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Abstract

Gupta et al. (2012) proposed a generalized regression-cum-ratio estimator and Koyuncu et al. 
(2014) proposed a generalized exponential estimator for the mean of the sensitive variable utilizing a 
non sensitive auxiliary variable. We propose a new generalized mixture estimator for estimating the 
population mean of a sensitive study variable. The expressions for Bias and Mean Square Error are 
derived up to the first order of approximation. Numer-ical examples show that the proposed 
generalized mixture estimator performs better than many of the existing estimators.

1 Introduction

Randomized response technique (RRT) can be used to estimate the mean of a sensitive
variableY where direct observation onY is subject to bias. We assume a non sensitive auxiliary
variableX is available and can be observed directly. Sousa et al. (2010) introduced a ratio type
estimator and Gupta et al. (2012) proposed a regression and generalized regression-cum-ratio
estimators based on RRT models to deal with this situation. Following Bahl & Tuteja (1991),
Koyuncu et al. (2014) also proposed a generalized exponential type estimator to improve the
efficiency of the mean estimator based on RRT models.

In this paper we propose an ordinary exponential ratipo type estimator and two general-
ized mixture estimators where the RRT estimators of the mean ofY are further improved by
using information from an auxiliary variableX . Expressions for the Bias and Mean Square
Error are derived up to the first order of approximation. We will use the following notations.

Let Y be the sensitive study variable which cannot be observed directly. LetX be a non
sensitive auxiliary variable which has a positive correlation withY , and letS be a scrambling
variable. Assume that S is independent ofY and X . The respondent is asked to report a
scrambled response forY given byZ = Y + S, but is asked to provide the true response for
X . Let a random sample of sizen be drawn without replacement from a finite population
U = (U1,U2, . . . ,UN). For ith population dement, letyi andxi respectively be the values of
the study variableY and auxiliary variableX . Let Ȳ = E(Y ), X̄ = E(X) andZ̄ = E(Z) be the
population means forY,X andZ respectively. We assume that the population meanX̄ and the
population varianceS2

x of the auxiliary variable are known. Also, assume that population mean
and the population variance for the scrambling variableS are known and given as̄S = E(S) = 0
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andS2
S. Thus E(Z) = E(Y ) andC2

z = C2
y +
(

S2
s/Ȳ 2

)

, whereCz andCy are the coefficients of
the variation ofZ andY respectively. We will use the same error terms as in Sukhatme and
Sukhatme (1970), given as:

ez =
z̄−Z̄

Z̄ and ex = x̄−X̄
X̄ , whereE(ez) = E(ex) = 0 and E(e2

z ) = λC2
z , E(e2

x) = λC2
x ,

E(ezex) = λCzx = λρzxCzCx, andλ =
(

1
n −

1
N

)

.

2 Some Existing Estimators

In this section we will give some existing estimators with corresponding bias and mean
square error.

2.1 RRT Sample mean

If information on X is ignored, then an unbiased estimator ofȲ is the ordinary RRT
sample mean(z̄) given by:

µ̂Y = z̄. (1)

TheMSE of µ̂Y is given by:
MSE(µ̂Y ) = λ

(

S2
y +S2

s

)

, (2)

whereS2
Y = 1

N−1 ∑N
i=1(yi − Ȳ )2

, andS2
s =

1
N−1 ∑N

i=1

(

si − S̄
)2

are thepopulation variances of the
study sensitive variable(Y ) and the scrambling variable(S).

2.2 RRT Ratio estimator

Sousa et al.(2010) proposed the ratio type estimator of the mean of a sensitive variable
(Y ) using a non sensitive auxiliary variable(X) given by:

µ̂R = z̄
X̄
x̄
. (3)

The bias and the mean square error of this ratio estimator, up to the first order of approximation,
are given by:

Bias(µ̂R)≈ λȲ
(

C2
x −ρzxCzCx

)

, (4)

MSE(µ̂R)≈ λȲ 2(C2
x −2ρzxCzCx +C2

z

)

. (5)

2.3 RRT Transformed ratio type estimator

Sousa et al.(2010) proposed the transformed ratio type estimator given by:

µ̂T R = z̄

(

cX̄ +d
cx̄+d

)

, (6)

where c andd are the unit-free parameters, which may be quantities such as the coefficient of
skewnessβ1(x) and coefficient of kurtosisβ2(x) of the auxiliary variable(X). The bias and the
mean square error of this estimator, up to the first order of approximation are given by:

Bias(µ̂T R)≈ λȲ
(

η2C2
x −ηρzxCzCx

)

, (7)
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MSE(µ̂T R)≈ λȲ 2(η2C2
x −2ηρzxCzCx +C2

z

)

, (8)

whereη = cX̄
cX̄+d .

2.4 RRT Regression estimator

Gupta et al.(2012) proposed an ordinary regression type estimator of the population mean
Ȳ given by:

µ̂Reg = z̄+ β̂zx(X̄ − x̄), (9)

whereβ̂zx =
szx
s2
x
=

syx

s2
x

is thesample regression coefficient betweenZ andX . The bias of this
regression estimator, up to the first order of approximation, is given as:

Bias(µ̂Reg)≈−λβzx

(

µ12

µ11
−

µ03

µ02

)

, (10)

whereβzx =
Szx
S2

x
=

Syx

S2
x
= ρyx

Sy
Sx
= βyx is the population regression coefficient andµrs =∑n

i=1(zi−

Z̄)r(xi − X̄)s. The mean square error of the regression estimator, up to the first order of approx-
imation, is given as:

MSE(µ̂Reg)≈ λȲ 2C2
z

(

1−ρ2
zx

)

= λS2
y

[(

1+
S2

s

S2
y

)

−ρ2
yx

]

. (11)

2.5 Gupta et al. (2012) generalized RRT Regression-Cum-Ratio estimator

Gupta et al. (2012) proposed a generalized regression-cum-ratio estimator given as:

µ̂GRR =
[

k1z̄+ k2(X̄ − x̄)
]

(

X̄
x̄

)

, (12)

wherek1 andk2 are suitably chosen constants. The bias of this estimator, up to the first order
of approximation, is given by:

Bias(µ̂GRR) = (k1−1)Ȳ + k1Ȳ λ (C2
x −ρzxCzCx)+ k2X̄λC2

x . (13)

The optimum values ofk1 andk2 and corresponding mean square error, are given by

k1(opt) =
1−λC2

x

1−λ
[

C2
x −C2

z (1−ρ2
zx)
] , (14)

k2(opt) =
Ȳ
X̄

[

1+ k1(opt)

(

ρzxCz

Cx
−2

)]

, (15)

and

MSE(µ̂GRR)min ≈ Ȳ 2 λC2
z

[

1−ρ2
zx

][

1−λC2
x

]

λC2
z

[

1−ρ2
zx

]

+
[

1−λC2
x

] . (16)
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2.6 Koyuncu et al. (2014) generalized exponential estimator

Following Bahl & Tuteja (1991) and Gupta et al. (2012), Koyuncu et al. (2014) proposed
a generalized exponential type estimator given by

µ̂GER =
[

w1z̄+w2(X̄ − x̄)
]

exp

(

X̄ − x̄
X̄ + x̄

)

. (17)

The bias of this estimator, up to the first order of approximation, is given by

Bias(µ̂GER)≈ (w1−1)Ȳ +λ
[

1
2

w1Ȳ

(

3
4

C2
x −Czx

)

+
1
2

w2X̄C2
x

]

. (18)

The minimum mean square error at the optimum values ofw1 andw2, are given by

w1(opt) =
1− 1

8λC2
x

1+λC2
z (1−ρ2

zx)
, (19)

w2(opt) =
Ȳ
X̄

[

1
2
−w1(opt)

(

1−ρzx
Cz

Cx

)]

, (20)

and

MSEmin(µ̂GER)≈ Ȳ 2

[

(

1−
1
4

λC2
x

)

−

(1− 1
8λC2

x )
2

1+C2
z

(

1−ρ2
zx

)

]

, (21)

or

MSEmin(µ̂GER)≈







MSE(µ̂Reg)
[

1+ MSE(µ̂Reg)

Ȳ 2

] −

λC2
x

[

MSE(µ̂Reg)+λ 1
16C2

xȲ 2
]

4
[

1+ MSE(µ̂Reg)

Ȳ 2

]







. (22)

3 Proposed Generalized Mixture RRT Estimator

Following Bahal & Tuteja we propose the exponential ratio type estimator for estimating
the population mean of the sensitive variable using a non sensitive auxiliary variable. This
estimator is given by:

µ̂ER = z̄exp

(

X̄ − x̄
x̄+ X̄

)

(23)

where z̄ and x̄ are the sample means of the reported responses and the auxiliary variable, re-
spectively. Using to the first order of approximation, the estimator can be written as:

µ̂ER − Z̄ ≈ Z̄

(

ez −
1
2

ex −
1
2

ezex +
3
8

e2
x

)

(24)

Recognizing thatZ̄ = Ȳ in (24), the bias and mean square error of the exponential ratio type
estimator are given by:

Bias(µ̂ER)≈ λȲ
1
2

(

3
4

C2
x −ρzxCzCx

)

, and (25)
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MSE(µ̂ER)≈ λȲ 21
4

(

4C2
z −4ρzxCzCx +C2

x

)

. (26)

It can be verified easily that:

a) MSE(µ̂ER)< MSE(µ̂Y ) if ρzx >
1
4

Cx
Cz

b) MSE(µ̂ER)< MSE(µ̂R) if ρzx <
3
4

Cx
Cz

By combining the regression, ratio and exponential estimators we furher generalize the estima-
tor (23) and propose a generalized mixture estimator given by:

µ̂GR =

{

d1z̄

(

X̄
x̄

)α
+d2(X̄ − x̄)

}

exp

(

X̄ − x̄
X̄ + x̄

)

(27)

wheredi (i= 1,2) andα are suitably chosen constants. We will consider two values forα (α =
1 andα = 2). To obtain the bias and mean square error, up to the first order of approximation,
µ̂GR can be written in termsey andex as:

µ̂GR =
[

d1Z̄(1+ ez)(1+ ex)
−α

−d2X̄ex

]

exp
[(

−

ex

2

)(

1+
ex

2

)

−1]

(28)

Note that,

µ̂GR − Z̄ ≈ (d1−1)Z̄+d1Z̄
(

ez −Aex −Aezex +Be2
x

)

−d2X̄

(

ex −
1
2

e2
x

)

, (29)

where

A = α +
1
2

and B =
1
2

α(α +2)+
3
8
. (30)

By taking expectation of (29) and recognizing thatZ̄ = Ȳ , the bias of this estimator, up to the
first order of approximation, is given by:

Bias(µ̂GMR)≈ (d1−1)Ȳ +λd1Ȳ
(

BC2
x −AρzxCzCx

)

+λd2X̄
1
2

C2
x (31)

Squaring (29) and using first order of approximation, we get:

(µ̂GR − Z̄)2
≈ (d1−1)2Z̄2+d2

1Z̄2
[

2ez −2Aex −4Aezex + e2
z +
(

A2+2B
)

e2
x

]

+d2
2X̄2e2

x −2d1Z̄2
[

ez −Aex −Aezex +Be2
x

]

(32)

−2d1d2X̄ Z̄

[

ex + ezex −

(

A+
1
2

)

e2
x

]

+2d2X̄ Z̄

(

ex −
1
2

e2
x

)

.

By taking expectation of (32) and recognizing thatZ̄ = Ȳ , the mean square error of the proposed
estimator, up to the first order of approximation, is given by:
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MSE(µ̂GR)≈ (d1−1)2Ȳ 2+λd2
1Ȳ 2
[

(

A2+2B
)

C2
x −4AρzxCzCx +C2

z

]

+λd2
2X̄2C2

x −2λd1Ȳ
2
[

BC2
x −AρzxCzCx

]

−2λd1d2X̄Ȳ

[

ρzxCzCx −

(

A+
1
2

)

C2
x

]

−λd2X̄ȲC2
x . (33)

By taking partial derivatives of (33) with respect tod1 andd2, we get:

∂MSE(µ̂GR)

∂d1
= 2(d1−1)Ȳ 2+2λd1Ȳ 2

[

(A2+2B)C2
x −4AρzxCzCx +C2

z

]

(34)

−2λȲ 2
[

BC2
x −AρzxCzCx

]

−2λd2X̄Ȳ

[

ρzxCzCx −

(

A+
1
2

)

C2
x

]

,

and
∂MSE(µ̂GR)

∂d2
= 2λd2X̄2C2

x −2λd1X̄Ȳ

[

ρzxCzCx −

(

A+
1
2

)]

−λ X̄ȲC2
x . (35)

∂MSE(µ̂GR)
∂di

= 0 (i = 1,2), the optimum value ofd1 andd2 are given by:

d1(opt) =

1+λ
[

(

B−
1
2A−

1
4

)

C2
x +
(

1
2 −A

)

ρzxCzCx

]

1+λ
[

(

2B−A−
1
4

)

C2
x +(1−2A)ρzxCzCx +(1−ρ2

zx)C2
z

] , and (36)

d2(opt) =
Ȳ
X̄

{

1
2
−d1(opt)

[(

A+
1
2

)

−ρzx
Cz

Cx

]}

(37)

Substituting the optimum values ofd1 andd2 in (33), the minimum mean square, up to the first
order of approximation, is given by:

MSEmin(µ̂GR)≈ Ȳ 2

{

(

1−
1
4

λC2
x

)

(38)

−

[

1+λ
{(

B−
1
2A−

1
4

)

C2
x +
(

1
2 −A

)

ρzxCzCx
}

]2

1+λ
[

(

2B−A−
1
4

)

C2
x +(1−2A)ρzxCzCx +

(

1−ρ2
zx

)

C2
z

]

}

For α = 1 the generalized mixture estimator is given by:

µ̂GR1 =

[

d1z̄

(

X̄
x̄

)

+d2(X̄ − x̄)

]

exp

(

X̄ − x̄
X̄ + x̄

)

(39)

Theoptimum values ofd1 andd2 are given by:
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d1GR1(opt) =
1+
[

7
8C2

x −ρzxCzCx

]

1+λ
[

2C2
x −2ρzxCzCx +(1−ρ2

zx)C2
z

]

d2GR1(opt) =
Ȳ
X̄

[

1
2
−d1(opt)

(

2−ρzx
Cz

Cx

)]

(40)

and the minimum mean square error is given by:

MSEmin(µ̂GMR1)≈ Ȳ 2











(

1−
1
4

λC2
x

)

−

[

1+λ
(

7
8C2

x −ρzxCzCx
)

]2

1+λ
[

2C2
x −2ρzxCzCx +

(

1−ρ2
zx

)

C2
z

]











. (41)

Whenα = 2, the generalized mixture estimator is given by:

µ̂GR2 =

[

d1z̄

(

X̄
x̄

)2

+d2(X̄ − x̄)

]

exp

(

X̄ − x̄
X̄ + x̄

)

. (42)

The optimum values ofd1 andd2 are given by:

d1GR2(opt) =
1+
[

23
8 C2

x −2ρzxCzCx

]

1+λ
[

6C2
x −4ρzxCzCx +(1−ρ2

zx)C2
z

]

d2GR2(opt) =
Ȳ

X̄

[

1
2
−d1(opt)

(

3−ρzx
Cz

Cx

)]

. (43)

The minimum mean square error is given as:

MSEmin(µ̂GMR2)≈ Ȳ 2











(

1−
1
4

λC2
x

)

−

[

1+λ
(

23
8 C2

x −2ρzxCzCx
)

]2

1+λ
[

−4ρzxCzCx +6C2
x +
(

1−ρ2
zx

)

C2
z

]











. (44)

4 Efficiency Comparisons

In this section efficiency of the proposed estimator is compared with the some commonly
used RRT estimators. Conditions under which the proposed estimator is more efficient are
given below:

1. MSE(µ̂GR)< MSE(µY ) if

λC2
z −

{

(

1−
1
4

λC2
x

)

(45)

−

{

1+λ
[(

B−
1
2A−

1
4

)

C2
x +
(1

2 −A
)

ρzxCzCx
]}2

1+λ
[(

2B−A−
1
4

)

C2
x +(1−2A)ρzxCzCx +

(

1−ρ2
zx

)

C2
y

]

}

> 0
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2. MSE(µ̂GR)< MSE(µ̂R) if

λ (Cx −ρzxCz)
2+λ (1−ρ2

zx)C
2
z (46)

−

{

(

1−
1
4

λC2
x

)

−

{

1+λ
[(

B−
1
2A−

1
4

)

C2
x +
(

1
2 −A

)

ρzxCzCx
]}2

1+λ
[(

2B−A−
1
4

)

C2
x +(1−2A)ρzxCzCx +

(

1−ρ2
zx

)

C2
z

]

}

> 0

3. MSE(µ̂GR)< MSE(µ̂Reg) if

λȲ 2C2
z

(

1−ρ2
zx

)

−

{

(

1−
1
4

λC2
x

)

(47)

−

{

1+λ
[(

B−
1
2A−

1
4

)

C2
x +
(1

2 −A
)

ρzxCzCx
]}2

1+λ
[(

2B−A−
1
4

)

C2
x +(1−2A)ρzxCzCx +

(

1−ρ2
zx

)

C2
z

]

}

> 0

4. MSE(µ̂GR)< MSE(µ̂ER) if

λ
(

1
2

Cx −ρzxCz

)2

+λ
(

1−ρ2
zx

)

C2
z (48)

−











(

1−
1
4

λC2
x

)

−

[

1+λ
{(

B−
1
2A−

1
4

)

C2
x +
(

1
2 −A

)

ρzxCzCx
}

]2

1+λ
[

(

2B−A+ 1
4

)

C2
x +(1−2A)ρzxCzCx +

(

1−ρ2
zx

)

C2
z

]











> 0

Numerical examples and simulation results show that these conditions are generally true,
and hence the proposed estimator forα = 1 andα = 2 may be preferred over the existing
estimators.

5 Numerical example

In this section, we compare the efficiency of proposed estimators with other existing RRT
mean estimators considered in Section 2 using real data. The Population Statistics for the real
data are given in Table 1. The scrambling variableS is taken to be a normal distribution with
mean zero and standard deviation equal to two. The reported response is given byZ = Y +S.
Table 2 gives Theoretical Percent Relative Efficiency (in bold) for various estimators based on
the first order of approximation. The Theoretical Percent Relative Efficiency of the estimators
as compared to the ordinary RRT sample mean are calculated from the following equation:

PRET (µ̂i) = 100×
MSET (µ̂y)

MSET (µ̂i)
(49)

wherei = R,Reg,ER,GRR,GER,GR1, andGR2.
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Table 1: Population Statistics

Parameters Population 1 Population 2 Population 3 Population 4

N 70 34 256 204
n 25 20 100 50

ρyx 0.7293 0.4491 0.887 0.71
ρzx 0.81079 0.44909 0.8867 0.7099
Ȳ 96.7 856.4118 56.47 966
X̄ 175.2671 208.8824 44.45 26441
S2

x 19842.15 22650.18 3872.573 2061327175
S2

y 3657.368 537544.3 6430.019 5711084
S2

s 3.67395 3.67395 3.67395 3.67395
Cy 0.6254 0.8561 1.42 2.4739
Cx 0.8037 0.7205 1.40 1.7171
Cz 0.6257 0.8561 1.4204 2.4739
f 0.3571 0.5882 0.3906 0.2451

1. Population 1 [Source: Singh and Chaudhary (1986), pp.108]

2. Population 2 [Source: Singh and Chaudhary(1986), pp. 177]

3. Population 3 [Source: Cochran (1977), pp. 196]

4. Population 4 [Source: Kadilar & Cingi (2005)]

Table 2: The Theoretical Percent Relative Efficiency for the Mean Estimators

Estimators PRET Population 1 Population 2 Population 3 Population 4

µ̂Y PRET 100 100 100 100
µ̂R PRET 176.3753 105.001 447.5094 201.5505

µ̂Reg PRET 291.8705 125.2645 467.9889 201.6534
µ̂ER PRET 269.5187 125.1390 271.1049 159.3275
µ̂GRR PRET 292.8943 126.7898 472.3173 211.3242
µ̂GER PRET 294.468 127.1320 478.3395 213.413
µ̂GR1 PRET 303.6344 128.7935 485.3493 212.9479
µ̂GR2 PRET 431.1358 137.8521 775.2617 242.964

6 Conclusion

In this study, we proposed a generalized mixture estimator for the mean of a sensitive
variable in simple random sampling without replacement by using information about a non
sensitive auxiliary variable. The proposed generalized mixture estimator is a mixture of some
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of the commonly known RRT estimators. For the proposed estimators all the percent relative
efficiencies are greater 100 indicating that all these estimators are better than the RRT ordinary
mean estimator. We also note that both of the proposed generalized mixture estimators are
more efficient than the other estimators considered here. Furthemore, the choiceα = 2 works
better thanα = 1. We may note that at a theoretical level, one may be tempted to optimizeα.
Our goal though was to have a general family of estimators where many of the existing estima-
tors become special cases of the proposed estimator with specific choice ofα. For example,
with α = 0 our generalized mixture estimator II becomes combination of the regression and
exponential ratio type estimators. Forα = 1, it involves the ratio term also. Forα = −1, it
involves the product term.
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