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Abstract

Using computer search algorithms, second order designs of composite type over a k-cube
[−1, 1]k are obtained, where k is the number of factors. The advantages of the proposed approach
are that (i) it is possible to obtain designs with higher D-efficiencies than a comparable orthogonal
array composite design (OACD), and (ii) designs with fewer points than those required by an
OACD and having comparable D-efficiencies can be obtained.
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1 Introduction and Preliminaries

Response surface methodology is used for exploring the relationship between one (or more)
response variable(s) and several explanatory or input variables. We consider only a single response
variable. In practice, often a second order model is used to explore such a relationship. With k
quantitative factors x1, x2, . . . , xk, a full second order model is given by

y = β0 +
k∑
i=1

βixi +
k∑
i=1

βiix
2
i +

k−1∑
i=1

k∑
j=i+1

βijxixj + ε, (1)

where β0, βi, βii, and βij are respectively the intercept, linear, quadratic, and interaction terms, and
ε is the random error term. A response surface design is called a second order design if it allows
the estimability of all the parameters in (1).

Several second order designs are available in the literature. Excellent accounts of response
surface methodology, including designs, are available in Box and Draper (2007), Khuri and Cor-
nell (1996), and Myers et al. (2016). A popular choice of second order designs has been the
central composite designs (CCD) introduced by Box and Wilson (1951). A central composite de-
sign has the following sets of points: (i) n1 ‘cube’ points, (±1,±1, . . . ,±1), (ii) 2k axial points,
(±α, 0, . . . , 0), (0,±α, 0. . . . , 0), . . . , (0, 0, . . . , 0. ± α), (iii) n0 center points, (0, 0, . . . , 0). Thus,
a central composite design has 5 levels for each factor if α 6= 1 and 3 levels, if α = 1. We restrict
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attention to α = 1 in this paper. The cube points of a central composite design are taken to be ei-
ther those of a complete 2k factorial with levels −1, 1 or a suitable fraction of a 2k factorial. More
generally, a second order design may be called a composite-type design if it has the following sets
of points: (a) points with two levels, ±1, for each factor, (b) points with three levels, 0,±1, for
each factor and, (c) center points.

Xu et al. (2014) introduced a class of second order designs, called orthogonal array com-
posite designs (OACD), as an alternative to the usual central composite designs. In OACD, the
axial points of a central composite design are replaced by the runs of a 3-symbol orthogonal array.
Like the CCD, OACD can be used for a single experiment or for sequential experimentation. The
advantage of using the runs of a 3-symbol orthogonal array is that these provide information on
the interaction terms in (1), apart from providing information on the linear and quadratic terms,
whereas the axial points in a central composite design do not provide information on the interac-
tion terms. In view of this, an OACD is likely to perform better than a corresponding CCD when
the interaction terms are important.

In a recent paper, Zhou and Xu (2017) further investigated the properties of OACD by pro-
viding results on theD-efficiency of these designs over a k-cube, [−1, 1]k, relative to theD-optimal
(approximate) design measure given by Farrell et al. (1967). The investigations of Zhou and Xu
(2017) demonstrate the superiority of OACD over CCD in terms of D-efficiency.

For completeness and later use, we briefly review the concept of D-efficiency; see, e.g.,
Kiefer (1961) for more details. Let d be a second order design involving N runs. Let Xd =
[1, L,Q, I] denote the model matrix of d, where 1 is a column of ones, and L,Q, I denote the
columns corresponding to the linear, quadratic, and interaction terms, respectively, in (1). The
information matrix corresponding to d is then Md = X ′dXd/N . The D-optimality criterion seeks
to maximize det(Md), where det(·) denotes the determinant of a square matrix. Let ξ∗ denote the
approximate D-optimal design over a cube [−1, 1]k. It was shown by Kiefer (1961) and Farrell
et al. (1967) that the determinant of the information matrix under ξ∗ is given by

det(Mξ∗) = ukvk(k−1)/2(u− v)k−1{u+ (k − 1)v − ku2}, (2)

where

u =
k + 3

4(k + 1)(k + 2)2
{2k2 + 3k + 7 + (k − 1)w}

v =
k + 3

8(k + 2)3(k + 1)
{4k3 + 8k2 + 11k − 5 + (2k2 + k + 3)w}

w = (4k2 + 12k + 17)1/2.

The D-efficiency of d is then given by

D-efficiency =

(
det(Md)

det(Mξ∗)

)1/p

, (3)

where p = (k + 1)(k + 2)/2 is the number of parameters in the model (1). The D-efficiency
expression (3) actually provides a conservative lower bound to the D-efficiency of the design d
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as it is computed relative to a hypothetical optimal design which will be unattainable with a finite
number of observations.

The purpose of this paper is to propose new second order designs over a k-cube with high
D-efficiencies, obtained via random computer search algorithms similar in spirit to previously
proposed exchange algorithms (see St John and Draper, 1975, for an overview). The advantages of
this approach are twofold, viz., (i) it is possible to obtain designs with higher D-efficiencies than a
comparable OACD, and (ii) designs with fewer points than those required by an OACD and having
high D-efficiencies can be obtained. In Section 2, we describe the proposed algorithms. Section 3
presents the results and a discussion.

2 The Algorithms

We propose two approaches to obtain second order designs with high D-efficiencies.
These are based on three simple basic operations, described fully in the Appendix for com-
pleteness: Algorithm 1 (RANDOMDESIGN) generates a random design on a cube; Algorithm 2
(IMPROVEDESIGNGREEDY) updates a given design in a deterministic way by changing a
single element by choosing the change that provides the best improvement in D-efficiency; and
Algorithm 3 (IMPROVEDESIGNRANDOM) improves a given design by changing a single element
randomly, provided that the change improves D-efficiency.

Our first proposed search procedure, which we call Random-Greedy, involves two steps for
given values of the number of runs N and the number of factors k:

procedure RANDOM-GREEDY(N, k)
Obtain an initial design X ← RANDOMDESIGN(N, k)
repeat

X ← IMPROVEDESIGNGREEDY(X)
until no further improvement is possible

end procedure

Alternatively, the Random-Random search procedure updates the design using IMPROVEDESIGN-
RANDOM() rather than IMPROVEDESIGNGREEDY().

procedure RANDOM-RANDOM(N, k)
Obtain an initial design X ← RANDOMDESIGN(N, k)
repeat

X ← IMPROVEDESIGNRANDOM(X)
until no further improvement is possible

end procedure

Of course, one may expect the final design to have higher D-efficiency if the initial starting
point already has high D-efficiency. This suggests the following natural variants of the above
algorithms, where the initial random design is replaced by a suitable OACD following Zhou and
Xu (2017). This works only when an OA of the desired size is available. The OA-Greedy search
procedure runs as follows.
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procedure OA-GREEDY(N, k)
X ← OACD(N, k)
repeat

X ← IMPROVEDESIGNGREEDY(X)
until no further improvement is possible

end procedure

Similarly, the OA-Random search algorithm runs as follows.
procedure OA-RANDOM(N, k)

X ← OACD(N, k)
repeat

X ← IMPROVEDESIGNRANDOM(X)
until no further improvement is possible

end procedure

In practice, it may be useful to terminate after a fixed number of updates even if further
improvements are possible, especially for large values of N or k. Also, for the Random-Greedy
and Random-Random search procedures, the final result depends on the initial random choice, so
it is useful to choose the initial random design as the best obtained from several tries instead of
just one. One can also repeat the entire procedure multiple times and choose the best design thus
obtained. These details, along with properties of the resulting designs, are described in Section 3.

3 Results and Discussion

In this section, we compare the D-efficiencies of the OACD with those obtained via the
random search algorithms proposed in the previous section.

For the results summarized here, we performed four sets of experiments. The first two em-
ploy a given OACD(N, k) design as a starting point, and tries to improve it using either procedure
OA-Random or procedure OA-Greedy. In both cases, improvement is attempted for 30000 itera-
tions, or until no further improvements are possible, whichever is earlier. Additionally, for the first
case employing procedure OA-Random, the whole search procedure is repeated 10 times and the
design with the highest D-efficiency retained.

The last two sets of experiments are based on the Random-Random and Random-Greedy
procedures, which are used to obtain designs with the number of runs N varying from p, the
number of parameters in (1), to the number of runs in the respective OACD. In both cases, the
initial design is chosen to be the one with highest D-efficiency among 5000 random designs,
and improvement over this initial choice is attempted for 20000 iterations, or until no further
improvements are possible. Additionally, the search procedure is repeated 20 times and the design
with the highest D-efficiency retained.

In Table 1 and Figure 1, we present this comparison for k = 4, 5, . . . , 10 factors. In particu-
lar, the D-efficiencies of the OACD designs are compared with four designs obtained by computer
search: OACD+random starts from the respective OACD and employs procedure OA-random.
Similarly, OACD+greedy starts from the OACD and employs procedure OA-greedy. Finally,
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Table 1: Comparison of Percentage D-efficiency of OACD with the new designs of same size
obtained through computer search. The best value for each row is highlighted in bold.

OACD OACD+ OACD+ random+ random+
k N random greedy random greedy
4 25 93.1 96.7 96.5 97.7 97.3
5 34 95.3 95.3 95.3 96.4 96.3
6 50 96.6 97.5 97.3 96.7 97.3
7 82 93.9 97.9 97.7 97.8 97.9
8 91 95.9 97.4 97.3 96.8 96.8
9 155 94.9 98.3 98.2 98.0 98.2

10 155 95.3 97.6 97.5 96.7 97.0
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Figure 1: Comparison of Percentage D-efficiency under OACD with the new designs.

random+random employs procedure Random-Random and random+greedy employs procedure
Random-Greedy to obtain designs without using the respective OACD.

As may be seen from the results, the designs obtained by computer search provide substantial
improvement in almost all cases, although no single method outperforms the others. One interest-
ing observation is that for the methods starting from the respective OACD, random search usually
performs better, presumably because the greedy approach being deterministic gets stuck in a local
optimum. On the other hand, among the other two methods which use multiple random starting
points, the greedy method often gives better results.

Figure 2 shows the D-efficiency of designs obtained by Random-Greedy procedure for k =
4, 5, . . . , 10 factors, with the number of runs N varying from the lowest permitted value to the
number of runs in the respective OACD. It is clear from the figure that a D-efficiency comparable
to OACD can be obtained in a design with substantially fewer runs. The maximum improvement
obtained in our experiments is summarized in Table 2.
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Figure 2: Percentage D-efficiency of designs obtained by Random-Greedy search for various val-
ues of k and N . The D-efficiency of the respective OACD is shown for comparison. Correspond-
ing results for Random-Random search are not shown, but the resulting D-efficiencies are largely
similar.

4 Supplementary material

The following are included as online supplementary material.

The file random greedy summary.csv gives a table of the largest D-efficiencies
obtained using the Random-Greedy procedure for all values of k and N , and the file
random random summary.csv similarly gives a table of the largest D-efficiencies obtained
using the Random-Greedy procedure.

For readers interested in the actual designs, the largest D-efficiency obtained (using all ap-
plicable methods) for all values of k and N are given in file best design summary.csv, and the
corresponding designs are given as individual files in the best designs folder.

Finally, R code to run the algorithms is provided in the file cubic designs.R.
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Appendix: Main algorithms

The random search procedures discussed in this article are based on the following basic
algorithms. The procedure Random(S) used in these algorithms, when called with a finite set S as
argument, selects an element of S randomly with equal probability.



2019] COMPOSITE-TYPE SECOND ORDER DESIGNS 39

Algorithm 1 Generate random design
procedure RANDOMDESIGN(m,n)

X ← new n×m matrix
for i← 1, 2, . . . , n do

for j ← 1, 2, . . . ,m do
Xij ← Random({−1, 0, 1}) . Select one with equal probability

end for
end for
return X

end procedure

Algorithm 2 Improve design by greedy search
procedure IMPROVEDESIGNGREEDY(X)

m← number of rows of X
n← number of columns of X
for i← 1, 2, . . . , n do

for j ← 1, 2, . . . ,m do
for x← −1, 0, 1 do

Eijx ← D-efficiency when Xij is replaced by x
end for

end for
end for
if maxEijx > D-efficiency of X then

return updated X corresponding to maxEijx
else

return X . Unchanged
end if

end procedure

Algorithm 3 Improve design by random search
procedure IMPROVEDESIGNRANDOM(X)

Y ← X
m← number of rows of X
n← number of columns of X
i← Random({1, 2, . . . , n})
j ← Random({1, 2, . . . ,m})
Yij ← Random({−1, 0, 1} \ {Xij}) . Replace Yij randomly
if D-efficiency of Y > D-efficiency of X then

return Y . Updated
else

return X . Unchanged
end if

end procedure
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Table 2: Number of runs in smallest design found by Random-Greedy or Random-Random search
to have D-efficiency at least as high as that of the OACD with same number of factors. For k
factors, Nmin = (k + 1)(k + 2)/2, the number of parameters in (1), NOACD is the number of runs
in the OACD, and Nsearch is the number of runs in the best design found by random search. The
corresponding D-efficiency values are given in parentheses. The percent reduction in number of
runs is relative to the maximum possible reduction.

k Nmin NOACD Nsearch Reduction (%)
4 15 25 (93.1) 19 (93.6) 60.0
5 21 34 (95.3) 28 (95.7) 46.2
6 28 50 (96.6) 42 (96.7) 36.4
7 36 82 (93.9) 54 (93.9) 60.9
8 45 91 (95.9) 82 (96.2) 19.6
9 55 155 (94.9) 97 (94.9) 58.0

10 66 155 (95.3) 125 (95.5) 33.7
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