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Abstract

We propose a new frailty distribution named as the generalized Lindley frailty distribution
with generalized Weibull and exponential power as baseline distributions. To estimate the pa-
rameters in the models, the Bayesian paradigm of the Markov Chain Monte Carlo technique was
designed. Bayesian comparison techniques have been performed for the comparison of models.
We analyze kidney infection data and suggest a better model.
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1. Introduction

In survival data, a common approach is that each individual under study experiencing the
same risk factors which act as multiplicatively. Sometimes, in real-life situations risk (hazard rate)
changes from one family to another family, one group to another group, one cluster to another
cluster. Heterogeneity in the population exists, because of the mixture of groups of individuals with
different risk factors. This heterogeneity is called as a frailty. Ignoring frailty may have adverse
consequences. A random impact that is unobservable risk shared by the subject characterized as
frailty which was introduced by Vaupel et al. (1979). To handle such kind of problems, many
models have been derived in survival analysis. Since the establishment of the proportional hazard
model given by Cox (1972), survival function has been dominated by hazard rate models. The
reason behind the popularity of this model is, the significance of known covariates can be tested,
also a relationship between lifetimes and covariates can be incorporated. Cox (1972) gave the
following proportional hazard model or multiplicative hazard model as

φ(t|K) = φ0(t)eK
′
β0 (1)

where, φ(t|K) stands for conditional hazard rate given the covariates, φ0(t) stands for baseline
hazard rate. K

′
= (K1j, K2j, ..., Kmj) are vector of known covariate and β0 is the vector of
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regression parameters of orderm corresponding toK. Augmentation of Cox’s proportional hazard
model provided away to introduce the unknown covariates,

φ(t|V ) = φ0(t)eK
′
β0+V

′
β1

or

φ(t|w) = wφ0(t)eK
′
β0 (2)

where, V
′

= (V1j, V2j, ..., Vmj) are considered as the vector of unknown covariates respectively,
β1 are indicated as the vector of regression coefficients of order m corresponding to V . w = eV

′
β1

called as frailty random effect. The conditional cumulative hazard function is given by

Φ(t|w) = wΦ0(t)eK
′
β0 (3)

where Φ0(t) =
∫ t

0
φo(t)dt. The conditional survival function is given by

S(t|w) = exp
(
−wΦ0(t)eK

′
β0
)

(4)

Frailty models firstly introduced by Vaupel et al. (1979) in univariate survival models that
can be separated into multiplicative components. It has been assumed that the baseline hazard
function has a multiplicative effect of frailties. Several frailty models had been proposed by Oakes
(1989). As a frailty distribution, gamma, inverse Gaussian, positive stable distributions had been
claimed by Hougaard (1986). Hougaard (1985, 1991, 2000) had discussed the different aspects
of frailty on a broad scale. Log-normal distribution was proposed as frailty distribution by Flinn
and Hackman (1982). In the last decade, frailty regression models in mixture distribution have
been discussed by Hanagal (2008). Hanagal and Dabade (2013, 2015) proposed modeling of the
inverse Gaussian frailty model and comparison of different frailty models for analyzing kidney
infection data. Modeling kidney infection data for inverse Gaussian shared frailty was done by
Hanagal and Pandey (2014a). Gamma frailty models for bivariate survival data were given by
Hanagal and Pandey (2015a). Hanagal and Pandey (2017a) were used the shared inverse Gaussian
frailty models based on additive hazard. For reversed hazard rate setup, Hanagal and Pandey
(2014b, 2015b, 2016a, 2016b, 2017b) have contemplated gamma and inverse Gaussian shared
frailty models with different baseline distribution functions. Hanagal and Sharma (2013, 2015a,
2015b, 2015c) analyzed acute leukemia data, kidney infection data and diabetic retinopathy data
using shared gamma and inverse Gaussian frailty models for the multiplicative model. Compound
Poisson frailty was used by Hanagal and Kamble (2015) for Bayesian estimation. Analysis of
kidney infection data and Australian twin data were done by Hanagal and Bhambure (2014, 2015,
2016) with different frailty distributions. Hanagal (2011, 2017, 2019) gave extensive literature
review on different shared frailty models.

The main aim of this article has three objectives. First, generalized Lindley (GL) shared
frailty models for hazard rate with generalized Weibull and exponential power as baseline dis-
tributions have been introduced. Second, Bayesian approach of estimation has been employed
to estimate the unknown parameters under random censoring. Third, simulation study and data
analysis have been done for the kidney infection data set.
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2. Generalized Lindley Frailty Model

Lindley (1958) proposed a distribution with one parameter. Because of having only one
parameter, the Lindley distribution does not provide enough flexibility for modeling purposes. It
will be useful to consider further alternatives of this distribution. Zakerzadeh and Dolati (2009)
proposed generalized Lindley distribution which generalizes Lindley distribution and includes ex-
ponential and gamma distributions as special cases. For a frailty distribution, generalized Lindley
(GL) distribution has been considered in this paper. This distribution is the mixture of two gamma
distributions G(θ,µ) and G(θ,η) with mixing coefficient θ/(θ+1). That is the reason why GL frailty
model is more adaptable in comparison with gamma frailty model. Probability density function of
GL distribution has been specified below:

fW (w) =

{
1

(1+θ)

[
θµ+1wµ−1

Γµ
+ θηwη−1

Γη

]
e−θw ;w ∈ IR+, µ, η, θ ∈ IR+

0 ; otherwise

with mean E[W ] = 1
1+θ

[
µ+ η

θ

]
. And corresponding variance is,

V (W ) =
1

(1 + θ)

[(
µ2 +

η2

θ

)(
1

θ(1 + θ)

)
+

(
µ+ η

θ

)
−
(

2µη

θ(1 + θ)

)]
after applying identifiability property, i.e., E[W ] = 1 we get a relation between parameters
η = θ (1 + θ − µ) > 0. Consequently, the density function, Laplace transformation and variance
for GL reduced to,

fW (w) =

{
1

(1+θ)

[
θµ+1wµ−1

Γµ
+ θθ(1+θ−µ)wθ(1+θ−µ)−1

Γθ(1+θ−µ)

]
e−θw ; w, θ ∈ IR+, µ ∈ (0, 1 + θ)

0 ; otherwise.

LW (s) =
1

(1 + θ)

[
θµ+1

(s+ θ)µ
+

θθ(1+θ−µ)

(s+ θ)θ(1+θ−µ)

]
(5)

V (W ) =
θ4 − θ3µ+ 3θ2(1 + θ)− 4θ2µ+ 3θµ(µ− 1) + µ2

θ(1 + θ)2
(6)

n objects are postulated to be under study. (T1j, T2j) are contemplated as first and second survival
time of ith(i = 1, 2) component of jth(j = 1, 2, ..., n) objects. The unconditional bivariate survival
function at time t1j ∈ IR+ and t2j ∈ IR+ can be written as,

S(t1j, t2j) =

∫
wj∈IR+

S(t1j, t2j|wj)fW (wj)dwj

=

∫
wj∈IR+

e−Wj(Φ01(t1j)+Φ02(t2j))ρjfW (wj)dwj

= LWj
[(Φ01(t1j) + Φ02(t2j)) ρj] (7)
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where, LWj
(.) is Laplace transformation of frailty variable Wj . Φ0(.) stands for cumulative base-

line hazard rate and ρj = eK
′
jβj is the therm containing the regression coefficients corresponding

to known covariates. To get unconditional survival function, using equations (5) and (7),

S(t1j, t2j) =
1

(1 + θ)

[
θµ+1

(θ + ρ(Φ01(t1j) + Φ02(t2j)))µ
+

θθ(1+θ−µ)

(θ + ρ(Φ01(t1j) + Φ02(t2j)))θ(1+θ−µ)

]
(8)

corresponding cross-ratio function given by Clayton (1978) and Oakes (1989) is given by,

θ∗ (t1j, t2j) =
A ∗B(

θθ(θ+1)(−µ+ θ + 1) (C ∗ ρ+ θ)µ + µθµ(θ+1) (C ∗ ρ+ θ)θ(−µ+θ+1)
)2

where,
A = θµθ−1

(
θθ(−µ+θ+1) ((Φ01(t1j) + Φ02(t2j)) ρ+ θ)µ

+θµ+1
((
eλ1t1j

α1 + eλ2t2j
α2 − 2

)
ρ+ θ

)θ(−µ+θ+1)
)

B =
(
θθ

2+θ+1 (µ2 − 2µ(θ + 1) + θ(θ + 2) + 2)− (µ− 1)θθ(θ+1)
)

((Φ1(t1) + Φ2(t2)) ρ+ θ)µ

+ µ(µ+ 1)θµ(θ+1) ((Φ1(t1) + Φ2(t2)) ρ+ θ)θ(−µ+θ+1)

C = ((Φ01(t1j) + Φ02(t2j))
in the absence of frailty effect, model in the hazard rate setup will be,

S(t1j, t2j) = exp (−ρj(Φ01(t1j) + Φ02(t2j))) (9)

One can have different baseline distributions for T1 and T2. After substituting different cumulative
hazard functions in (8), we get different generalized Lindley frailty distributions.

3. Baseline Distributions

3.1 Generalized Weibull distribution

Here, the generalized Weibull distribution has been postulated as a baseline distribution. If
a continuous random variable T follows the generalized Weibull distribution then the survival,
hazard, and cumulative hazard function, are respectively,

S(t) =

{
1−

(
1− e−δtξ

)ζ
; t ∈ IR+, δ, ζ, ξ ∈ IR+

1 ; otherwise
(10)

φ0(t) =

 ξζδtξ−1e−δt
ξ(1−e−δt

ξ
)ζ−1

1−(1−e−δtξ)
ζ ; t ∈ IR+, δ, ζ, ξ ∈ IR+

1 ; otherwise
(11)

Φ0(t) =

 − log

(
1−

(
1− e−δtξ

)ζ)
; t ∈ IR+, δ, ζ, ξ ∈ IR+

0 ; otherwise
(12)
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3.2 Exponential power distribution

Another baseline distribution we considered is exponential power distribution. A continu-
ous random variable T is said to follow exponential power distribution if survival, hazard, and
cumulative hazard function is,

S(t) =

{
e(1−eδtζ ) ; t ∈ IR+, δ, ζ ∈ IR+

1 ; otherwise
(13)

φ0(t) =

{
ζδtζ−1eδt

ζ
; t ∈ IR+, δ, ζ ∈ IR+

0 ; otherwise
(14)

Φ0(t) =

{
eδt

ζ − 1 ; t ∈ IR+, δ, ζ ∈ IR+

0 ; otherwise
(15)

Kolmogorov–Smirnov (K–S) statistic for goodness of fit shows that both baseline distributions are
fitting well to kidney infection data set(see section 7, Figure 1-4).

4. Proposed Model

Due to group variation or frailty and individual variation described by the hazard function, a
shared frailty model can be considered as a mixture model in survival analysis. After substituting
cumulative hazard function for generalized Weibull and exponential power baseline distributions
in equations (8) and (9), we get the following four survival functions.

S(t1j , t2j) =
1

(1 + θ)

 θµ+1[
θ +

{
log

(
1−

(
1− eδ1t

ξ1
1j

)ζ1)
+ log

(
1−

(
1− eδ2t

ξ2
2j

)ζ2)}
ρ

]µ+

θθ(1+θ−µ)[
θ +

{
log

(
1−

(
1− eδ1t

ξ1
1j

)ζ1)
+ log

(
1−

(
1− eδ2t

ξ2
2j

)ζ2)}
ρ

]θ(1+θ−µ)


(16)

S(t1j, t2j) = e
ρj

log

1−

(
1−eδ1t

ξ1
1j

)ζ1+log

1−

(
1−eδ2t

ξ2
2j

)ζ2
(17)

S(t1j , t2j) =
1

(1 + θ)

 θµ+1(
θ + ρ

{
eδ1t

ζ1
1j + eδ2t

ζ2
2j − 2

})µ +
θθ(1+θ−µ)(

θ + ρ
{
eδ1t

ζ1
1j + eδ2t

ζ2
2j − 2

})θ(1+θ−µ)
 (18)
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S(t1j, t2j) = e
−ρ

{
e
δ1t

ζ1
1j +e

δ2t
ζ2
2j−2

}
(19)

Here, equations (16), (17) can be called as Model-I, Model-III respectively that have been estab-
lished for generalized Weibull baseline distribution with and without frailty and equations (18),
(19) can be called as Model-II and Model-IV respectively that have been established for exponen-
tial power baseline distribution with and without frailty.

5. Likelihood Design and Bayesian Paradigm

For the study, n individuals have been considered. Observed failure times have been indi-
cated by (t1j, t2j). We are using the random censoring scheme. Censoring time, supposed to be
indicated by c1j and c2j for jth individual (j = 1, 2, 3, ..., n). Independence between censoring
schemes and lifetimes of individuals has been presumed. Likelihood function can be described for
bivariate lifetime random variable of the jth individual as,

Lj(t1j, t2j) =


f1(t1j, t2j), ; t1j < c1j, t2j < c2j,
f2(t1j, c2j), ; t1j < c1j, t2j > c2j,
f3(c1j, t2j), ; t1j > c1j, t2j < c2j,
f4(c1j, c2j), ; t1j > c1j, t2j > c2j.

and likelihood function will be,

L(Θ, β, θ, µ) =

n1∏
j=1

f1(t1j, t2j)

n2∏
j=1

f2(t1j, c2j)

n3∏
j=1

f3(c1j, t2j)

n4∏
j=1

f4(c1j, c2j) (20)

where,Θ, β, θ and µ are vector of baseline parameters and the vector of regression coefficients and
frailty parameters respectively. Likelihood function for without frailty model is,

L(Θ, β) =

n1∏
j=1

f1(t1j, t2j)

n2∏
j=1

f2(t1j, c2j)

n3∏
j=1

f3(c1j, t2j)

n4∏
j=1

f4(c1j, c2j) (21)

let n1, n2, n3 and n4 be the number of pairs for which first and second failure times (t1j, t2j) lie in
the ranges t1j < c1j, t2j < c2j; t1j < c1j, t2j > c2j; t1j > c1j, t2j < c2j and t1j > c1j, t2j > c2j

respectively and let

f1(t1j, t2j) =
∂2S(t1j, t2j)

∂t1j∂t2j

f2(t1j, c2j) = −∂S(t1j, c2j)

∂t1j

f3(c1j, t2j) = −∂S(c1j, t2j)

∂t2j
f4(c1j, c2j) = S(c1j, c2j). (22)
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substituting cumulative hazard rates Φ01(t1j) and Φ02(t2j) and survival function S(t1j, t2j) in equa-
tion (22) for Model-I and Model-II and by differentiating we get the likelihood function. The
maximum likelihood method has a crucial importance in computing efficient estimators. Inap-
propriately, due to a convergence problem, maximum likelihood failed to estimate the parame-
ters, because of Model-I has thirteen-dimensional, Model-II, Model-III have eleven-dimensional
and Model-IV has nine-dimensional optimization problem. The Bayesian scenario has been dis-
cussed by several researchers for estimating parameters of the frailty models. For gamma and
log-normal frailty models, the Bayesian paradigm has been contemplated by Santos and Achcar
(2010). Weibull and piecewise exponential model have been discussed by Ibrahim et al. (2001)
with gamma frailty. The joint posterior density function of parameters for given failure times is
obtained as,

π(Θ, θ, µ, β0) ∝ L(Θ, µ, β
0
)g1(ζ)g2(ξ)g3(δ)g4(θ)g5(µ)

5∏
i=1

pi(β0i×1)

where gi(.) indicates the prior density function with known hyperparameters of corresponding
argument for baseline parameters and frailty variance; pi(.) is prior density function for regression
coefficient β0i and likelihood function is L(.). An important assumption here is, all the parameters
are independently distributed. In a similar way, joint posterior density function can be written for
without frailty models. To estimate the parameters of the models, Metropolis-Hastings algorithms
and Gibbs samplers have been used. Geweke test (see Geweke, 1992) and Gelman-Rubin (see
Gelman and Rubin, 1992) statistics have been used to monitor the convergence of a Markov chain
to a stationary distribution.

Due to the high-dimensions of conditional distributions, it is not unproblematic to integrate
out. Thus, it has been considered that full conditional distributions can be obtained as they are
proportional to the joint distribution of the parameter of the model. The conditional distribution
for single parameter δ with frailty as,

ψ1(δ | ξ, ζ, θ, µ, β0) ∝ L(δ, ξ, ζ, θ, µ, β0) · g1(δ) (23)

and the conditional distribution for single parameter δ without frailty as,

ψ1(δ | ξ, ζ, β0) ∝ L(δ, ξ, ζ, β0) · g1(δ)

similarly full conditional distributions can be obtained.

6. Simulation Study

A simulation study has been executed to appraise the Bayesian estimation paradigm for
Model-I and Model-II. Single covariate K1 has been considered as follows normal distribution.
The frailty variable W is assumed to follow generalized Lindley distribution. Independence be-
tween lifetimes of individuals has been considered. Samples are generated using the subsequent
mechanism,

1. From the binomial distribution with probability 0.6, 25 values for K1 has been generated.
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2. For known covariates, compute ρ = eK1β1 .

3. Lifetimes reckoned to follows generalized Weibull and exponential power baseline distri-
butions for given frailty Wj . 25 values of lifetimes have been spawned after using ensuing
manners.
Conditional survival function for lifetime tj (j = 1, 2, ..., n) for given frailty Wj = wj and
covariate K1 is,

S(tj | wj, K1) = e−wjH0(tj)ρ

Equating S(tj | wj, K1) to random number, say vj(0 < vj < 1) spawned from U(0, 1) over
tj > 0 we get,
for Model-I,

tj =

(
−1

δ
log(1− (1− v

1
wjρj

j )
1
ζ )

) 1
ξ

for Model-II,

tj =

(
1

δ
log(1− 1

wjρj
log(vj))

) 1
ζ

4. Censoring time cj has been spawned from G(0.9, 0.01) for Model-I.

5. Observe the jth survival time t∗j = min(tj, cj) and the censoring indicator δj for the jth

individual (j = 1, 2, ..., 25) where,

δj =

{
1, ; tj < cj
0, ; tj > cj

thus we have data consisting of 25 pairs of survival times t∗j and the censoring indicator δj .

Concurrently, with different priors and starting points, two chains based on two priors (one
is based on gamma prior and another is based on uniform prior) have been operated. Both chains
recapitulated 100,000 times. Gelman-Rubin test (see Gelman and Rubin, 1992) values are very
close to one. Due to small values of Geweke test statistic (see Geweke, 1992) and corresponding
p-values, the chains reach stationary distribution for both prior sets. In view of, estimates of
parameters were about the same, no impact of prior distributions has been founded on posterior
summaries. Here, the analysis for one chain has been exhibited because both the chains have shown
similar results. Tables 1 and 2 present the estimates and the credible intervals of the parameters for
the Models I and II based on the simulation study. The Gelman-Rubin convergence statistic values
are nearly equal to one and also the Geweke test values are quite small and the corresponding
p-values are large enough to say that the chain attains stationary distribution.
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7. Analysis of Kidney Infection Data

To elucidate the Bayesian estimation paradigm, kidney infection data of McGilchrist and
Aisbett (1991) has been considered. This data consists of 38 patients, recurrence times (in days) of
infection are given which can be outlined as these are recorded from the insertion of the catheter
until it has to be removed due to infection. Data having five known covariates age, sex (Female=1,
Male=0), and disease type Glomerulo Neptiritis (GN), Acute Nephritis (AN) and Polycystic Kid-
ney Disease (PKD). Opine first and second time to infection is symbolized by T1j and T2j . Five
covariates age, sex, GN, AN and PKD are symbolized by K1, K2, K3, K4 and K5. To check
goodness of fit of kidney data set, we consider Kolmogrove-Smirnov (K-S) test for two baseline
distributions. Table 3 gives the p-values of goodness of fit test for Model I and Model II. Thus
from p-values of K-S test we can say that there is no statistical evidence to reject the hypothesis
that data are from the Model I and Model II in the marginal case and we assume that they also
fit for bivariate case. Figures 1-4 show the parametric plot with semi-parametric plot for models
(Model I and Model II) with frailty for T1 and T2 separately and both lines are close to each other.

For frailty parameters, gamma prior distribution with very small shape and scale parameters
(say, 0.0001) has been used. Additionally, it can be considered, regression coefficients are nor-
mally distributed with mean zero and high variance (say 1000). A similar type of prior was used
in Ibrahim et al (2001) and Santos and Achcar (2010). That’s why for frailty parameters θ, µ and
regression coefficients β0i, i = 1, ..., 5, vague priors have been used. Because of no information
about baseline parameter having, therefore, prior distribution corresponding to baseline param-
eters are also considered flat. We considered two different vague prior distributions for baseline
parameters, one is gamma distribution with shape and scale hyperparameters ε1, ε2 respectively and
another is uniform distribution with interval (ν1, ν2). All the hyperparameters are known. Under
the Bayesian paradigm, for both models, two parallel chains have been run. Also, two sets of prior
distributions have been used with different starting points using the Metropolis-Hastings algorithm
and Gibbs sampler based on normal transition kernels. It can be said that estimates are indepen-
dent of the different prior distributions because, for both sets of priors, estimates of parameters are
approximately similar. We got almost similar convergence rate of Gibbs sampler for both sets of
priors. Here, the analysis for one chain has been exhibited because both the chains have shown
similar results.

Markov chain has seemed to reach the stationary state because of the zigzag pattern of the
trace plots for all the parameters that gesture parameters move and mix more freely (See Figure 5).
Coupling from the past plot has been applied to fix up the burn-in period (See Figure 6). A sequence
of draws may have serial correlation after the burn-in period. Randomness may not be shown in
successive draws. But almost independence can be seen in values at the extensive split. After
using the values from the single run of the Markov chain, a vague sample can be obtained from the
posterior distribution. Because of the burn-in period, it has been founded at extensive spaced time
points. Autocorrelation function (ACF) plots can be utilized to examine the appropriate blend of
our chains (See Figure 7). ACF plot for each parameter is converging to the posterior mean of the
parameter, thus, represents a good mixing of the chain. Thus, our diagnostic plots suggest that the
MCMC chains are mixing very well. After a certain lag, the serial correlation of the parameters
turns out to almost negligible for all the parameters. Observations are shown independently after
thinning the serial correlation function plot (See Figure 8). For visual approximate estimates as
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confirmative measures such as posterior density plots also drawn for Model-I. It has been observed
in some of posterior densities of the parameters depict multi-modal shapes which are quite possible
in frailty models. The Gelman-Rubin convergence statistic values are closely equal to one. The
Geweke test statistic values are somewhat small, and the corresponding p-values are large enough
to say that the chains reach stationary distribution. Tables 4-7 give the values of posterior mean and
the standard error with 95% credible intervals, the Gelman-Rubin statistics values and the Geweke
test with p-values for Model I, II, III and IV. Table 8 present the values of AIC, BIC and DIC values
for both models. Values of AIC, BIC, and DIC, given in Table 8, have been used to the comparison
of all models. Model-I holds the lowest possible values of AIC, BIC, and DIC. For all models,
regression coefficients contained different values. For Model-I and Model-II, the credible interval
of β02, β03, β04, β05 are not contained zero. It indicates that covariates sex, diseases GN, AN and
PKD have a significant effects on all four models. It is being indicated that sex (β2), disease PKD
(β5) are significant factors for kidney infection, having negative effects for all the four models.
Negative value of β2 indicates that the female patients have a slightly lower risk for infection.
Negative value of β5 indicates that the patients with the disease PKD has a slightly lower risk for
infection.

8. Conclusions

Generalized Lindley frailty model under generalized Weibull and exponential power baseline
distributions have been proposed. To fit the proposed models M-H algorithm and Gibbs samplers
have been applied. Analysis has been done in R statistical software with self-written programs.
The value of both frailty parameters for Model-I (θ = 3.08680, µ = 2.89438) and Model-II (θ =
2.89271, µ = 2.49934) are very high (See Tables 4 and 5) and corresponding variances are 1.38334
and 1.42248 by using equation (2.2). This exhibits that there is a strong indication of heterogeneity
among the patient in the population for the data set. To take the decision about all models, different
tools have been utilized. With the lowest value of AIC, BIC and DIC, given by Table 8, it can
be said that Model-I and Model-II are better than Model-III and Model-IV for analyzing kidney
infection data. The generalized Lindley frailty with generalized Weibull baseline (Model-I) is the
best among all four models. For kidney infection data, sex, diseases AN, GN, and PKD have been
found statistically significant factors for both with frailty and without frailty models (See Tables
4-7). Our proposed frailty model (Model-I) has been founded better in compare to Hanagal and
Pandey’s (2015a) frailty model with baseline generalized Weibull distribution. In a similar way,
with a minimum value of AIC, our proposed frailty model ( Model-II) has been founded better in
compare of Hanagal and Dabade’s (2015) frailty model.
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Appendix
Summary of Tables and Figures

Table 1: Posterior Summary of Generalized Lindley Frailty with Baseline Generalized
Weibull (Simulation Study: Model I)

Parameter Estimate S.E. L.C.L. U.C.L. Geweke test p-value Gelman-
Rubin test

ζ1(3.1) 3.08997 0.17672 2.68349 3.44157 0.00101 0.50040 0.99999
δ1(0.15) 0.15417 0.01551 0.12216 0.17852 -0.01145 0.49543 1.00378
ξ1(0.85) 0.85822 0.03033 0.79395 0.91321 0.01542 0.50615 1.00239
ζ2(5.0) 4.99795 0.55329 4.07576 5.95502 -0.00825 0.49671 0.99998
δ2(0.26) 0.27186 0.02817 0.20969 0.31781 0.00043 0.50017 1.00494
ξ2(0.74) 0.74822 0.02897 0.69046 0.81146 -0.00174 0.49930 1.00096
θ(3.0) 2.99983 0.15562 2.71870 3.28869 0.01826 0.50729 1.00002
µ(2.5) 2.49520 0.08979 2.33103 2.65688 0.00415 0.50166 1.00201

β1(0.005) 0.00458 0.00349 -0.00237 0.01135 -0.00530 0.49788 1.00021

Table 2: Posterior Summary of Generalized Lindley Frailty with Baseline Exponential Power
(Simulation Study: Model II)

Parameter Estimate S.E. L.C.L. U.C.L. Geweke test p-value Gelman-
Rubin test

ζ1(0.75) 0.71106 0.03077 0.65061 0.77292 0.00752 0.50300 1.00123
δ1(0.09) 0.09774 0.00960 0.07452 0.10972 -0.00332 0.49868 1.01043
ζ2(0.7) 0.75231 0.05995 0.62533 0.86400 0.00035 0.50014 1.00299
δ2(0.06) 0.06937 0.00764 0.05270 0.07915 0.00347 0.50138 1.00051
θ(1.2) 1.19076 0.09615 1.01631 1.37833 -0.00444 0.49823 1.00352
µ(0.7) 0.70361 0.03565 0.63321 0.76945 -0.00327 0.49870 1.00050

β1(0.003) 0.00303 0.00173 -0.00049 0.00664 -0.00322 0.49871 0.99997

Table 3: p-values of K-S Statistics for goodness of fit test for Kidney Infection data set

Recurrence Time
Distribution First Second
Model I 0.5174 0.6060
Model II 0.1184 0.4185
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Table 4: Posterior Summary of Generalized Lindley Frailty with Baseline Generalized
Weibull for Kidney Infection Data (Model I)

Parameter Estimate S.E. L.C.L. U.C.L. Geweke test p-value Gelman-
Rubin test

ζ1 2.99002 0.15637 2.70025 3.29677 -0.00910 0.49637 1.00016
δ1 0.18320 0.01455 0.15510 0.21414 -0.00871 0.49653 1.00094
ξ1 0.78464 0.02354 0.73846 0.83274 0.00234 0.50094 1.00005
ζ2 8.99452 0.97203 7.14211 10.92913 -0.00559 0.49777 0.99998
δ2 0.30022 0.01887 0.26317 0.34148 -0.00381 0.49848 0.99996
ξ2 0.67188 0.02468 0.62380 0.71751 -0.00787 0.49686 1.00005
θ 3.08680 0.12306 2.84842 3.35547 0.00019 0.50008 1.00048
µ 2.89438 0.12997 2.63819 3.16898 0.00218 0.50087 1.00010
β1 0.00091 0.00054 -0.00004 0.00185 0.00781 0.50312 1.00117
β2 -2.02839 0.22274 -2.46437 -1.58541 0.00661 0.50312 1.00306
β3 -0.00446 0.00259 -0.00928 -0.00005 -0.00167 0.49933 1.00001
β4 0.44121 0.20265 0.07885 0.80228 -0.00178 0.49929 1.00117
β5 -1.06697 0.25150 -1.49606 -0.59086 0.00912 0.50364 1.00081

Table 5: Posterior Summary of Generalized Lindley Frailty with Baseline Exponential Power
for Kidney Infection Data (Model II)

Parameter Estimate S.E. L.C.L. U.C.L. Geweke test p-value Gelman-
Rubin test

ζ1 0.59126 0.01185 0.56663 0.61349 -0.00265 0.49894 1.00119
δ1 0.08507 0.00315 0.07859 0.09102 0.00065 0.50026 1.00011
ζ2 0.67026 0.01459 0.64434 0.69888 -0.00376 0.49850 0.99998
δ2 0.05114 0.00301 0.04569 0.05758 -0.00204 0.49919 1.00012
θ 2.89271 0.09667 2.70694 3.09136 0.00038 0.49965 1.00047
µ 2.49934 0.03404 2.43316 2.56418 -0.00088 0.49831 1.00025
β1 -0.00044 0.00205 -0.00431 0.00306 0.00464 0.50185 1.00006
β2 -1.67836 0.10168 -1.86985 -1.49478 -0.00517 0.50185 1.00406
β3 0.21870 0.02916 0.17235 0.26824 0.00703 0.50280 1.00004
β4 0.75038 0.11075 0.55099 0.93289 -0.01367 0.49455 1.00029
β5 -0.67039 0.05381 -0.76419 -0.57894 -0.00423 0.49831 0.99998
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Table 6: Posterior Summary of Generalized Weibull Distribution for Kidney infection Data
(Model III)

Parameter Estimate S.E. L.C.L. U.C.L. Geweke test p-value Gelman-
Rubin test

ζ1 2.48490 0.30943 1.89920 3.08310 -0.00829 0.49670 1.00010
δ1 0.20310 0.06863 0.09050 0.35890 -0.00614 0.49750 0.99990
ξ1 0.60490 0.07812 0.46010 0.76200 0.01195 0.50470 0.99990
ζ2 5.04010 0.50556 4.09990 5.94920 0.00073 0.50030 1.00030
δ2 0.32220 0.08144 0.17580 0.49420 -0.00887 0.49650 1.00000
ξ2 0.51290 0.06162 0.38820 0.63330 0.01124 0.50450 1.00000
β1 0.00070 0.00279 -0.00440 0.00630 -0.00968 0.49610 1.00040
β2 -1.07160 0.31695 -1.67560 -0.46080 -0.01568 0.49370 0.99990
β3 -0.01590 0.02781 -0.06770 0.03750 0.00845 0.50340 1.00040
β4 -0.00410 0.00660 -0.01670 0.00780 -0.00533 0.49780 0.99990
β5 0.00120 0.00185 -0.00210 0.00460 0.00589 0.50240 1.00000

Table 7: Posterior Summary of Exponential Power Distribution for Kidney infection Data
(Model IV)

Parameter Estimate S.E. L.C.L. U.C.L. Geweke test p-value Gelman-
Rubin test

ζ1 0.61387 0.01685 0.57520 0.64394 0.00142 0.50057 1.00138
δ1 0.06108 0.00327 0.05428 0.06775 0.00493 0.50197 1.00050
ζ2 0.63406 0.01645 0.60266 0.66541 0.00632 0.50252 1.00090
δ2 0.05032 0.00305 0.04411 0.05608 -0.00380 0.49849 1.00051
β1 -0.00193 0.00178 -0.00579 0.00084 -0.00567 0.49774 1.00285
β2 -1.61959 0.09413 -1.81647 -1.48638 0.00300 0.49774 0.99998
β3 0.21887 0.02533 0.17269 0.26366 -0.01487 0.49407 0.99999
β4 0.76834 0.09830 0.57241 0.93181 0.00916 0.50365 1.00803
β5 -0.67269 0.03430 -0.74420 -0.60866 -0.00258 0.49897 1.00013

Table 8: AIC, BIC and DIC Comparison

Model AIC BIC DIC
Model-I 682.2537 703.5423 661.4339
Model-II 689.5993 707.6128 670.3702
Model-III 690.2814 708.2949 678.103
Model-IV 690.3103 705.0486 676.7688
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Figure 1 Figure 2

Figure 3 Figure 4



58 A. PANDEY, DAVID D. HANAGAL AND S. TYAGI [Vol. 19, No. 2

Figure 5: Trace plots for Model-I
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Figure 6: Coupling from the past plots for Model-I
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Figure 7: ACF plots for Model-I
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Figure 8: ACF plots After thinning for Model-I
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Figure 9: Posterior density plots for Model-I


