Statistics and Applications {ISSN 2454 –7395 (online)} Volume 21, No. 1, 2023 (New Series), pp 23 – 26

Regular Group Divisible Designs Using Symmetric Groups

¹Shyam Saurabh and ²Kishore Sinha

¹Ranchi University, Ranchi, India ²Formerly at Birsa Agricultural University, Ranchi, India and #201 Maitry Residency, Kalkere Main Road, Bangalore – 560043

Received: 05 November 2021; Revised: 29 November 2021; Accepted: 20 January 2022

Abstract

Two regular group divisible designs with parameters: v = 30, b = 60, r = 8, k = 4, $\lambda_1 = 0$, $\lambda_2 = 1$, m = 5, n = 6 and v = 36, b = 90, r = 10, k = 4, $\lambda_1 = 0$, $\lambda_2 = 1$, m = n = 6 in the range of r, $k \le 10$ are obtained from generalized Bhaskar Rao designs over a symmetric group of order 6.

Key words: Regular group divisible designs; Generalized Bhaskar Rao designs; Symmetric groups.

MSC: 62K10; 05B05

1. Introduction

Saurabh and Sinha (2021) obtained a new regular group divisible (*RGD*) design with parameters: v = b = 39, r = k = 9, $\lambda_1 = 0$, $\lambda_2 = 2$, m = 13, n = 3 by replacing the group entries of *BGW* (13, 9, 6; *D*₃) by suitable permutation matrices of order 3. Here we have used the method of Gibbons and Mathon (1987) for the construction of group divisible designs. As a particular case we obtain two RGD designs with parameters: v = 30, b = 60, r = 8, k = 4, $\lambda_1 = 0$, $\lambda_2 = 1$, m = 5, n = 6 and v = 36, b = 90, r = 10, k = 4, $\lambda_1 = 0$, $\lambda_2 = 1$, m = n = 6 in the range of r, $k \le 10$. These designs may be considered new as these are not found in the tables of Clatworthy (1973) and Sinha (1991) but included in Saurabh and Sinha (2021).

A generalized Bhaskar Rao design *GBRD* (v, b, r, k, λ ; G) over a group G is a $v \times b$ array with entries from $G \cup \{0\}$ such that:

- 1. each row has exactly *r* group element entries;
- 2. each column has exactly *k* group element entries;
- 3. for each pair of distinct rows $(x_1, x_2, ..., x_b)$ and $(y_1, y_2, ..., y_b)$, the multi-set $\{x_i y_i^{-1}: i = 1, 2, ..., b; x_i, y_i \neq 0\}$ contains each group element exactly $\lambda/|G|$ times.

A generalized Bhaskar Rao design *GBRD* (v, b, r, k, λ ; G) with v = b and r = k is known as a *balanced generalized Weighing matrix BGW* (v, k, λ ; G).

A *RGD design* is an arrangement of v = mn elements in *b* blocks such that:

Corresponding Author: Kishore Sinha Email: kishore.sinha@gmail.com

- (i) each block contains k (< v) distinct elements;
- (ii) each element occurs *r* times;
- (iii) the elements can be divided into *m* groups each of size *n*, any two distinct elements occurring together in λ_1 blocks if they belong to the same group, and in λ_2 blocks if they belong to the different groups;
- (iv) $r \lambda_1 > 0$ and $rk v\lambda_2 > 0$.

Let **N** be the incidence matrix of a RGD design then the structure of \mathbf{NN}^T is given as: $\mathbf{NN}^T = (r - \lambda_1)(\mathbf{I}_m \otimes \mathbf{I}_n) + (\lambda_1 - \lambda_2)(\mathbf{I}_m \otimes \mathbf{J}_n) + \lambda_2(\mathbf{J}_m \otimes \mathbf{J}_n)$ where $\mathbf{A} \otimes \mathbf{B}$ denotes the Kronecker product of two matrices **A** and **B**. For details on RGD designs, see Clatworthy (1973) and Saurabh *et al.* (2021).

Notations: \mathbf{I}_n is the identity matrix of order n, \mathbf{J}_v is the $v \times v$ matrix all whose entries are 1 and \mathbf{A}^T is the transpose of matrix \mathbf{A} . S_n and D_n denote symmetric and dihedral groups with orders n! and 2n respectively. For n = 3, S_n is isomorphic to the dihedral group D_n .

2. Two new RGD designs in the range of $r, k \le 10$

Gibbons and Mathon (1987) gave the following method for the construction of GD designs from GBRD (v, b, r, k, λ ; G):

Replacing the elements of a group *G* of order *g* by the corresponding *g* x *g* permutation matrices and 0 entry by *g* x *g* null matrix in GBRD (*v*, *b*, *r*, *k*, λ ; *G*), we obtain a GD design with parameters: $v^* = vg$, $b^* = bg$, $r^* = r$, $k^* = k$, $\lambda_1 = 0$, $\lambda_2 = \lambda/g$, m = v, n = g. (1)

In the above method, Palmer and Seberry (1988) used permutation group of order 6 and dihedral groups of order 8 and 12 while Sarvate and Seberry (1998) used elementary abelian groups for the construction of GD designs.

Following Palmer and Seberry (1988): The existence of a GBRD (v, b, r, k, λ ; S_3) implies the existence of a GD design with parameters:

$$v^* = 6v, \ b^* = 6b, r^* = r, \ k^* = k, \lambda_1 = 0, \lambda_2 = \lambda/6, m = v, n = 6.$$
 (2)

The above construction procedure may be generalized for any symmetric / dihedral groups but no series of GBRD (v, b, r, k, λ ; S_n/D_n) is available for n > 3. Using GBRD (5, 10, 8, 4, 6; S_3) and GBRD (6, 15, 10, 4, 6; S_3) from Abel *et al.* (2004) in (2), we obtain the following RGD designs:

Design 1: Consider a symmetric group $S_3 = \langle r, s: r^3 = s^2 = e, sr = r^2s \rangle = \{e, r, r^2, s, sr, sr^2\}.$ The following is a CPBD (5, 10, 8, 4, 6; S.):

The following is a GBRD (5, 10, 8, 4, 6; *S*₃):

$$\mathbf{A} = \begin{bmatrix} e & s & r & 0 & e & e & r^2 & e & 0 & r^2 s \\ e & e & s & r & 0 & r^2 s & e & r^2 & e & 0 \\ 0 & e & e & s & r & 0 & r^2 s & e & r^2 & e \\ r & 0 & e & e & s & e & 0 & r^2 s & e & r^2 \\ s & r & 0 & e & e & r^2 & e & 0 & r^2 s & e \end{bmatrix}.$$

Replacing 0 by a null matrix of order 6 and the group elements $e, r, r^2, s, sr = r^2 s, sr^2 = rs$ by

we obtain a (0, 1) – matrix **N** of order 30 × 60. Then $\mathbf{NN}^T = \operatorname{circ}(8I_6, J_6, J_6, J_6, J_6) = 8I_{30} - I_5 \otimes J_6 + J_5 \otimes J_6$. Also each column sum of **N** is 4. Hence **N** represents a RGD design with parameters: v = 30, b = 60, r = 8, k = 4, $\lambda_1 = 0$, $\lambda_2 = 1$, m = 5, n = 6.

Design 2: Further consider the following GBRD $(6, 15, 10, 4, 6; S_3)$:

	Ге	е	е	е	е	е	е	е	е	е	0	0	0	0	ך 0
B =	rs	S	е	r	r^2	r^2s	0	0	0	е 0	е	е	е	е	0
	r	S	rs	0	0	0	r^2	е	r^2s	0	S	r^2	r	0	e
	e	0	0	r	rs	0	r^2	S	0	$0 r^2 s$	r^2	r^2s	0	r	r
	0	е	0	rs	0	r^2	r^2s	0	S	r	r^2	0	r	е	r^2
	L0	0	r	0	S	r^2	0	е	rs	r^2s	0	е	S	r^2	_د ا

Replacing the group elements $e, r, r^2, s, sr = r^2s, sr^2 = rs$ by 6×6 matrices given as above and 0 by a null matrix of order 6 in **B**, we obtain a (0, 1) – matrix **N** of order 36 × 90. Then $\mathbf{NN}^T = \operatorname{circ}(10\mathbf{I}_6, \mathbf{J}_6, \mathbf{J}_6, \mathbf{J}_6, \mathbf{J}_6) = 10\mathbf{I}_{36} - \mathbf{I}_6 \otimes \mathbf{J}_6 + \mathbf{J}_6 \otimes \mathbf{J}_6$. Also each column sum of **N** is 4. Hence **N** represents a RGD design with parameters: $v = 36, b = 90, r = 10, k = 4, \lambda_1 = 0, \lambda_2 = 1, m = n = 6$.

Acknowledgement

The authors are thankful to the referee for valuable suggestions.

References

- Abel, R. J. R., Combe, D. and Palmer, W. D. (2004). Generalized Bhaskar Rao designs and dihedral groups. *Journal of Combinatorial Theory, Series A* **106**, 145–157.
- Clatworthy, W. H. (1973). Tables of two-associate-class partially balanced designs. *National Bureau of Standards (U.S.), Applied Mathematics, Series* **63**.
- Gibbons, P. B. and Mathon, R. (1987). Construction methods for Bhaskar Rao and related designs. *Journal of the Australian Mathematical Society (Series A)*, **42**, 5–30.
- Palmer, W. D. and Seberry, J. (1988). Bhaskar Rao designs over small groups. Ars Combinatoria, 26(A), 125–148.
- Sarvate, D. G. and Seberry, J. (1998). Group divisible designs, GBRSDS and Generalized Weighing matrices. *Utilitas Mathematica*, **54**, 157–174.
- Saurabh, S., Sinha, K. and Singh, M. K. (2021). Unifying constructions of group divisible designs. *Statistics and Applications*, **19**, 125–140.
- Saurabh, S. and Sinha, K. (2021). A new regular group divisible design. *Examples and Counter Examples*, doi.org/10.1016/j.exco.2021.100029.
- Saurabh, S. and Sinha, K. (2021). A list of new partially balanced designs. Under Preparation.
- Sinha, K. (1991). A list of new group divisible designs. *Journal of Research of the National Institute of Standards and Technology*, **96**, 1–3.