Statistics and Applications \{ISSN 2454-7395 (online) \}
Volume 21, No. 1, 2023 (New Series), pp 23 - 26

Regular Group Divisible Designs Using Symmetric Groups

${ }^{1}$ Shyam Saurabh and ${ }^{\mathbf{2}}$ Kishore Sinha
${ }^{I}$ Ranchi University, Ranchi, India
${ }^{2}$ Formerly at Birsa Agricultural University, Ranchi, India and \#201 Maitry Residency, Kalkere Main Road, Bangalore - 560043

Received: 05 November 2021; Revised: 29 November 2021; Accepted: 20 January 2022

Abstract

Two regular group divisible designs with parameters: $v=30, b=60, r=8, k=4, \lambda_{1}=0$, $\lambda_{2}=1, m=5, n=6$ and $v=36, b=90, r=10, k=4, \lambda_{1}=0, \lambda_{2}=1, m=n=6$ in the range of $r, k \leq$ 10 are obtained from generalized Bhaskar Rao designs over a symmetric group of order 6 .

Key words: Regular group divisible designs; Generalized Bhaskar Rao designs; Symmetric groups.

MSC: 62K10; 05B05

1. Introduction

Saurabh and Sinha (2021) obtained a new regular group divisible ($R G D$) design with parameters: $v=b=39, r=k=9, \lambda_{1}=0, \lambda_{2}=2, m=13, n=3$ by replacing the group entries of $B G W\left(13,9,6 ; D_{3}\right)$ by suitable permutation matrices of order 3 . Here we have used the method of Gibbons and Mathon (1987) for the construction of group divisible designs. As a particular case we obtain two RGD designs with parameters: $v=30, b=60, r=8, k=4, \lambda_{1}=0, \lambda_{2}=1, m=$ $5, n=6$ and $v=36, b=90, r=10, k=4, \lambda_{1}=0, \lambda_{2}=1, m=n=6$ in the range of $r, k \leq 10$. These designs may be considered new as these are not found in the tables of Clatworthy (1973) and Sinha (1991) but included in Saurabh and Sinha (2021).

A generalized Bhaskar Rao design $\operatorname{GBRD}(v, b, r, k, \lambda ; G)$ over a group G is a $v \times b$ array with entries from $G \cup\{0\}$ such that:

1. each row has exactly r group element entries;
2. each column has exactly k group element entries;
3. for each pair of distinct rows $\left(x_{1}, x_{2}, \ldots, x_{b}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{b}\right)$, the multi-set $\left\{x_{i} y_{i}^{-1}: i=1,2, \ldots, b ; x_{i}, y_{i} \neq 0\right\}$ contains each group element exactly $\lambda /|G|$ times.

A generalized Bhaskar Rao design $\operatorname{GBRD}(v, b, r, k, \lambda ; G)$ with $v=b$ and $r=k$ is known as a balanced generalized Weighing matrix $B G W(v, k, \lambda ; G)$.

A $R G D$ design is an arrangement of $v=m n$ elements in b blocks such that:
(i) each block contains $k(<v)$ distinct elements;
(ii) each element occurs r times;
(iii) the elements can be divided into m groups each of size n, any two distinct elements occurring together in λ_{1} blocks if they belong to the same group, and in λ_{2} blocks if they belong to the different groups;
(iv) $r-\lambda_{1}>0$ and $r k-v \lambda_{2}>0$.

Let \mathbf{N} be the incidence matrix of a RGD design then the structure of $\mathbf{N N}^{T}$ is given as: $\mathbf{N N}^{T}=\left(r-\lambda_{1}\right)\left(\mathbf{I}_{m} \otimes \mathbf{I}_{n}\right)+\left(\lambda_{1}-\lambda_{2}\right)\left(\mathbf{I}_{m} \otimes \mathbf{J}_{n}\right)+\lambda_{2}\left(\mathbf{J}_{m} \otimes \mathbf{J}_{n}\right)$ where $\mathbf{A} \otimes \mathbf{B}$ denotes the Kronecker product of two matrices A and B. For details on RGD designs, see Clatworthy (1973) and Saurabh et al. (2021).

Notations: \mathbf{I}_{n} is the identity matrix of order n, \mathbf{J}_{v} is the $v \times v$ matrix all whose entries are 1 and \mathbf{A}^{T} is the transpose of matrix A. S_{n} and D_{n} denote symmetric and dihedral groups with orders n ! and $2 n$ respectively. For $n=3, S_{n}$ is isomorphic to the dihedral group D_{n}.

2. Two new RGD designs in the range of $r, k \leq 10$

Gibbons and Mathon (1987) gave the following method for the construction of GD designs from $\operatorname{GBRD}(v, b, r, k, \lambda ; G)$:

Replacing the elements of a group G of order g by the corresponding $g \times g$ permutation matrices and 0 entry by $g \times g$ null matrix in $\operatorname{GBRD}(v, b, r, k, \lambda ; G)$, we obtain a GD design with parameters: $v^{*}=v g, b^{*}=b g, r^{*}=r, k^{*}=k, \lambda_{1}=0, \lambda_{2}=\lambda / g, m=v, n=g$.

In the above method, Palmer and Seberry (1988) used permutation group of order 6 and dihedral groups of order 8 and 12 while Sarvate and Seberry (1998) used elementary abelian groups for the construction of GD designs.

Following Palmer and Seberry (1988): The existence of a GBRD ($v, b, r, k, \lambda ; S_{3}$) implies the existence of a GD design with parameters:

$$
\begin{equation*}
v^{*}=6 v, b^{*}=6 b, r^{*}=r, k^{*}=k, \lambda_{1}=0, \lambda_{2}=\lambda / 6, m=v, n=6 . \tag{2}
\end{equation*}
$$

The above construction procedure may be generalized for any symmetric / dihedral groups but no series of GBRD $\left(v, b, r, k, \lambda ; S_{n} / D_{n}\right)$ is available for $n>3$. Using $\operatorname{GBRD}(5,10,8$, 4,$6 ; S_{3}$) and GBRD ($6,15,10,4,6 ; S_{3}$) from Abel et al. (2004) in (2), we obtain the following RGD designs:

Design 1: Consider a symmetric group $S_{3}=\left\langle r, s: r^{3}=s^{2}=e, s r=r^{2} s\right\rangle=\left\{e, r, r^{2}, s, s r, s r^{2}\right\}$.
The following is a $\operatorname{GBRD}\left(5,10,8,4,6 ; S_{3}\right)$:

$$
\mathbf{A}=\left[\begin{array}{cccccccccc}
e & s & r & 0 & e & e & r^{2} & e & 0 & r^{2} s \\
e & e & s & r & 0 & r^{2} s & e & r^{2} & e & 0 \\
0 & e & e & s & r & 0 & r^{2} s & e & r^{2} & e \\
r & 0 & e & e & s & e & 0 & r^{2} s & e & r^{2} \\
s & r & 0 & e & e & r^{2} & e & 0 & r^{2} s & e
\end{array}\right]
$$

Replacing 0 by a null matrix of order 6 and the group elements $e, r, r^{2}, s, s r=r^{2} s, s r^{2}=r s$ by
the 6×6 permutation matrices $\mathbf{I}_{6},\left(\begin{array}{cccccc}0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right),\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0\end{array}\right)$,
$\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right),\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right),\left(\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$ respectively in A,
we obtain a $(0,1)-$ matrix \mathbf{N} of order 30×60. Then $\mathbf{N N}^{T}=\operatorname{circ}\left(8 I_{6}, J_{6}, J_{6}, J_{6}, J_{6}\right)=8 \mathbf{I}_{30}-$ $\mathbf{I}_{5} \otimes \mathbf{J}_{6}+\mathbf{J}_{5} \otimes \mathbf{J}_{6}$. Also each column sum of \mathbf{N} is 4 . Hence \mathbf{N} represents a RGD design with parameters: $v=30, b=60, r=8, k=4, \lambda_{1}=0, \lambda_{2}=1, m=5, n=6$.

Design 2: Further consider the following GBRD $\left(6,15,10,4,6 ; S_{3}\right)$:

$$
\mathbf{B}=\left[\begin{array}{ccccccccccccccc}
e & e & e & e & e & e & e & e & e & e & 0 & 0 & 0 & 0 & 0 \\
r s & s & e & r & r^{2} & r^{2} s & 0 & 0 & o & 0 & e & e & e & e & 0 \\
r & s & r s & 0 & 0 & 0 & r^{2} & e & r^{2} s & 0 & s & r^{2} & r & 0 & e \\
e & 0 & 0 & r & r s & 0 & r^{2} & s & 0 & r^{2} s & r^{2} & r^{2} s & 0 & r & r \\
0 & e & 0 & r s & 0 & r^{2} & r^{2} s & 0 & s & r & r^{2} & 0 & r & e & r^{2} \\
0 & 0 & r & 0 & s & r^{2} & 0 & e & r s & r^{2} s & 0 & e & s & r^{2} & s
\end{array}\right] .
$$

Replacing the group elements $e, r, r^{2}, s, s r=r^{2} s, s r^{2}=r s$ by 6×6 matrices given as above and 0 by a null matrix of order 6 in \mathbf{B}, we obtain a $(0,1)-$ matrix \mathbf{N} of order 36×90. Then $\mathbf{N} \mathbf{N}^{T}=\operatorname{circ}\left(10 \mathbf{I}_{6}, \mathbf{J}_{6}, \mathbf{J}_{6}, \mathbf{J}_{6}, \mathbf{J}_{6}, \mathbf{J}_{6}\right)=10 \mathbf{I}_{36}-\mathbf{I}_{6} \otimes \mathbf{J}_{6}+\mathbf{J}_{6} \otimes \mathbf{J}_{6}$. Also each column sum of \mathbf{N} is 4. Hence \mathbf{N} represents a RGD design with parameters: $v=36, b=90, r=10, k=4, \lambda_{1}=0, \lambda_{2}=1$, $m=n=6$.

Acknowledgement

The authors are thankful to the referee for valuable suggestions.

References

Abel, R. J. R., Combe, D. and Palmer, W. D. (2004). Generalized Bhaskar Rao designs and dihedral groups. Journal of Combinatorial Theory, Series A 106, 145-157.
Clatworthy, W. H. (1973). Tables of two-associate-class partially balanced designs. National Bureau of Standards (U.S.), Applied Mathematics, Series 63.
Gibbons, P. B. and Mathon, R. (1987). Construction methods for Bhaskar Rao and related designs. Journal of the Australian Mathematical Society (Series A), 42, 5-30.
Palmer, W. D. and Seberry, J. (1988). Bhaskar Rao designs over small groups. Ars Combinatoria, 26(A), 125-148.
Sarvate, D. G. and Seberry, J. (1998). Group divisible designs, GBRSDS and Generalized Weighing matrices. Utilitas Mathematica, 54, 157-174.
Saurabh, S., Sinha, K. and Singh, M. K. (2021). Unifying constructions of group divisible designs. Statistics and Applications, 19, 125-140.
Saurabh, S. and Sinha, K. (2021). A new regular group divisible design. Examples and Counter Examples, doi.org/10.1016/j.exco.2021.100029.
Saurabh, S. and Sinha, K. (2021). A list of new partially balanced designs. Under Preparation.
Sinha, K. (1991). A list of new group divisible designs. Journal of Research of the National Institute of Standards and Technology, 96, 1-3.

