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Abstract 

Copulas provide models to describe the dependence structure between two or more 

random variables. This study focuses on a special class of copulas namely Archimedean 

copulas which have some nice mathematical properties. The easiness of generating of 

Archimedean copula by a generator function and defining a bivariate Archimedean copula by 

a univariate function are appealing properties which make Archimedean copulas popular to 

work with them. In this study, a new generator function is proposed to generate a new one 

parameter bivariate Archimedean copula. The new copula parameter is estimated and the tail 

dependence properties are presented. In application part of the study, Archimedean copulas 

are considered to model the dependence structure of the studied data sets.  The studied data 

sets refer to   amylase levels in saliva experiment and the climate change parameters. 

Simulations to the studies are performed to generate data from the copula-based methodology 

which is implemented to estimate prediction models. Results are presented. 

Key words: Archimedean copulas; dependency; generator function; climate change; radiative 

forcing; methane; saliva experiment 
 

1. Introduction 
 

 Copula is a multivariate function of distribution functions which are themselves 

random variables.  Since copulas connect the marginal distributions to their joint distribution 

function, they can be considered a dependence model for random variables.  Abe Sklar first 

introduced copula as a term in his article Sklar (1959). For a brief introduction to copulas 

Belgorodski (2010), Frees and Valdez (1998), Genest and Favre (2007), Joe (1997), Matteis 

De(2001), Nelsen (2006), Sklar (1959), Sklar (1973) can be recommended. Applications of 

copula in finance and insurance field can be found in Belgorodski (2010), Frees and Valdez 

(1998), Embrechts et.al. (2002), Cherubini et.al. (2004). Modelling time to event data, 

competing risks problems and related subjects in survival analysis are discussed in Clayton 

(1978), Shih and Louis (1995), Wang and Wells (2000).  Traditionally, measuring and 

summarizing dependencies of random variables have centered on correlation measures. 

However, several shortcomings of the well-known correlation measures such as Pearson 

correlation, Kendall's tau in modeling dependencies are studied and presented in Embrechts 

et.al. (2002). In this manner copulas are considered as alternative measures because of the 

flexibility they possess, Embrechts et.al. (2002). For example, copula functions allow for 
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describing dependence structure of random variables independently of their marginal, and 

also allow for asymmetric dependence unlike linear correlation coefficient. 

 

Throughout the study, we focus on modeling dependencies with Archimedean copulas 

in bivariate context.  The dependence structure between two random variables is completely 

described by known bivariate distributions. Although there are many bivariate distributions in 

literature, researchers need different models which are able to capture different types of 

dependence structures.  Archimedean copulas can be generated by a generator function which 

have some particular properties. More detailed information about Archimedean copulas and 

corresponding generator functions can be found in Frees and Valdez (1998), Genest and 

McKay (1986), Genest and Rivest (1993), Hennesey and Lapan (2005), Hutchinson and Lai 

(1990), Nelsen (2006), Smith (2003). 

 

In this study, bivariate Archimedean copula along with their properties and relationship 

between copula parameter and Kendall's tau are discussed in Section (2). In sub-section (2.1), 

a new generator function is proposed to generate a new one parameter bivariate Archimedean 

copula. The properties of the proposed generator function are presented and a new one 

parameter bivariate Archimedean copula is generated. The method of moments based on 

Kendall's tau is applied to estimate the parameter of the proposed Archimedean copula. In 

sub-section (2.2), the algorithm to simulate data from the Archimedean copula is described. 

The tail behavior of the proposed copula is studied and represented by the scatterplot in sub-

section (2.3). The method for fitting copula to the data and comparing copula fits are given in 

sub-section (2.4). In section (3), copula-based methodology is considered to estimate linear 

prediction models for two data sets. Three well-known Archimedean copula Clayton, Clayton 

(1978), Gumbel, Gumbel (1960), Frank, Frank (1979) and the proposed Archimedean copula 

are employed and the prediction models are estimated by simulating data from the copulas. 

The minimum distance measure is used to specify an appropriate Archimedean copula which 

gives best possible fit to the data.  

 

2. Archimedean Copulas 
 

The bivariate cumulative distribution function H of any pair ( , )X Y  of random 

variables may be written in the form [22], [23]. 

 

( , ) ( , )H x y C u v ,  , (0,1)u v      (1) 

 

where u and v denote the marginal distributions ( )F x and ( )G y of X and Y , respectively. 

Here, C is the copula function with    
2

: 0,1 0,1C   So the equation in (1) can be rewritten 

 

( , ) ( ( ), ( )), ( ), ( ) (0,1)H x y C F x G y F x G y  .   (2) 

 

It should be noted that, if the marginals are continuous, there is a unique copula 

representation, Sklar (1973). C copula function has the following properties: 

1. C  is symmetric, ( , ) ( , ), ,    (0,  1).C u v C v u u v    

2. C  is associative ( ( , ), ) ( , ( , )) ,  ,    (0,  1)C C u v w C u C v w u v w    

3. If a is a constant, a  is also a generator of C  

4. ( ,1)C u u  and  (1, ) , ,    (0,  1).C v v u v    
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Archimedean copulas can be generated by a function that is called generator function. 

Generator function is defined as follows: 

 

Definition 1: Let   be a class of functions    : 0,1 0,   is satisfying that 

(i) (1) 0   

(ii) (0)    

(iii) '( ) 0t  , 0 1t   

(iv) ''( ) 0t  , 0 1t  . 

 

Thus,   is a continuous, strictly decreasing and convex function and always has an 

inverse, 1  . By using a defined generator function, a bivariate Archimedean copula can be 

constructed in the way which is given below: 

 

 1( , ) ( ( )) ( ( ))C x y F x G y    .     (3) 

 

If (0)    the generator function is called non-strict and is also capable of generating 

an Archimedean copula.  

 

The pseudo-inverse of non-strict generator function exists and it is defined by 
1 1

[ 1]

1

( ), 0 ( )
( )

0, (0)

t t t
t

t

 




 





  
 

  
    (4) 

Note that, an Archimedean copula that is generated by a non-strict generator function 

takes the form 

( ,  )  max( ( ,  ),  0).C u v C u v      (5) 

For Archimedean copulas, Kendal's tau can be written in copula form as follows 

 
I

= ( ,  ) ( ,  ) 1 4 ( ,  ) 1C u v dC u v E C U V    .       (6) 

This relationship is useful to estimate copula parameter. The method of moments based 

on Kendall's tau can be used to estimate copula parameter. The properties of this method and 

the estimator are studied and presented in Genest and MacKay (1986), Genest and Rivest 

(1993), Kojadinovic and Yan (2010). 

 

One of the appealing properties of Archimedean copulas is that a bivariate 

Archimedean copula can be uniquely determined by a univariate function. This univariate 

function, ( )K t , is called Kendall distribution function and defined as: 

( )
Pr( ( , ) ) ( ) , 0 1

'( )

t
C U V t K t t t

t




                    (7) 

Here, ( )K t is the distribution function of an Archimedean copula and the expression in 

(6) can be re-expressed as follows: 
1

0

( )
4 1

'( )

t
dt

t





          (8) 

In the following sub-section 2.1, a new generator function is proposed to generate a 

new bivariate Archimedean copula and the properties of the new Archimedean copula are 

studied. 
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2.1. Bivariate Archimedean copula 
 

Considering that different generator functions generate different Archimedean copulas 

and recalling the Definition 1, new generator function can be defined. 

 

The proposed new generator function,    : 0,1 0,   is defined 

(1 )( ) 1, 0, 0 1tt e t            (9) 

 

The properties in Definition 1 are checked for the proposed function as follows: 

(i) 0(1) 0 (1) ( 1) 0e       

(ii) (1 )

0
(0) lim( 1) ( 1)t

t
e e 






        

(iii) ( 1)'( ) 0, 0 1tt e t         

(iv) 2 ( 1)''( ) 0, 0 1tt e t        

 

It can be seen that, because of (0)   , the proposed function in (9) is a non-strict 

generator function. It can be used to generate an Archimedean copula. Its pseudo-inverse, 
     1

: 0, 0,1


  is defined as follows 

[ 1]

1
1 ln(1 ), 0 (0)

( )

0, (0)

t t
t

t


 






   

 
   

       (10) 

 

Definition 2:  Let  be a generator function that is defined in (6). Then 

     : 0,1 0,1 0,1C   is a bivariate Archimedean copula that is generated by  and has the 

form 

 

(1 ) (1 )1
1 ln( 1), ( ) ( ) (0)

( , )

0, .

u ve e u v
C u v

ow

    


 
    

 


   (11) 

 

The copula presented in (11) is indexed by a parameter  that is called copula 

parameter.   Recalling (7) and (8), the distribution function and the parameter estimation of 

the new bivariate Archimedean copula are given, respectively. 
(1 )

( 1)

1
( )

t

t

e
K t t

e







 


 


                                                     (12) 

1 (1 )

( 1)

0

1
4 1

t

t

e
dt

e










 


 


                                           (13) 

By solving the integral (13), 

2

1
4 1

e  




  
  

 
                                      (14) 

is obtained. Figure 1 illustrate the relationship between the parameter of the proposed copula 

and Kendall's tau. 
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Figure 1: New Copula Parameter and Kendall’s   

 

The corresponding generator and distribution functions of the studied Archimedean 

copulas in this study are presented in Table 1.  Figure 2 shows the graphs of the distribution 

functions of the studied Archimedean copulas. The bivariate Archimedean copulas along with 

the relationship between their parameters and Kendall’s tau are presented in Table 2. The 

plots of the studied copulas are illustrated in Figure 3. 
 

Table 1: Distribution Functions of Archimedean Copulas 

Family ( )t  ( )t  ( )
( )

'( )

t
K t t

t




   

Gumbel ( ln )t   1( ln )
t

t
    

 lnt t
t


  

Clayton 
 1

1t 



   1t    
 1t t

t





 
  

Frank 1
ln( )

1

te

e













 

1 te 




  
1 1

ln( ) 1
1

t
te

t e
e












 


 

NewCop. (1 ) 1te    
( 1)te     (1 )

( 1)

1t

t

e
t

e







 





 

 

 
Figure 2: Distribution Functions of Archimedean Copulas 
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Table 2: Bivariate Archimedean Copulas and the Relationship with Kendall’s   

Family Bivariate Copula Dependence 

Parameter 

Kendall’s   

Gumbel 1/(( ln ) ( ln ) )u ve
     

 1   ( 1)   

Clayton 1/(( ) ( ) 1)u v       1    2    

Frank     
 

1 1 11
ln

1

u v
e e e

e

  




  



   




   
  

    

 
    1

4
1 ( )D 


  

NewCop (1 ) (1 )1
1 ln( 1)u ve e 



     
0   

2

1
4 1

e  



  
 

 
 

 

Here, 
0

( ) 1 , 0n t

n n

n
D t e dt n






    is a Debye function. 

 
Figure 3: Plots of Archimedean Copulas 

 

The sub-section 2.2 provides a method to simulate data from Archimedean copulas. 

 

2.2. Generating random numbers from bivariate Archimedean copula 
 

Generating random numbers from copulas is important for simulation studies, 

modelling, selecting random samples, etc. In this study generated random numbers are used 

to plot a scatter plot, which is a graphical tool to detect the tail dependence.  The following 

steps are listed to generate random numbers from a bivariate copula. 

 

Let ( , )U V  be a random pair from a bivariate Archimedean copula, ( )t is the generator 

function and ( )K t defined by (8) is the distribution function of copula.  A pair of data ( , )i ix y

from a bivariate Archimedean copula can be generated by using the following procedure: 

(i) Generate two independent random variables, p and p from Uniform (0,1)  

(ii) 1( )t K q  

(iii) 1[ ( )]u p t   and 1[(1 ) ( )]v p t    

(iv) 1( )x F u  and 1( )y F v  

Repeating the above steps (i) to (iv),  n  times n  pairs of data  ( , )i ix y , 1,2,...,i n  can 

be generated. 
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Since the  inverse of the distribution function of the proposed Archimedean copula, 

( )K t which is defined in (12) doesn't have the closed form, Newton-Raphson numerical root 

finding method is applied to  solve the following equation. 

( )
0

'( )

t
t q

t





 
   

 
                     (15) 

(1 )

( 1)

1
0

t

t

e
t q

e







 

 
   
 

.                      (16) 

 

To understand the concept of the clustering of extreme event, tail dependence property 

of copulas is discussed in the following sub-section 2.3. 

 

2.3. Tail dependence properties of bivariate Archimedean copula 
 

The concept of tail dependence refers to clustering of extreme events. Modelling 

dependence of events, such as economic systems, natural hazards contexts generally exhibit 

tail dependence. It becomes very important to obtain accurate results especially in tail ends. 

The definition of tail dependence is the limiting probability that a random variable exceeds a 

certain threshold, given that another random variable already exceeds that threshold. 
 

More formally definitions of the upper and lower tail dependence of a bivariate copula 

( , )C u v are given as follows, respectively in (17) and (18). 

 
1

1 2 ( , )
Pr ( ) | ( ) lim

1
U

u

u C u u
F x u G y u

u




 
   


                  (17) 

 
0

( , )
Pr ( ) | ( ) limL

u

C u u
F x u G y u

u



     .          (18) 

 

If the above limits exist, ( ) 0U L   shows that the copula has no upper (lower) tail 

dependence. In case of, ( ) 0U L    there is upper (lower) tail dependence. The upper and 

lower tails of the new copula in (8) are examined, respectively. 

(1 ) (1 )

1

1
2 2 ln( 1)

lim 2
1

u v

U
u

u e e

u

 




 



   
 


          (19) 

(1 ) (1 )

0

1
1 ln( 1)

lim

u v

L
u

e e

u

 




 



  
   .        (20) 

 

The tail dependence coefficients of studied bivariate Archimedean copulas are listed in 

Table 3 and Figure 4 demonstrates the tail dependence of the considered copulas. The scatter 

plots visualize that Gumbel copula has an upper tail, Clayton copula has a lower tail, Frank 

copula has no tail and the proposed Archimedean copula has both lower and upper tail 

dependencies.   
 

Table 3: Tail Dependence Coefficients of Considered Archimedean Copulas 

Family 
L  U  

Gumbel 0 1/2 2   

Clayton 1/2   0 

Frank 0 0 

New Cop.   2 
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Figure 4: Scatter Plots of Considered Archimedean Copulas 

 

In the following sub-section (2.4), we describe the method of fitting copula. 
 

2.4. Fitting copula to data 
 

Genest and Rivest (1993) suggested a nonparametric approach to select the appropriate 

bivariate Archimedean copula which gives the best fit to the data.  The estimation procedure 

consists of mainly two steps. First one is to estimate the marginal distributions and the second 

one is to specify the copula function. Marginal distributions can be estimated by empirical or 

parametric ways. The procedure which is followed in this study is summarized as follows: 
 

Let 1 1( ,  )X Y , …, ( ,  )n nX Y  be a random sample from a bivariate population ( ,  )X Y  

with distribution functions ( )F x   and ( )G y , respectively. 

(i) Estimate the copula parameter. 

(ii) Obtain the empirical estimate of distribution of copula function, say ( )nK t . First, 

define the pseudo-observations, 

 

 
1

&

1

n
j i j i

i

i

I X X Y Y
T

n

 



 , 1,...,i n  and then calculate 

 

1

( )

( )
1

n

i

i
n

I T t

K t
n









, 1,...,i n  

(iii) Construct parametric estimate of 
( )

( )
'( )

t
K t t

t





   

(iv) Compare the distance between ( )nK t  and ( )K t  

Comparing ( )nK t   and ( )K t can be done in several ways. For instance, by considering 

information criteria such as Akaike Information Criterion, Bayesian Information Criterion 

and log likelihood. In this study, we follow Frees and Valdez (1998) and use the following 

minimum distance measure. 
2

( ) ( ) ( )n nMD K t K t dK t    .        (21) 
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In the following Section 3, we illustrate the applications of copulas with the help of two 

examples. 

 

3. Application 
 

In this section, we apply the new copula along with other well-known Archimedean 

copulas namely Clayton, Gumbel and Frank to fit the linear prediction models to the data 

from two examples described below. We follow the copula-based methodology as described 

and studied in Kumar and Shoukri (2008, 2007, 2011). Using the copulas, new data sets 

which have the similar dependence structure and sample sizes as in the actual data sets are 

simulated choosing the 50, 150, 250 and 350 runs. For each data set, linear prediction models 

are estimated and the %95 confidence intervals of model parameters are computed. The 

estimated prediction models from the fitted copulas are compared using the mean absolute 

prediction error (MAPE) measure.  

 

3.1. Copula applications for  -amylase levels in saliva experiment 
 

This example refers to the study of saliva content which is an enzyme called amylase 

and which hydrolyses starch into maltose. The experimental data on  -amylase levels in 

saliva are considered. The data set can be found in Brunner et al. (2004). The  -amylase 

levels in saliva are measured on different times and in a day. In this study, we have 

considered the data set which consists of the 14 measurements of  amylase levels in saliva 

taken on Thursday at 12 a.m. (independent variable, X) and 9 p.m. (dependent variable, Y).  

   

 
Figure 5: Marginal Fitting to Amylase Levels 

 

To specify the dependence structure between the amylase levels in saliva at two time 

points, i.e., between Y and X, their marginal distributions are estimated as the Log Normal 

(mean = 5.6210, sd = 0.6988) for X and the Log Normal (mean = 5.6525, sd = 0.5487) for Y, 

see Figure 5.  Kendall's Tau between two amylase levels is estimated as  = 0.64835. The 

copula parameters are estimated based on the Kendall's Tau and the minimum distance 

measure (MD) are given in Table 4. Fitted copulas are then plotted and compared in Figure 6. 

 

Table 4: Estimated Copula Parameters and Minimum Distance Measure for Amylase 

Levels 

 Clayton Gumbel Frank New Cop 

̂  3.6875 2.8438 9.3816 10.2671 

MD  0.0785 0.0312 0.0281 0.0208* 

 

It may be noted from Table 4 that the minimum distance measure (MD) for the 

proposed new copula is 0.0208 and thus, new copula is the best fit compared to the Frank, 
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Gumbel and Clayton copulas to represent the dependence structure between two amylase 

levels. New data sets (X,Y) of size 14 are simulated using the new copula 50, 150, 250 and 

350 times. For each data set, linear prediction models are estimated along with the intercept 

and slope, standard error and the % 95 confidence interval of slope. Results are listed in 

Table 5.  

 
Figure 6: Copula Fitting for Amylase Levels 

 

Table 5: Estimated prediction models and confidence intervals for amylase levels 

 Intercept Slope 

(b) 

Std.Error 

(b) 

CI 

Lower 

CI 

Upper 

CI 

Width 

Data 

Model 

73.3113 

 

0.7443 0.1011 

 

0.5462 

 

0.9424 

 

0.3962 

N ew Copula  

Simulations 

50 66.0857 0.7942 0.1460 0.5080 1.0803 0.5723 

150 67.3012 0.7741 0.1191 0.5406 1.0076 0.4670 

250 68.5123 0.7625 0.0787 0.6082 0.9167 0.3085 

350 66.4007 0.7278 0.0701 0.5904 0.8652 0.2748 

 

In Table 5, it is noted that the estimated models from the actual data set and also from 

the simulated data sets have the intercept and slope estimates in close agreement with each 

other. For instance, the estimates of intercept, slope and the %95 confidence interval width of 

the slope in actual data set are 73.3113, 0,7443 and 0.3962, respectively, while these values 

for the new data set using 350 simulations run are 66.4007, 0.7278 and 0.2748, respectively. 

With regard to the comparison of the prediction errors, it is noted from Table 6 that the mean 

absolute prediction errors (MAPE) for actual data set and the new data sets with 50, 150, 250 

and 350 simulation runs are 18.2229, 19.8664, 18.2299, 18.1937 and 16.0277, respectively.   

 

However, as expected, when the number of simulation runs increases, the estimated 

models have smaller standard errors and narrow confidence intervals of slope estimation, and 

mean absolute prediction errors. Thus, having the smallest confidence interval width of the 

model parameters and also, the prediction errors, the proposed new copula-based prediction 

model may be recommended to study the relationship between two amylase levels. 
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Table 6: Mean Absolute Prediction Errors (MAPE) of Estimated Models of Amylase 

Levels 

 MAPE 

Data Model     18.2299 

New Cop Sim.  

50 19.8664 

150 18.2299 

250 18.1937 

350 16.0277 
 

 

3.2. Copula applications for climate change indicators 
 

The second example is about the climate change indictors [Source: Earth System 

Research Laboratory, Global Monitoring Division, https://www.esrl.noaa.gov/gmd/aggi]. 

Radiative Forcing (RF) is one of the climate change indicator which measures heating effect 

caused by greenhouse gases in the atmosphere.  RF is calculated in watts per square meter, 

which represents the size of the energy imbalance in the atmosphere. Since RF (denoted by 

Y) is directly associated with the methane (CH4, one the of greenhouse gases), denoted by X, 

the prediction model of RF and CH4 will be useful to study their cause-and-effect 

relationship.   

 

We fitted the marginal distributions of RF and CH4 from the given data set as Log 

Normal (mean = 0.9449, sd = 0.1032) and Log Normal (mean = –0.7279, sd = 0.0261), 

respectively, as seen in Figure 7. Kendall's tau is estimated as  = 0.9600 and used to 

estimate copula parameters. Following the copula fitting procedure in sub-section (2.2), 

copula parameter estimates and MD measures are given in Table 7 and copulas plotted in 

Figure 8 for the comparison purpose. From Table 7, the Gumbel copula has mean distance 

value MD = 0.0110, followed by MD = 0.0128 for the new copula. Thus, for this data set, 

Gumbel copula gives the best fit followed by the new copula to model the dependence 

structure between Radiative Forcing and CH4. 

 

Using the Gumbel copula and the new copula, simulation studies are performed to 

generate data sets by having the number of simulation runs as 50, 150, 250 and 350 and the 

sample sizes 28. The prediction models are estimated and the results are listed in Table 8. 

  

 
Figure 7: Marginal Distributions for RF and CH4 
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Table 7: Estimated Copula Parameters and Minimum Distance Measure for RF 

and CH4 Levels 

 Clayton Gumbel Frank New Cop 

̂  48.0384 25.0198 98.4040 99.0667 

MD  0.0138 0.0110* 0.0162 0.0128 

 
Figure 8: Copula Fitting for RF and CH4 

 

Table 8: Estimated Prediction Models and Confidence Intervals for RF and CH4 

 Intercept Slope 

(b) 

Std.Error 

(b) 

CI 

Lower 

CI 

Upper 

CI 

Width 

DataModel –7.3891 20.6498 0.8597 18.8826 22.4170 3.5344 

50 –7.4207 20.7121 0.3404 20.0449 21.3793 1.3340 

150 –7.4957 20.8635 0.3304 20.2207 21.5160 1.5150 

250 –7.5152 20.9089 0.3244 20.2730 21.5447 1.2717 

350 –7.5095 20.8964 0.3353 20.2392 21.5536 1.3144 

NewCop 

Simulation 

 

50 –7.2123 20.2801 0.5471 19.2084 21.3529 2.1444 

150 –7.4755 20.8260 0.5189 19.2084 21.8430 2.0340 

250 –7.4574 20.7879 0.4946 19.8185 21.7574 1.9389 

350 –7.4567 20.7873 0.4929 19.8213 21.7534 1.9322 

 

Table 9: Mean Absolute Prediction Errors (MAPE) of Estimated Models of RF and CH4 

 MAPE 

Data Model     0.01924 

 Gumbel Sim.  New Cop Sim.  

50 0.01911 0.01941 

150 0.01906 0.01908 

250 0.01904 0.01909 

350 0.01903 0.01924 
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From Table 8, we note that the estimated model parameters from the actual data set and 

also from the simulated data sets are in close agreement with each other. For instance, the 

estimates of intercept, slope and the %95 confidence interval width of the slope in the actual 

data set are –7.3891, 20.6498 and 3.5344, respectively, while these values using the Gumbel 

copula and 350 simulations run are –7.5095, 20.8964 and 1.3144, respectively. With regard 

to the comparison of the prediction errors, it is noted from Table 9 that the mean absolute 

prediction error (MAPE) for the actual data set is 0.01924, while for the 50, 150, 250 and 350 

simulation runs, MAPE values are, respectively, 0.01911, 0.01906, 0.01904 and 0.01903 for 

the Gumbel copula and 0.01941, 0.01908, 0.01909 and 0.01924 for the new copula. Thus, the 

Gumbel copula followed by the proposed new copula may be recommended to model the 

dependence structure between the Radiative Forcing and CH4 and also to make predictions of 

the Radiative Forcing (heating effect) resulting from the levels of CH4. 

 

4. Conclusion 
 

In multivariate data sets, studying the dependence or specifying the pattern between 

random variables is commonly of main interest. Copulas have been used to model different 

types of dependence patterns between the random variables. Main advantage of working with 

copulas is that any kind of marginal distributions can be employed in simulating data sets. 

Therefore, copula-based methodology is an appropriate approach for modelling especially 

skewed data. Archimedean copulas are preferable in most applications due to their appealing 

mathematical properties and simple simulation algorithms. In observational studies, 

researchers may face different kinds of dependence structures and known models may be 

insufficient to represent the dependency between random pairs. Thus, to generate new and 

applicable models can be a solution. For this purpose, in this study, we have proposed a new 

generator function and discussed its properties. Based on this new generator function, a new 

bivariate Archimedean copula is constructed. Tail dependency of the new copula is 

examined. Copula based methodology is applied to prediction modeling in two applications, 

namely, to study  - amylase levels in saliva and to study effect of Methane, one of 

greenhouse gases on the Radiative Forcing (heating effect) in climate change. The results 

indicate that the new copula performs well compared to commonly used Archimedean 

copulas and can be applied in the copula based prediction models. 
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