of the scale parameter and reversed
hazard rate are discussed in Section 4. The properties exhibited by all these estimators
discusses in Section 5. The estimator’s performance using simulated and real data sets
discuss respectively in Sections 6 and 7. Finally, concluding remarks about the proposed
study are given in Section 8.

2. Bayesian estimation

In this section, we derive the Bayesian estimators of the parameter A of IR distribution
using left-censored data under the squared error loss function (SELF), the entropy loss
function (ELF), and the precautionary loss function (PLF). The pdf, cdf, and reversed
hazard rate of the one-parameter IR distribution are respectively given by

2\ -
f(x;)\)zﬁez%, x>0, A>0, (1)
F(x;A):e?, z>0, A>0, (2)
and
= 2\
h(t) = t—s,t > 0. (3)

Let X = X (41, ..., X(n) be the last (n —r) order statistics using a random sample of size n
from IR distribution. Likelihood function in this context is given as

L(X(rJrl)’ e X(n)|)\) X )\n_re_/\T(ir)’ (4)
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where 7(;) = rm(_ril) + m(_z)Q The prior for the parameter A assumes Gamma distribu-

tion with density function

a
b /\a—le—b)\

w(Na,b) = I(a) ,

A>0, a,b>0,

where a and b are the hyper parameters. Here we only consider the case of a = 1, then the
density function m(\|a, b) reduces to

T(A|b) = be ™™, b >0. (5)
Hence the posterior distribution using ([4) and (5) simplifies to

ir b n—r+1
ey = ST e, 5> 0 (6)

Now we derive the Bayes estimators of A and reversed hazard rate of left censored IR distri-
bution under three different loss functions.
Using SELF, the Bayes estimators of A and reversed hazard rate simplify to

n—r+1
Tar) +0

- B 2\ ~2(n—r+1)
h(t)p, = E ( > = —tS(T(ir) D)

The Bayes estimators of A\ and reversed hazard rate using ELF simplifies to

N 1
)\BZ - |:E <

Ap1 = E(\z) =

-1 n—r

A x) - Tlir) + b (9>

2\ 7111 _1: 2(n—r)
E(<t3> )] £(7ir) + ) 1)

The Bayes estimators of A\ and reversed hazard rate using PLF simplifies to

3 (7'(2'7«) + b)2
3. Hierarchical Bayesian estimation

h(})m =

Lindley and Smith| (1972) first introduced the idea of hierarchical prior distribution.
For the parameter A, the hierarchical prior density function is defined as

T(A) = /067?()\|b)7r(b)db.
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Hierarchical Bayesian (H-Bayesian) estimation of A is obtained based on three different
distributions of the hyper parameter b. The influence of the different prior distributions
on the H-Bayesian estimation of X is studied by using these distributions. The following
distributions of b may be used

2(c—>
m(b) = (CCQ ), 0<b<ec, (13)
1
mo(b) = . 0<b<e, (14)
20
m3(b) = X 0<b<e, (15)

3.1. Hierarchical Bayesian estimation of A

For 7 (b), the hierarchical prior density function simplifies to

2 &
() = 62/0 b(c — b)e "db, X > 0. (16)

Using Bayesian theorem, the hierarchical posterior density for A can be defined as

7T4( ) ( A

Hy(Az)

I 7r4 L(r|X\)dA
S e T a7
5 ble— B) G LoD () + BT b
The H-Bayesian estimators of A under SELF is given as
J e = Dy )
Ao = e (18)

c I'(n—r+1 —p ’
Jo ble = 0) Lo () + 0) Db

Similarly, the H-Bayesian estimators of A under ELF and PLF are given respectively as

) Jy ble = b) g St (7 + B) 7+ »
o fo a uﬁi@%( (iry + b) b
and
| e D e + D .
Jo ble = %( (i) + D)D)’
For 75(b), the hierarchical prior density function simplifies to
m) = ¢ [ b b >0 o
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Using Bayesian theorem, the hierarchical posterior density for A can be defined as
m 5( ) ( A)
Hy(\ =
B e S VAT RN
f AT e ’T(ZT)+2b)< + b)n—r—i—ldb

c I'(n—r+1 — )
fo bW(T@T) + b) +1dp

(22)

The H-Bayesian estimator of A under SELF is given as
N L(n—r+2 .
Jo bwﬁhm(nm + )=+ g

/)\\HSQ - c T(n—r+1 ’
fo bW(T@M + b)(n—r+1)db

(23)

Similarly, the H-Bayesian estimators of A under ELF and PLF are given respectively as

c T'(n—r+1) o
Jo b g (T + 0)" Vb

)\HEQ - c T(n—r , (24)
It b(nm(w%< iy + )=+ DD
and
A (’ﬂ—T—i—l)
Nirps = fO (T(iry+2b) ("~ 7 (T(ar) + ) db )
n—r+1 —r s
b T()Tﬁ)m( (r) + 0)"=r D db
For m3(b), the hierarchical prior density function simplifies to
2 —
m6(A) = 02/0 b2e P db, )\ > 0. (26)
Using Bayesian theorem, the hierarchical posterior density for A can be defined as
7T6( ) ( )
Hs(\ =
S Io7 m6(A)L(r|X)dX
Jy A _A(T“’")”b)(ﬂim + )" b (27)
B c I'(n—r+1 e .
I 62mf+z—b>ﬂ+1(%> + b)r=rtidb
The H-Bayesian estimator of A under SELF is given as
~ fc bQ%( ”n) + b)(n—r—l—l)db
Auss = E(Mz) = 0 7 (ran+2b)(n—7+2 .

c I'(n—r+1 — )
fo bQW( (ir) + b>( +1)db

Similarly, the H-Bayesian estimators of A under ELF and PLF are given respectively as
c b2 I'(n—r+1) (T(ir) + b)(n—r—f—l)db

~ _ -1 0 (T(zr)+2b)("_'f+1)
Aups = |[E (A 'z)| = (s ; (29)
[ ( )} fc bZW( (ir) —|— b)(nfr+1)db
and
b2 e ey (T + b) b
) 0 T(iry+2b) (=7 +3) (ir)
AHp3 = E(}\2|$) — (T(ir) (30)

c I'(n—r+1 — )
0 b2(r(mgr2b#)r+l>(7'(w) + b)(n=r+D
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3.2. Hierarchical Bayesian estimation of reversed hazard rate

Based on SELF, ELF and PLF, the H-Bayesian estimators of the reversed hazard
rate is computed for the three different distributions of the hyperparameter b given by ,
and (15). For m(b), the H-Bayesian estimator of the reversed hazard rate is obtained
from (I7). Under SELF, the H-Bayesian estimator of reversed hazard rate is given as

2 re L(n—r+2) n—r
3 fo b(c —b) T(zr‘):2b)(”—7‘+2) (T(ir) + b)( db

A

e e ' (31)
Jott W( () + b)) db
The H-Bayesian estimators of reversed hazard rate under ELF and PLF are given as
2 rc T'(n—r+1) -
W) = & Jo ble = b) gt (any + 0) 7D db N
HE1 = J5b(c— b)—L0n) (4 b) (D dh
0 (T(iry+2b) (27 T(ir)
and
D(n—r+3 .
( 2 fo W( () + b)) db
h(t) gpy = 3 D(n—r+1) EYET— (33)
ot W( (ir) +0)

For my(b), the H-Bayesian estimator of the reversed hazard rate is obtained from (22)). Under
SELF, the H-Bayesian estimator of reversed hazard rate is given as

(n—r+2 n—r
f() T(zr)+2b)(" )7+2)( (ZT‘) + b)( +1)db

A

h(t) o = —7a nrl | "
fo b(r(ir)gr%%(ﬂw) + b)(n=r+1)dh
The H-Bayesian estimators of reversed hazard rate under ELF and PLF are given as
n—r+1 -
( 5o T(MTM( () + 0) Db
h(t)HE2 ) o (n—r+1) (35)
Jo by sam (Tar) 1) db
and
(i 2 fO %( (ir) T b)(n—r—i-l)db
e : (36)

13 T'(n—r+1) n—r :
Ao %( (iry + D)= db

For m3(b), the H-Bayesian estimator of the reversed hazard rate is obtained from (27). Under
SELF, the H-Bayesian estimator of reversed hazard rate is given as

c T'(n—r+2 n—r
~ t% 0 b2 (T(zr)S’Qb)(TL )7‘+2> (T(ZT' + b)( +1)db

MW ss = T . (37)
f() b2((w)s-2b—)(j;)r+l>( (ir) + b)(nfrJrl)db
The H-Bayesian estimators of reversed hazard rate under ELF and PLF are given as
5Pt ey (ner 1)
( ’ b T (n—r )( (ir) T b) db
h(t)HE:s — t3 JO (T(iry+20) +1 (38>

c Tn_r —
Jo bQ(T(i,ﬂ)izﬁ( (iry + b)) db
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and
c I'(n—r+3 n—r
A o | Jo Vi Syt e (T + D)7 Db
" ups = 35 “pz_ T=rrD) Y. (39)
0 m( (ir) +0)
4. E-Bayesian estimation

According to Han| (1997) the E-Bayesian estimate of A is defined as
A = / Ag (D) (b)db. (40)
b

where \ p(b) is the Bayesian estimator of A with prior density 7(b). From , we can see
that E-Bayesian estimation is the expectation of Bayesian estimator of the parameters for
the hyper parameter. E-Bayesian estimation based on three different prior distributions of
the hyper parameter , and are used to investigate the influence of different

prior distributions on the E-Bayesian estimation of A\ and reversed hazard rate.

4.1. E-Bayesian estimation for \

Based on SELF, ELF and PLF, the E-Bayesian estimators of )\ is computed for the
three different dlstrlbutlons of the hyperparameter b given by ((13 , and . For (b
the E-Bayesian estimate of A under SELF is obtained from (7] D and (|

Apsi = /0 A (ym ()l = 2D {(W) + o) <W> - c} @

C T(,'r)

Slmllarly, the E-Bayesian estimates of A under ELF and PLF are computed from @ .
and ( and are given respectively, by

" 2n —r Ty + C
App1 = (62) {(T(ir) +¢)In <(7'z)> — c} , (42)

and

App1 = 2\/(” —r4ln-r+2) {(% + ol <W> - c} . (43)

C T(ir)

For my(b), the E-Bayesian estimate of A under SELF is obtained from and as

. _ 1 .
/\ESQZn r+4 n (T(zr)"‘C)’ (44)

C T(ir)

Smnlarly, the E-Bayesian estimates of A under ELF and PLF are computed from (9)), (1)
and (|14]) and are given respectively, by

XEEQ _ n—r n <T(ir) + C) ’ <45)

& T (ir)
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and

5\Ep2:\/(n_r+1)(n_r+2)ln<T(ir)+c>, (46)

C T(Z-r)

For m3(b), the E-Bayesian estimate of A under SELF is obtained from (7)) and as

A 2n—r+1 Tir) + C
b = 2D (], o

C T(ir)

Similarly, the E-Bayesian estimates of A under ELF and PLF are computed from @,
and and are given respectively, by

2 2(n—r T(ir) + C
AEE3 = (02) {C — T(iry In <()> } ) (48)

and

XEpgzzwn_rH)(”_T”) {C—T(Z-T)ln <W>} (49)

4.2. E-Bayesian estimation for reversed hazard rate

Based on SELF, ELF and PLF, the E-Bayesian estimators of reversed hazard rate is
computed for the three different distributions of the hyperparameter b given by ,
and ((15). For m(b), the E-Bayesian estimate of reversed hazard rate under SELF is obtained

from ({§)) and as
- dn—r+1) Tary + €
mwmn:(%3{va+@m<<>>_c}. (50)

T(ir)

Similarly, the E-Bayesian estimates of reversed hazrd rate under ELF and PLF are computed

from ([10)), and and are given respectively, by
4(n —r) Tiry + €
0 = 2 iy o (1225) . 51

oy

Tar)
and
- 4 [n—r+1)(n—-—r+2) Tiir) + €
h@mn:ﬁ¢ (Timy + ) In [ 222 ) — b (52)
c T(ir)
For m(b), the E-Bayesian estimate of reversed hazard rate under SELF is obtained from
and as
A 2(n—r+1) T(ir) + C
h(t) pge = 7 In ( o . (53)

Similarly, the E-Bayesian estimates of reversed hazard rate under ELF and PLF are com-
puted from (10]), and and are given respectively, by

W) = 201y (”") : ) , (54)

Ct3 T (ir)
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and

h(t)Epg _ 2\/(n —r+1)(n—r+2) I (T(Z'T) + c> ' (55)

t3 C T (ir)

For 75(b), the E-Bayesian estimate of reversed hazard rate under SELF is obtained from (g)

and (15)) as
A 4in—r+1 ir) T C
h(t)ES?,:(CQtS){ — T In <)>} (56)

T(ir)

Similarly, the E-Bayesian estimates of reversed hazard rate under ELF and PLF are com-
puted from , and and are given respectively, by

h(At)EEB = 4(722;),70) { — T(iry In <W> } ) (57)

T(ir)

W) s = H St & AL ) {c ~ T In (W> } . (58)

C T(ir)

and

5. Properties

In this section, we discussed the important properties of E-Bayesian estimators in-
cluding the relation of this estimators with the hierarchical Bayesian estimators. In the
following theorem, we gives the relationship of E-Bayes estimators of A under different loss
functions.

Theorem 1: The relationship of E-Bayes estimators of A using respectively the SELF, ELF
and PLF are given as

i) Aggi < Apsi < Agpi,i1=1,2,3
11) limT(iT)HOO )\ESi = hmf(w)ﬁoo AEE; = hm‘r(”)%oo Aepi = 0.
Proof:

i) The relationship S\EEI < 5\}331 < S\Epl is a particular case of XEEl < S\Esl- < ;\Epi and
it is same as

n—r<n—r—|—1<\/(n—r+1)(n—r—|—2). (59)
We use the concept of mathematical induction for proving the relation. For n=1, we

have 1 — 7 < (2 —r) < /(2 —=7r)(3 —r). Hence the result is true for n=1. Squaring
the above equation, we get

n—rP<m-r+1<m-r+1)(n—r+2). (60)
Now assume that the result hold for n=~k. That is

k—r)l<k-r+1)<k—r+1)(k—1r+2). (61)
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Now, we prove the result for n=k+1, so we have

(E+D)+r+1)((k+1)+r+2) = (k—r+2)(k—r+3)
= (k—r+1)(k—r+2)
+2(k —r+2). (62)

Using , we get

k—r?+2k—-r+2) < (k—r+1)2+2k—-1r+2)
< (k—r+1)k—-r+2)+2(k—-r+2). (63)
we have
(k—r?+2k—r+2)=(k+1)—=7)*+3> ((k+1)—1r) (64)

Also, we have
k—r+1242k—r+2)=((k+1)—r+1)2+1>((k+1)—r+1)%2  (65)
Using to ,we have
(k4+1) =)< ((k+1)—r+ 1)< ((k+1)—r+1)((k+1)—7r+2). (66)
Hence the result.

From the derivation of \ Es1 , we have

« 2(n—r+1) [ c—D
A = db.
E51 c? /0 Tar) +0

Using the generalized mean value theorem, we can find atleast one number b; € (0, ¢)

such that
. 2n—r+1) 1 /c
A = — b)db.
ES1 2 P A (c—0)

Taking the limit as 7(;) — oo
lim Aggi = 0. (67)

T(Z-r)—>oo

Using the generalized mean value theorem, we can find atleast one number by € (0, ¢)

such that
« 2n—7) 1 ¢
A = — b)db.
EE1 2 Ty + by /0 (c—b)

Taking the limit as 7(;) — oo
lim Apg = 0. (68)

T(ir)_H)O

Using the generalized mean value theorem, we can find atleast one number b3 € (0, ¢)
such that, we have

>\EP1 =

2 /n—r+2)(n—r+1 ¢
U 7+ 2N )/(c—b)db.
C (T(ir) —+ bg) 0
Taking the limit as 7(;) — oo
lim Agp = 0. (69)

’T(ir)—>oo
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Using (38]) to (40]), we have the proof. From the above theorem, we can see that, E-Bayesian
estimators for A\ are different for different loss functions. It can also be noted that the
estimators are asymptotically equal or close to each other when 7(;, is sufficiently large. The
rest of the proof is same as the above. In the following theorem we provide the relationship
of E-Bayes estimators of reversed hazard rate for different loss functions. The proof is similar
to the above theorem and hence omitted. O]

Theorem 2: The relationship of E-Bayes estimators of reversed hazard rate using respec-
tively the SELF, ELF and PLF are given as

i) h(A pp < h( ps1 < h(t)EPl

A~ ~ A

ii) limy, o0 R(t) gy = limr, oo A(t) gy = limy, 00 B(t) gpy = 0.

In the following theorem, we gives the relationship between E-Bayes and hierarchical
Bayes estimators of A under the same loss function.

Theorem 3: The relation between E-Bayes and hierarchical Bayes estimators of A for SELF,
ELF and PLF are respectively given as

1) limy, —poo Amsi = My, oo Ansi = 0,i=1,2,3.
i) limy, oo Appi = limy, —peo A = 0,1 =1,2,3.

111) lim.r(ir)ﬂﬁoo )\EPi = hm.,-(ir)g)goo )\HPi = O,Z = 1, 2, 3.
Proof:

i) Under SELF, from the above theorem, using , we get

lim )\ESI =0. (7())

’T(ZT)—>OO

Using the result I'(n +7 4+ 2) = (n+ 7+ 1)I'(n + r + 1) and by using the generalized
mean value theorem, we can find atleast one number b, € (0, ¢)

(mn—r+1n—-r+1)

n—r-+1 ¢ B T(n—r+1)
- - = ble —=b ) b (n—r+1) db.
(T(z’r) + 264) A (C )(T(zr) + ) (T(ir) + 2b)(n—7"+1)

db =

| e = B)(r + 0
0

n—r F(n—r—i—?)
~ fO € — b T(Zr b)( +1) (T(zr) +2b)<n r+2) db
HS1 = - T(n—r+1
[ b(c = b)(7(ir) + b)(n=r+D) (T(mi iy db

n—r+1
(T(ir) —+ 2b4)
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Taking limit as 7(;) — oo
lim 5\H31 =0.

T(ir)‘}OO
Hence using (41)) and (43)), we have
T(erl)rgoo Ags1 = T(}TI)IEOO Ars1 = 0.

Under ELF, from the above theorem, using , we get

lim >\EE1 =0.
T(ir) 00

[Vol. 22, No. 1

(74)

Using the result I'(n —r+1) = (n —7)I'(n —r) and by sing the generalized mean value

theorem, we can find atleast one number bs € (0, ¢) such that

/C b(c — b) () + b)Y (n—r)ln —7) —db =

(T(iry + 20)(7(ir) + 2b) ()

(n—r) /C 3 L(n—r)
—— 7 | blc—Db)(rm + b)Y
i L e =D+

(i) + 20) (=)
Using we have

n—r n— r+1
HE1 — - T(n—r
fo )(7(ir) + b)¢ H)de

(n — 7’)
(T(ir) -+ 2b5> '

Taking limit as 7(;y — 00
lim >\HE1 =0.

T(Z’I‘) o0
Hence using (45)) and (47)), we have
lim S\EEl hm )\HEl = 0.
T(ir) 700 T(ir) ™

Under PLF, from the above theorem, using , we get

lim Agp; = 0.
B EP1

(75)

(79)

Using the result I'(n +a+2) = (n+a+ 1)I'(n + a + 1) and by using the generalized
mean value theorem, we can find atleast one number bg € (0, ¢) such that

¢ L(n—r+3) B
b(c—b i+ D) gp =
/0 e=9) (T(ir) + 2b) (=7 +3) (7(ir) +)

¢ ['(n—7r+3) _
b(c—b i+ D) gp,
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Using we have

Jy ble = b) g it ey (1) + )7+ Db

5\HP1 = P o
o ble = 0) B (i + B)

Jo—r+2)(n—r+1)

— , 81
(T(ir) + 2bg) (B
Taking limit as 7;) — oo
‘r(ir)%oo

Hence using and , we have
lim Agp; = lim Agp = 0. 83
T(i,«)ﬁoo EP1 T(,-r)—ﬂ)o HP1 ( )
O

The rest of the proof can be proved in the similar way and omitted. In the following
theorem, we gives the relationship between E-Bayes and hierarchical Bayes estimators of
reversed hazard rate under the same loss function. The proof is similar to the above theorem
and hence omitted.

Theorem 4: The relation between E-Bayes and hierarchical Bayes estimators of reversed
hazard rate for SELF, ELF and PLF are respectively given as

i) L, o0 A(t) gy = limy, —spoo h(t) ;= 0,7 = 1,2,3.

i) e, oo h(t) gy = L, —sgoo h(t) s = 0,0 = 1,2,3.

>
>

iii) limmr)_ﬂjOO h(t)EPi = limT(iT)HBOO h(t)HPi =0,i=1,2,3.
6. Monte Carlo Simulation

In this section, we inspect the performance of the proposed estimators using a simu-
lation study. We use the following steps for performing the study.

Step 1: Generate samples of sizes n=>500,1000 and 1500 from the inverse Rayleigh distribu-
tion with pdf (1]) for A = 13.

Step 2: Fix the value of ¢ = 1.

Step 3: For computing the Bayesian estimators, use ([7]), (8)) ), (11) and (12)), for
E-Bayesian estimators, use , , , (43), (44]) (48) and
).

Step 4: Repeat steps 1-3, 10000 times and compute the MSE.



52 R.B. ATHIRAKRISHNAN AND E.I. ABDUL SATHAR [Vol. 22, No. 1

Table 1: MSE for Bayesian, E-Bayesian and H-Bayesian estimates of )\ for sim-
ulated data

7 = 500 n = 1000 n = 1500 CP ACT

7 =50 r=100 r=150 | r =100 7 =200 7 =300 |r =200 =300 r=400
X1 | 06168 04591 04501 | 0.2479 0.2384 0.1945 | 0.1653 0.1473  0.1414 | 92.3 % | ( )
Ap2 | 05334 04832 04403 | 0.2521 0.2431  0.1991 | 0.1701  0.1500  0.1439 | 94.3 % | ( )
Aps | 04918 0.4543  0.4260 | 0.2459 0.2363  0.1924 | 0.1631  0.1460  0.1403 | 99.1 % | ( )
Npst | 0.3851 0.3791  0.3727 | 0.2376 0.2113  0.1752 | 0.1378 0.1338  0.1312 | 90.6 % | ( )
Aps2 | 03970 0.3844  0.3758 | 0.2365 0.2082  0.1771 | 0.1428 0.1358 0.1321 | 95.8 % | ( )
Apss | 04212 04036 0.3822 | 0.2378  0.2084  0.1810 | 0.1491  0.1387 0.1342 | 953 % | ( )
Nep1 | 03912 03788 03782 | 0.2374 02100 0.1762 | 0.1402 0.1348  0.1317 | 98.2 % | ( )
Nppe | 04088 0.3940 03794 | 0.2374 0.2085 0.1791 | 0.1458 0.1372  0.1331 | 97.4 % | ( )
Npps | 04387 04167  0.3903 | 0.2399  0.2102  0.1839 | 0.1527  0.1406  0.1357 | 98.7 % | (11.2301, 14.3229)
Sgpi | 03830 03804 03702 | 02379 02121  0.1748 | 0.1367  0.1333  0.1310 | 93.1 % | (11.8072, 14.1385)
Sppe | 03920 0.3802  0.3747 | 0.2362  0.2083  0.1763 | 0.1414  0.1351  0.1317 | 96.9 % | (11.5367, 14.2634)
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

11.5621, 13.7678
11.4505, 13.8129
11.0848, 14.2832
11.8765, 14.0324
11.5952, 14.1703
11.5601, 14.0589
11.4222, 14.4218
11.4457, 14.2521

Apps | 04135 0.3977  0.3789 | 0.2370  0.2078  0.1798 | 0.1474 0.1379  0.1335 | 94.5 % | (11.6169, 14.0357
Mgy | 0.6005 04286 0.4392 | 0.3148  0.2663  0.1816 | 0.1879  0.1819  0.1651 | 90.1 % | (11.7812, 13.9065
Aisa | 0.6861 04473 0.4210 | 0.3345  0.2789  0.1912 | 0.1983  0.1904  0.1734 | 96.3 % | (11.4715, 14.1431
Mirss | 0.6861 04473 04310 | 0.3345 02789  0.1912 | 0.1992  0.1940  0.1743 | 96.0 % | (11.4920, 14.1226
Appr | 0.5910 0.4334  0.4138 | 0.2987  0.2568 0.2044 | 0.1770  0.1752  0.1704 | 96.1 % | (11.6000, 14.3119
Aips | 04987 04332 04138 | 0.2855 0.2503  0.1945 | 0.1756  0.1703  0.1686 | 98.9 % | (11.2829, 14.6215
Aups | 05535 04331 04139 | 0.2929 02537  0.2002 | 0.1743  0.1725  0.1658 | 90.9 % | (11.8395, 14.0574
Amp1 | 0.6668 0.4322  0.4173 | 0.3299  0.2759  0.1890 | 0.1968  0.1914  0.1723 | 90.7 % | (11.7994, 13.9757
Aipz | 06200 04330 04187 | 0.2794 02505 0.1885 | 0.1760  0.1741  0.1739 | 94.9 % | (11.6174, 14.1429
Aips | 05110 04339 04202 | 0.2863 0.2502  0.1955 | 0.1710  0.1673  0.1604 | 94.1 % | (11.6524, 14.0932

Step 5: For creating the credible intervals, we first order Ai, Mg, ..., Ay as Ay < Ap) <

< )\(N) and hl,hg,...,h]\/ as h(l) < h(g) < o< h(N). The 100(1 — 7) Sym-

metric credible intervals of A and reversed hazard rate are obtained respectively as
(A2, A —/2)) and (hvq/2), hiva—/2))-

The MSE, average credible intervals (ACI) and coverage probabilities (CP) of the
estimators computed using the simulated data are reported in Tables 1 and 2.

From Tables 1 and 2, we have the following conclusions.

« For a fixed value of n and r the MSE is less for E-Bayesian estimators as compared to
Bayesian and Hierarchical Bayesian estimators.

o The performance of the proposed estimators are better than Bayesian and Hierarchical
Bayesian estimators in terms of MSE.

7. Real data set

To study the performance of the estimators derived in this article, for real life sit-
uations, we considered the real data set reported by Ma and Gui (2020)) representing 23
deep-groove ball bearing failure times. We fit inverse Rayleigh distribution to the data and
the corresponding p-value and test statistic value for the Kolmogorov-Smirnov test are 0.6942
and 0.1415 respectively. Using MLE we estimated A = 0.2244. Using the bootstrapping con-
cept, we computed the MSE, average credible interval (ACI) and coverage probability (CP)
of the estimators and are given in Tables 3 and 4.
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A

Table 2: MSE for Bayesian, E-Bayesian H-Bayesian estimates of h(t) for simu-
lated data

n = 500 n = 1000 n = 1500 CcP ACI
r=50 r=100 r=150|r =100 r=200 7r=2300|r=200 r=300 r=400
hgr1 | 0.0152 0.0038  0.0011 | 0.0059  0.0018 0.0006 | 0.0022  0.0008 0.0006 | 92.1 % | ( )
hpe | 0.0157 0.0039 0.0012 | 0.0060 0.0018 0.0006 | 0.0023  0.0008 0.0006 |97.5% | ( )
hps | 0.0150 0.0037 0.0010 | 0.0058 0.0018 0.0006 | 0.0022 0.0008 0.0005 | 96.8 % | ( )
hgsi | 0.0125  0.0031  0.0005 | 0.0053 0.0016  0.0004 | 0.0019 0.0007  0.0004 | 99.0 % ( )
hgss | 0.0130  0.0032  0.0006 | 0.0054 0.0016  0.0004 | 0.0020  0.0007  0.0004 | 91.4 % ( )
hgss | 0.0135  0.0033  0.0007 | 0.0055 0.0017  0.0005 | 0.0021  0.0007  0.0005 | 94.1 % ( )
hgg | 0.0127 0.0031  0.0005 | 0.0053 0.0016 0.0004 | 0.0020 0.0007  0.0004 |95.8 % | ( )
hgps | 00132 0.0032  0.0006 | 0.0054 0.0016 0.0005 | 0.0020 0.0007  0.0005 | 97.2 % ( )
hgps | 0.0139  0.0034  0.0008 | 0.0056 0.0017  0.0005 | 0.0021  0.0007  0.0005 | 92.4 % (0.6707, 2.0890)
hgpr | 00125 0.0031  0.0005 | 0.0053 0.0016  0.0004 | 0.0019  0.0007  0.0004 | 98.4 % (0.6683, 2.1850)
i:LEpg 0.0128 0.0032  0.0006 | 0.0054 0.0016  0.0004 | 0.0020 0.0007  0.0004 | 97.4 % | (0.6680, 2.1550)

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

0.6645, 2.0725
0.6519, 2.1202
0.6577, 2.1129
0.6636, 2.2009
0.6783, 2.0970
0.6701, 2.1060
0.6737, 2.1367
0.6657, 2.1447

hgps | 0.0134  0.0033  0.0007 | 0.0055 0.0017 0.0005 | 0.0020 0.0007 0.0005 | 99.3 % | (0.6532, 2.1964
hpsy | 0.0110  0.0035  0.0020 | 0.0072  0.0021  0.0009 | 0.0032  0.0011  0.0007 | 95.3 % | (1.6906, 2.0910
hyss | 0.0113  0.0040  0.0024 | 0.0076  0.0023  0.0008 | 0.0034 0.0012  0.0008 | 95.9 % | (1.6799, 2.0910
hyss | 0.0106  0.0043  0.0028 | 0.0080  0.0024  0.0007 | 0.0037  0.0013  0.0009 | 94.1 % | (1.7096, 2.0915
By | 0.0104  0.0035  0.0016 | 0.0069 0.0020  0.0008 | 0.0031  0.0010  0.0008 | 95.6 % | (1.7032, 2.1112
hyps | 0.0104  0.0037  0.0013 | 0.0066 0.0019  0.0007 | 0.0028  0.0009 0.0007 | 98.0 % | (1.6711, 2.1423
hyps | 0.0104  0.0042  0.0015 | 0.0068 0.0020  0.0009 | 0.0030  0.0010  0.0008 | 92.7 % | (1.7246, 2.0876
hypr | 00107 0.0041  0.0023 | 0.0075  0.0023  0.0008 | 0.0034 0.0012 0.0008 | 99.7 % | (1.5973, 2.1971
hupe | 00107 0.0037  0.0009 | 0.0064 0.0019  0.0006 | 0.0026 0.0010  0.0007 | 97.7 % | (1.6665, 2.1258
hups | 0.0108  0.0037  0.0013 | 0.0067 0.0019  0.0008 | 0.0029  0.0009  0.0008 |98.4 % | (1.6518, 2.1383

It can also be noted that the estimators are satisfying the inequalities mentioned in
Theorems [1] and [2l From the Tables, we can conclude that E-Bayesian estimators perform
better than Bayesian and H-Bayesian estimators in terms of MSE.

8. Conclusion

The Bayesian, E-Bayesian and H-Bayesian techniques are used for estimating the
parameter and reversed hazard rate of the inverse Rayleigh distribution based on left censor-
ing. A real data and the Monte Carlo simulation are used for computing the estimates and
the comparisons of these estimation methods are also carried out.Using E-Bayesian method
we can see that the complex integrals involved in the calculation of hierarchical estimation
methods are reduced to some extent. One of the important finding of the study is the close
dependency of the proposed method with existing method and are established in Theorems
and [} Another finding of the present study is the superiority of the proposed estimators
with existing estimators. We also study the effect of various loss functions theoretically and
are presented in Theorems[I]and [2} Important concluding remarks from our study are listed
below:

1. Results showed that the MSE of the estimates decreases as the sample size increases.

2. The MSE of the E-Bayesian estimates of A is less than the MSE of the Bayesian and
H-Bayesian estimates, so E-Bayesian estimators perform better than the other two
existing estimation methods.

3. The MSE of Bayesian, H-Bayesian and E-Bayesian estimates decrease when r increases.
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Table 3: Comparison of MSE of the proposed estimators of A\ with Bayesian
estimates for real data

n=23

r=2 r=4 r=8 r=12 CP ACI
Ag1 | 0.0106 0.0083 0.0054 0.0052 | 97.4 % | (0.0839, 0.4024)
Ago | 0.0115 0.0082 0.0048 0.0047 | 98.8 % (0.0606, 0.4036)
Ags | 0.0103 0.0084 0.0059 0.0056 | 95.9 % (0.0992, 0.3980)
Aps1 | 0.0106 0.0085 0.0057 0.0054 | 93.0 % (0.1134, 0.3768)
Aps2 | 0.0106 0.0084 0.0056 0.0054 | 96.0 % (0.0959, 0.3933)
Apss | 0.0106 0.0084 0.0055 0.0053 | 98.8 % (0.0630, 0.4252)
Aep1 | 0.0115  0.0084 0.0049 0.0049 | 95.1 % (0.0974, 0.3705)
Aepo | 0.0115  0.0083 0.0049 0.0048 | 97.2 % (0.0816, 0.3853)
Mpps | 0.0115  0.0083 0.0049 0.0048 | 96.9 % (0.0845, 0.3815)
Aep1 | 0.0104  0.0087 0.0062 0.0058 | 97.8 % (0.0804, 0.4208)
Agpo | 0.0103  0.0086 0.0061 0.0057 | 98.9 % (0.0619, 0.4383)
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

Agps | 0.0103 0.0086 0.0060 0.0057 | 97.5 % | (0.0844, 0.4148
At | 0.0106  0.0082 0.0053 0.0052 | 91.8 % | (0.1188, 0.3663
Amsz | 0.0106  0.0081 0.0053 0.0051 | 92.4 % | (0.1163, 0.3677
Arss | 0.0106  0.0081 0.0053 0.0051 | 98.3 % | (0.0729, 0.4110
Agpr | 0.0115  0.0085 0.0050 0.0050 | 91.6 % | (0.1140, 0.3558
Ags | 0.0115  0.0083 0.0049 0.0048 | 99.8 % | (0.0202, 0.4460
Aps | 0.0115  0.0083 0.0048 0.0047 | 93.7% | (0.1051, 0.3602
Agpr | 0.0102 0.0083 0.0057 0.0054 | 91.3 % | (0.1234, 0.3714
Aipo | 0.0104  0.0087 0.0061 0.0058 | 98.7 % | (0.0661, 0.4347
Arps | 0.0103  0.0085 0.0060 0.0056 | 96.7 % | (0.0925, 0.4059

4. The MSE of E-Bayesian estimates under ELF is less than the MSE of E-Bayesian
estimates under SELF and PLF, so E-Bayesian estimators under ELF perform better
than the E-Bayesian estimator SELF and PLF.

5. We can conclude that the E-Bayesian estimators perform better than Bayesian and
H-Bayesian estimators in terms of MSE.
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Table 4: Comparison of MSE of the proposed estimators of h(t) with Bayesian
estimates for real data

n =23

r=2 r=4 r=8 r=12 CP ACI
hpy | 60.6478 46.0936 42.6285 41.8922 | 91.9 % | (-10.9944, 19.0189)
hps | 55.1956 41.6762 37.7979 36.1012 | 98.4 % (-15.9456, 23.6054)
hps | 63.4686 48.3812 45.1682 44.9786 | 95.9 % (-13.8673, 22.0723)
(- )
(- )

hpsi | 61.5741 46.7373 43.315  42.7344 | 99.0 % | (-18.2402, 26.3238
hpss | 61.3408 46.5753 43.1418 42.5214 | 98.8 % | (-17.6651, 25.7339
hpss | 61.1081 46.4137 42.9692 42.3093 | 99.3 % | (-19.234, 27.2879)
hep | 56.0256 422482 38.3836 36.7883 | 91.1 % | (-10.185, 17.9011)
hpps | 55.8165 421042 38.2359 36.6144 | 97.1 % | (-14.1523, 21.8543)
hpps | 55.6081 41.9606 38.0886 36.4414 | 95.0 % | (-12.2928, 19.9807)
hpp | 644444  49.062 45.9071 45.9024 | 92.8 % | (-11.7803, 20.0455)
hpps | 64.1986 48.8906 45.7207 45.6688 | 99.4 % | (-20.1433, 28.3934)
hpps | 63.9536 48.7197 45.5350 45.4362 | 90.9 % | (-10.7881, 19.0231)

(_

(_

(_

(_

hysi | 60.3752 45.9039 42.4273 41.6472 | 99.9 % | (-24.2466, 32.2537)
huse | 60.105 457157 42228  41.4053 | 96.1 % 13.6962, 21.6858)
hiss | 59.8369 45.5289 42.0308 41.1667 | 97.0 % 14.5804, 22.5527)
hupy | 56.448 42,539 38.6829 37.1418 | 98.4 % 16.0768, 23.8213)
hups | 55.6528 41.9915 38.1201 36.478 | 97.7 % (-14.8781, 22.569)
hips | 55.4419 41.8461 37.9714 36.3037 | 99.7 % (-20.5672, 28.2438
hupy | 62.8967 47.9816 44.7371 44.4445 | 92.7 % (-11.6261, 19.7953

(_

(_

hypo | 64.3447 48.9925 45.8313 45.8067 | 98.0 % 16.4345, 24.6936
hips | 63.7582 48.5834 45.3870 45.251 | 95.6 % 13.6303, 21.8532

— N |
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