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Abstract

In this paper, a new inverted model called the transmuted inverted Nadarajah-Haghighi
distribution is introduced. Different estimation methods of the unknown parameters of
the new distribution are utilized. These methods are maximum likelihood (MLE), least
squares and weighted least squares, maximum product spacing estimation, AD and RAD
estimation, CVM estimation and Bayesian estimation. Also, the potentiality of the new
model is discussed via a real data set.
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1. Introduction

Two-Parameter Nadarajah-Haghighi (NH) distribution was introduced by Nadarajah
and Haghighi (2011) as an extension of exponential distribution and also as an alternative
to the gamma, Weibull and exponentiated exponential distributions. They provided three
motivations for introducing their distribution, for more details see their paper. Let Z to have

Nadarajah-Haghighi distribution, Z ~ N H(«, (3), then the cdf of Z takes the form
F(z)=1—¢"0H)" 2> 0.a,6>0, (1)

where [ is the scale parameter and « is the shape parameter. When o = 1, the exponential
distribution is obtained. Nadarajah and Haghighi (2011) showed that its density can take
decreasing and unimodal shapes and the hazard rate can take increasing, constant and
decreasing shapes. In order to provide some flexibility, alternative generalizations of the
Nadarajah and Haghighi distribution have been proposed. For example, Lemonte et al.
(2015) introduced the Marshall-Olkin Nadarajah Haghighi distribution via the Marshall-
Olkin generator (Marshall and Olkin, 1997). Its cdf is given by

1 _ 61_(1+Bz)a
(1 _ (1 _ 9)61—(1+ﬁz)a)’

F(z)= z >0,
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where the parameter a > 0 and € > 0 control the shapes of the distribution, and the param-
eter B > 0 is the scale parameter. If g = 1, the NH distribution is obtained. They noted
that this distribution is quite flexible and can be used effectively in modeling survival data,
reliability problems, fatigue life studies and hydrological data. Also, it can have constant,
decreasing, increasing, upside-down bathtub (unimodal), bathtub-shaped and decreasing-
increasing-decreasing hazard rate functions.

Yousof and Karkmaz (2017) introduced the Topp-Leone Nadarajah-Haghighi model
using the Topp-Leone generated family of distributions (Sangsanit and Bodhisuwan, 2016).
If a random variable Z follows the Topp-Leone Nadarajah-Haghighi distribution, then its cdf
of Z takes the form

F(z)=(1- 62(1_(1+Bz)a))9, z2>0,a,8,0 >0,

They provided some plots of the pdf and hazard rate function for the distribution and showed
that its hazard function allows different shapes.

Ogunde et al. (2017) introduced transmuted Nadarajah-Haghighi distribution as an-
other generalization of Nadarajah-Haghighi distribution. Its cdf takes the form

F(z)=(1- 61_(1+5Z)a)(1 + )\el_(lwz)a), z>0,a,0>0and |\ < 1.

They showed that its hazard function allows different shapes such as decreasing and bathtub
shapes.

On the other hand inverted distributions of random variables with positive support
provide a valuable alternative for the regular distributions when the assumptions for the use
of these distributions are not valid. Also, they may be used in Bayesian analysis of prior and
posterior distribution of some parameters such as the scale parameter. Sheikh and Ahmed
(1987) discussed characteristic features of the hazard functions based on this inverted class
of distributions and explored their possible uses. Hazard functions and mean residual life
of inverted normal inverted Gamma and inverted Weibull are compared with the normal,
Gamma and Weibull hazards. For a general discussion of inverted distributions, see Folks
(1983), Lehmann and Shaffer (1988) and Habibullah and Ahmed (2006).

Some authors discussed the inverse transformation method of baseline variables to
obtain inverted distributions due to its usefulness to explore additional properties of the
phonomenons which non inverted distributions cannot. Some of these distributions are:
inverse exponential distribution (Keller and Kamath in 1982), inverse Rayleigh distribution
(Voda in 1972), inverse Lindley distribution (Sharma et al., 2015), inverted Nadarajah-
Haghighi (Tahir et al., 2018), inverse xgamma (Yadav et al., 2019) etc.

Furthermore, some authors used the quadratic rank transmutation map (QRTM) ap-
proach to generate a generalization of an inverted distribution such as: Mahmoud and Man-
douh (2013); Elbatal (2013); Khan (2019) ect. According to this approach, a random variable
Z is said to have a transmuted distribution if its cumulative distribution function (cdf) sat-
isfies the following relationship:

G(z) = (1+ N F(z) = AF(2)%, [\l < 1, (2)
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where F(x) is the cdf of the baseline model and the corresponding probability density function
takes the form:
g9(x) = f(2)[(1+X) = 2AF(z)], |A| < 1

(see Shaw and Buckley (2009)). The same approach has been used to introduce the trans-
muted form of inverted Nadarajah-Haghighi distribution.

2. The Transmuted Inverted N-H Distribution

Let the random variable X=1/Z, where Z follows the NH distribution whose cdf is
given in (1), then cdf of the inverted N-H distribution takes the form

F(z) = el (A S 0, a8 > 0.

Using (2) and taking the inverted N-H distribution as the base distribution, one can generate
the cdf of the transmuted inverted N-H (TINH) distribution as follows

G(z) = =014 X = A0+ 25 0,0, > 0and || < 1. (3)
The corresponding pdf and hazard function (failure rate function) are given respectively
9(2) = afr2(1 + fa-1)r 108 (1 |y Z pel-(487) 0
and

h([L‘) . aﬁaj—Z(l + Bx—l)a—lel—(l-‘rﬂx—l)a(l + )\ . )\61_(1+Bm—1)a) (5)
- 1 — =571 4 X — Nel-(46270)) ‘

The new distribution is flexible to model positive real data sets which display decreasing and
upside-down bathtub (UBT) hazard rate shapes. Some plots of density and hazard functions
are displayed in Figures (1) and (2) for different values of the parameters. In Figure (1), the
plots indicate that the TINH density can be decreasing and unimodal. The plots in Figure
(2) show that the TINH hazard function can be decreasing and UBT. The new distribution
has no finite moments.

The inverse of the cumulative function (3) yields the following quantile function

T4 X—= /(14 N)2 =4\
+ \/(2;‘ ) NYe—1D we(0,1) (6)

Q(u) = B((1 — In(

The specification of a distribution through its quantile function takes away the need to
describe a distribution through its moments. The following alternative measures in terms of
quantiles that reduce the shortcomings of the moment-based ones:

The median as a measure of location is defined by

L+A—/(1+A)?=2X | .
M = Q(0.5) = B((1 — In( ) )V -1,

The interquartile range as a measure of dispersion is defined by

IQR = Qs — Q1 = Q(0.75) — Q(0.25).
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Figure 1: Plots of the TINH density for different parameter values
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Figure 2: Plots of the TINH hazard rate for different parameter values

Skewness is measured by Galton’s coefficient

Q3+ Q —2M
Sk = -0l (7)
Moors, 1988 proposed the measure
Ku = (Q(0.875) — Q(0.625) + Q(0.375) — Q(0.125))/IQR (8)

as a measure of kurtosis. Given the form of Q(u), the calculations of all the coefficients are
very simple, as one needs to only substitute the appropriate fractions for u. For example,
one can use formulas (6), (7) and (8) to calculate the skewness and kurtosis for the TINH
distribution. Table 1 shows the skewness and kurtosis of the TINH distribution for different
values of parameters. One can note that for fixed values of «a, the skewness and kurtosis
decrease as A approaching to 1 and for fixed values of A, the skewness and kurtosis decrease
as « increases. Also, for generating random numbers from the TINH distribution, one can
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use formula (6). Quantile functions have several interesting properties that are not shared
by distributions, which makes it more convenient for analysis. For more details see Nair et
al.,2013.

Table 1: Skewness and Kurtosis of the TINH distribution for some values of
parameters

Sk alA -1 -0.8 -0.4 0.4 0.8 1

0.5 04873 0.4889 0.4988 0.4827 0.4171 0.3770
0.8 04788 0.4778 0.4810 0.4518 0.3807 0.3388
1.0 0.4763 0.4751 0.4770 0.4443 0.3719 0.3295
1.5 04742 04725 04721 0.4368 0.3629 0.3201
3.0 04729 0.4710 04706 0.4322 0.3575 0.3144
5.0 0.4727 04706 0.4700 0.4312 0.3563 0.3132

Ku alA -1 -0.8 -0.4 0.4 0.8 1

0.5 21593 2.1621 2.1766 2.1347 1.8452 1.6651
0.8 2.1450 2.1445 2.1481 2.0693 1.7814 1.6109
1.5 2.1417 2.1406 2.1417 2.0547 1.7675 1.5993
1.5 21386 2.1367 2.1354 2.0405 1.7541 1.5882
3.0 21367 21344 21317 2.0321 1.7463 1.5817
5.0 21363 2.1339 2.1309 2.0304 1.7446 1.5804

Note: neither skewness nor kurtosis of the TINH distribution depends on the value of 3.

3. Non-Bayesian Estimation Methods

Here, we use different methods for estimating the parameters of the TINH distribution
(e, B and A). These methods are maximum likelihood estimation (MLE), least squares and
weighted least squares estimation, maximum product spacing estimation, AD and RAD
estimation and CVM estimation.

3.1. Maximum likelihood estimation (mle)

The mle is the most popular technique for obtaining estimators and it has desirable
properties such as constructing confidence intervals. Now, we consider X;, Xo,..., X, as a
random sample from TINH distribution, defined in (3), with observed values x1, z, ..., x,.
The log-likelihood function for the vector of parameters = («, 5, )" can be expressed by

n n

[ = niln(a) +nin(B) — Qilnxi +(a=1) > In(1+ Bz ") + > (1 — (1 + Bz H)*)

i=1 =1

+ Y in(l4+ - 2)\6(1—(1+/3x;1)a)). (9)

=1
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The components of the score vector U(@) take the forms
Uy = nfa+> In(1+Bz;")+> (14 Bz;H)*n(l + Bz )
i=1 i=1
n A=A )N (1 4 B ) in(1 + Bz;)
i=1 (1 + A — 2>\e(1*(1+ﬁx;1)”))

)

Us = n/B+ (=1 a7 In(1+Bz;") —ad z;'(1+ Bz )} (10)
i=1 i=1
n 2)\0[1,;16(17(1%3:1:;1)“) ]-+sz_1 a—1
+ Z 1,5 1o )
1 — 2e(1—(1+Bz;71)*)

1+ A — 2)e(1-(+6z7 %))
(1+ )

Equating formulas in (10) to zero and solving them simultaneously yield the mle estimates
of the unknown parameters. To construct confidence interval of the model parameter, this
requires the 3 x 3 observed information matrix J(@) = —Jg, for s,k = a,(, A and § =
(e, B, A)t, whose elements are obtained by taking the second derivative of (9). In the ob-
served information matrix, we replace the model parameters by its mles. Maximum likelihood
estimation of the model parameters may be difficult to obtain in certain cases-particularly
where the support of the model is unknown. Moreover the mle may not be robust to de-
partures from the assumed model. These considerations motivated the following estimation
methods described below.

)

Uy =

3.2. Minimum distance estimation

In this section, we use some methods of estimation based on minimum distance between
the cdf of TINH distribution and the empirical cdf. These methods are divided into two
approaches; the first group is known as least-square approach; the second group is related
to goodness-of-fit statistics.

3.2.1.Least-square approach (LSE)

Swain et al. (1988) used least-square approach to parameter estimation to summarize a
set of data by a distribution function in Johnson’s translation system. They investigated this
approach via minimizing the distance between the vector of “uniformized” order statistics and
the corresponding vector of expected values. Let x1,zo, ..., x, be a random sample of size n
with the cdf F(.) in (3) and let Z(1.) < T(2:) < -+ < T(n:n) be the ordered observations. The
LSEs of a, B and A\, say &rsg, BLSE and XLSE, can be obtained by minimizing the following
formula with respect to «, 3, .

n

DlS(CY, 6, )\) = Z(F(x(zn)7 «, Ba )‘) -

=1

7
n+1

)2

Also, one can determine these estimators by solving

n

1
F(x.n; A)— —— s A) =
Zz::l( (171.71;0[767 ) n+1)p1(xz.naa7ﬂa ) Oa
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n

> (F(@im; o, B,A) —

?

)/02(55171, «, 67 >\) = Oa

i=1 n+1
and ) |
;(F@m, o, 5; )\) - n _Zi_ 1):03(371:11; 04,67 )\) =0,
where
pr(@imi o, B,N) = (1+ Ba™) n(1 + pa~t)e!~0+AD"
v (—(14+ X))+ 22!+, "
pQ(ZEi:n; (I,B, >‘) = Oé(l + 61‘_ )a 113_161 (1+pz~ 1)a( (1 + )\) + 2)\@1—(1+ﬂx*1)a)a<12)
and

pa(Timicr, B, A) = el (1 0T, (13)

Weighted least-square estimators, awsg, BWLSE and S\WLSE, can be determined by
minimizing (see Tahir et al., 2018)

W(a,ﬁ,A)zi(n.+1) (n+2)<F( Lmy; @ By N) — nil)2

n_‘_l)pl(l‘z.nvaaﬁv )

i(nfl) (n+2) j_

(F(xpp; o, B, A . 1)p2($z‘:n§ a,B3,A) =0,

and

( (xzna 7/6) ) %H)p?)(xzn,@,B?/\):

where p;(.;a, 5,\),i = 1,2,3 are given by (11)-(13).

3.2.2.The approach based on the goodness-of-fit statistics

Anderson and Darling (1952) proposed a general class of tests for testing the goodness
of fit of a sample of n observations to a specified continuous distribution function F(z).
Their test was based on the difference between the specified distribution and the empirical
distribution F,,(z) of the sample. From the following measure

W2 = [ (F(e) = GP) PU(F@)F, (19

where 1(t)(> 0) is some preassigned weight function., when ¥ (t) = 1,2 reduces to
nw?, where w? is the Cramér-von-Mises test statistic (see Anderson and Darling (1954).
Put ¢(t) = 1/t(1—t) in (14) W?2 reduces to the statistic A2 which was studied by (Anderson
and Darling (1952, 1954)). Here, we estimate the parameters of TINH distribution based
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on minimization of the goodness-of-fit statistics with respect to «, 8 and A. These statistics
are Cramér-von-Mises; Anderson-Darling. Let zq,xs,..., 2, be a random sample of size n
with the cdf G(.) in (3) and let T(1.) < T(2:n) < -+ < Z(nm) be the ordered observations.
After computing the last integration, the formulae of the two statistics will be obtained in
(15) and (16).

Cramér-von Mises (CVM) estimation

The CVM estimators of «, f and A, say &cvyar, BCVM and S\CVM, can be obtained by
minimizing the following formula with respect to a, 3, A.(see MacDonald, 1971)

21— 1
CM(O(,B, 12n Z zn);aaﬁa )‘>_ m )2' (15>

=1

Also, one can obtain these estimators by solving the following non-linear equations

S (i ) — 2!

=1

zn:( (xzna 7ﬁ7 ) 212;1)[)2(%”7@’6’)\):0’

i=1

)pl(xzny «, Ba )‘) == O

and . 0 1
Z —_
Z( (Izna 767 ) m )pS(l‘i:n;O‘aB’ )‘) = 07

i=1

where p;(.;a, 5,\),i = 1,2,3 are given by (11)-(13).

Anderson-Darling estimation

The AD estimators of «a, 5 and A, say &AD,BAD and S\AD, can be obtained by mini-
mizing the following formula with respect to «, 8, A.(see MacDonald, 1971)

n

D(a>ﬁa )‘> = —nh—= ;Z(QZ - 1)<log(F($zn7 a>67 A)) + lOg( (xn—i-l —ins O 57 ))a (16)

=1

where F(z) = 1 — F(z). Also, one can obtain these estimators by solving the following
non-linear equations

n

0 1 p1(Tim;a, By A) p1(Tpg1—im; @, B, A) —0
;< ¢ )( (l‘ln, ,5, ) F(xn-i-l—i:n;aaﬁa)‘)) 7

n

. P2 (xm,oz 6 ) p2(xn+17i:n;04767>\) _
;@Z 1)( (-Tz s @, 3, ) F(anrlfi:n;O‘aﬁv )‘>) "

and

i=1 (:L'zna 757 ) F(xn-l—l—i:n;aaﬂa)‘)

zn:<2l . 1)([7 (xz ny &, 67 ) p3<xn+1—i:n;aaﬂ7)\)) —0.
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where p;(.;a, 5,\),i = 1,2,3 are given by (11)-(13).

The Right-tail Anderson-Darling (RAD) estimators of a, # and A\, say &grap, Brap

and \pap, can be obtained by minimizing the formula (17) with respect to «, 5, \. (see Tahir
et al. 2018)

RAD(a,5,3) = & - 23" Flgmia, B, A) i(2z’ C Dlog(F(mnr s BN),  (17)
=1

where F(z) = 1 — F(x). Also, these estimators can be obtained by solving the following
non-linear equations

n

< 1 T ims O 7)‘
=23 p1(Tim; @, B, ) + = 3 (20— pyolnini @ 5 A)
=1

n i—1 F Tn41—in; & 757 )‘)

_Zi (ZL‘Z”, ,67 ) iLZn:(Q’L—]_)pQ(QEn-‘rl i, 7B>)\):07

i=1 i=1 F xn+1—i:n7 767)\)

and
(xn+1 imy O 6 )

=0.
Tn+1—ims O, 6 )

_sz?) Lim; O 767 +7”LZ22_1 p3
i=1 i=1

where p;(.;a, 5, )),1 = 1,2,3 are given by (11)-(13).

3.3. Maximum product of spacing (MPS) estimation

This approach was introduced using two methods. The first was by Cheng and Amin
(1983) via the idea of spacings. They proposed it as a general method of estimating param-
eters in continuous univariate distributions. They studied some properties of their approach
such as efficiency; consistency and others. Also, they compared it with the mle method via
some examples. The second was introduced by Ranneby (1984) who used an approximation
of Kullback-Leibler information like the mle method to derive this approach.

Let 1,2, ..., 2, be a random sample of size n with the cdf G(.) in (2.1) and let z(1.,) <
T(2m) < +++ < T(np) be the ordered observations. The uniform spacings of the sample is
defined as

Di(a767>‘): ( T(i:n); O 767 ) ( (i—1:n); aﬁ? )7 i:172a"'7n7 (18)

where G(x(O:n);aaﬁa )‘) = OvG(I(n—H:n);O‘uﬁa ) =1 and Zn-‘,—l ( 757 /\) =L

The maximum product of spacings estimators & j,pg, B Mmps, and b\ mps of the parame-
ters o, § and \ are obtained by maximizing the geometric mean of the spacings with respect
to a, B and A , i.e. maximizing ([T D;(a, 3, X))/ +D) - Or, equivalently, maximizing the

function
n+1

D(a, 5, A Z InD;(
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The estimators &/ pg, B vps, and A\ ps of the parameters «, 5 and A are obtained by solving
the following non-linear equations

a 1 n+1 1
D _ . _ L _
50 (o, B, \) T 1221 Di(. 7. (p1(Tim; , B, A) — pr(xicim; a, B,0)) =0,

a 1 n+1 1
%D(a,ﬁ,)\) = ] ; D, BN (P2(Tins @, By A) = pa(Ti—1n; v, B, ) = 0,

and

D(O[, 57 )‘ - <p3('x’b’m O[, 57 )\) - p3(‘ri—117’b; Oé, 67 /\)) = 07

I

where p;(.;a, 5,\),i = 1,2,3 are given by (11)-(13).

4. Numerical Study for Different Estimation Methods

Now, a numerical study is carried out to compare the performance of the frequentist
estimators discussed above. To do this we compute absolute value of relative bias (ARbias),
scaled root mean square error (SRMSE), average absolute (Dgs) and maximum absolute
(Dmaz) differences between the theoretical and empirical distribution function at the estimate
values (see Tahir et al., 2018). The formulas of these statistics take the forms:

ARbias(0) = |bias(9)|/0, bais(d) = ;i(éz —0),

1 m
SRMSE(f) =/ MSE(&)/6, MSE( = Z
1 mn R N
abs—izZ‘F .73”, (331],(9” Dmax: Zmax\F xl]a ) F(xijae)‘a
n i=1j5=1 mz 1

and Y. Ranks gives the partial sum of the ranks. A superscript indicates the rank of each
of the estimators for that metric. For example, Table 2 shows the ARbias of the MLE (&)
as 0.0727 for n=30. This indicates that the ARbias of (&)obtained using the method of ML
ranks 7th among all other estimators. For different sample sizes (n=30, 50, 100, 150), w
generate (m=1000) random samples from TINH distribution with parameters o = 2, 0.8, B =
1.5,0.5 and A = 0.5, —0.5. The results are reported in Tables 2-5 and one can note that in
most cases the ARbias and SRMSE of all estimators decrease when the sample size increases.
Also, D, is smaller than D,,,, for all estimation methods and these statistics are smaller
when n increases. According to Y. Ranks, CVM and LS are the best compared to the other
methods. Although the results are not reported here, we also performed simulation study
by taking several different values of A\. The trend of the results are quite similar as reported
in Table 2 through 5.



2022] TRANSMUTED INVERTED N-H DISTRIBUTION 61
Table 2: Numerical results for « = 2,5 =0.5, and A = 0.5

n Estimate MLE MPS CVM AD RAD LS WLS
30 | ARbias() | 0.07217 | 0.0317° | 0.0110" | 0.0223% | 0.0157% | 0.0228* | 0.0234°
SRMSE(&) 0.26747 | 0.2165°% | 0.1475' | 0.1875° | 0.1784* | 0.1541%> | 0.16923
ARbias(5) | 0.0482% | 0.1013% | 0.0384" | 0.11407 | 0.1104% | 0.057435 | 0.057433
SRMSE(@) 0.35287 | 0.3312% | 0.1951' | 0.2923° | 0.2700* | 0.2089% | 0.21423
ARbias(j\) 0.1519% | 0.16717 | 0.0569% | 0.0846* | 0.0980° | 0.0401% | 0.0055!
SRMSE(A) 0.5368° | 0.60727 | 0.4622% | 0.4258"' | 0.4643* | 0.4475% | 0.4713°
D gps 0.03647 | 0.0193* | 0.01413 | 0.0215° | 0.0232° | 0.0096% | 0.0096
Dmax 0.0630° | 0.06897 | 0.0238% | 0.0353* | 0.0403° | 0.0177% | 0.0172!

> Ranks 4855 4855 16! 344 36° 19.5 22.53
50 | ARbias(a) | 0.0412° | 0.29777 | 0.01197 | 0.0153° | 0.01369° | 0.0099" | 0.0150*
SRMSE(@) 0.23117 | 0.1874% | 01296' | 0.1544%* | 0.15624° | 0.1302% | 0.14293
ARbias( ) 0.0605° | 0.08817 | 0.0175" | 0.0774% | 0.0793% | 0.0270%5 | 0.0270%°
SRMSE(B) 0.33727 | 0.3070° | 0.1486" | 0.2290° | 0.2124* | 0.1507% | 0.17723
ARbias(S\) 0.16827 | 0.1548°% | 0.07323 | 0.1118* | 0.1219° | 0.0039! | 0.04432
SRMSE(A) 0.4760¢ | 0.51037 | 0.4140° | 0.3786" | 0.4139* | 0.3931% | 0.4130°
D gps 0.03107 | 0.0164* | 0.01023 | 0.0168° | 0.0181° | 0.0034' | 0.0087>
Dmax 0.07297 | 0.0680° | 0.03223 | 0.0488* | 0.0532° | 0.0059' | 0.0193?

> Ranks 537 496 19? 30 35° 14.5 23.5°
100 | ARbias(a) | 0.03977 | 0.0130° | 0.0040' | 0.0217* | 0.03246 | 0.0096* | 0.0223°
SRMSE(«) | 0.20557 | 0.1472° | 0.1013' | 0.1261* | 0.1290° | 0.1061* | 0.1103?
ARbias(8) | 0.0327% | 0.0450° | 0.0106% | 0.0696° | 0.08487 | 0.0192' | 0.0192?
SRMSE(S3) | 0.29387 | 0.2233% | 0.1132! | 0.1978° | 0.1792* | 0.1227* | 0.14083
ARbias()) | 0.11767 | 0.0967* | 0.0429% | 0.1063° | 0.1034% | 0.0044' | 0.0639°
SRMSE()) | 0.3691° | 0.39797 | 0.3383° | 0.2991' | 0.3294* | 0.3243% | 0.32823
D s 0.0230° | 0.10107 | 0.0053% | 0.0132° | 0.0131* | 0.0018! | 0.00783
Dmazx 0.05487 | 0.0454* | 0.02112 | 0.0497° | 0.0483° | 0.0027' | 0.0299°

> Ranks 517 426 17? 374 40° 12 253
150 | ARbias(a) | 0.00627 | 0.0143* [ 0.0025' | 0.0289° | 0.0419" | 0.0101° | 0.0343°
SRMSE(«) | 0.18717 | 0.1256° | 0.08562 | 0.1105* | 0.1130° | 0.0031' | 0.0989°
ARbias(3) | 0.0670° | 0.0377* | 0.0129! | 0.0729¢ | 0.09327 | 0.0161%® | 0.0161%*5
SRMSE(S3) | 0.28597 | 0.1943° | 0.1030' | 0.1948% | 0.1664* | 0.1062* | 0.1285
ARbias(A) | 0.09877 | 0.0566* | 0.0097' | 0.0862° | 0.0901% | 0.0160% | 0.05443
SRMSE(A) | 0.3151° | 0.33027 | 0.2798° | 0.2327* | 0.2716* | 0.2737% | 0.2615%
D gps 0.02047 | 0.0066® | 0.0026* | 0.0110° | 0.0115°% | 0.0022' | 0.0070%
Dmax 0.04687 | 0.0270% | 0.0046" | 0.04115 | 0.0429° | 0.0077% | 0.02593

> Ranks 487 3745 14} 3745 455 16.52 26.5°
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Table 3: Numerical results for « = 2,5 =1.5, and A =0.5

[Vol. 20, No.

n Estimate | MLE | MPS [ CVM AD RAD LS WLS
30 | ARbias(a) | 0.07157 | 0.03707 | 0.0208T | 0.0487% | 0.0473% | 0.0610° | 0.0526°
SRMSE(«) | 0.29857 | 0.22635 | 0.1587" | 0.2058° | 0.1885% | 0.1723* | 0.1898*
ARbias(8) | 0.0691' | 0.1050% | 0.0818% | 0.14717 | 0.14665 | 0.1200° | 0.1073%
SRMSE(3) | 0.41137 | 0.34745 | 0.2173! | 0.2966° | 0.2919* | 0.2309% | 0.2584%
ARbias(A) | 0.1613% | 0.17027 | 0.0995* | 0.0887% | 0.1195° | 0.0135% | 0.0131!
SRMSE(A) | 0.5427% | 0.59447 | 0.4704* | 0.4399" | 0.4948° | 0.4582% | 0.4685°
Daps 0.04097 | 0.0184* | 0.0158% | 0.0203° | 0.0217° | 0.0064' | 0.00962

Dmax | 0.06765 | 0.07007 | 0.0367* | 0.0360° | 0.0483° | 0.0108' | 0.01622

> Ranks 477 426 20! 334 37° 212 243

50 | ARbias(a) | 0.06027 | 0.0367% | 0.0277" [ 0.0468% | 0.0499° | 0.0576° | 0.0414°
SRMSE(«) | 0.26297 | 0.20185 | 0.1483! | 0.1808% | 0.1739* | 0.1575% | 0.1658°
ARbias(3) | 0.0426' | 0.0972° | 0.0751% | 0.12377 | 0.1226° | 0.09713.5 | 0.097135
SRMSE(S3) | 0.36477 | 0.32275 | 0.1934! | 0.2652° | 0.2584* | 0.2074%> | 0.22963
ARbias(A) | 0.1070° | 0.12487 | 0.0835% | 0.0842° | 0.0791% | 0.0096' | 0.0313>
SRMSE(A) | 0.4719% | 0.52237 | 0.4079% | 0.3880" | 0.4234° | 0.3962% | 0.4124*
Daps 0.03047 | 0.0153° | 0.0118% | 0.01615 | 0.0147* | 0.0046' | 0.0087?

Dmaz | 0.0482% | 0.05497 | 0.0367° | 0.0365* | 0.0344% | 0.0074' | 0.0137?

> Ranks 477 456 202 37° 344 18.5 22.53

100 | ARbias(a) | 0.03877 | 0.0428% | 0.0342T [ 0.0487° [ 0.05167 | 0.0482° | 0.04487
SRMSE(a) | 0.21007 | 0.16465 | 0.1224' | 0.1467° | 0.1463* | 0.12682 | 0.1335
ARbias(3) | 0.0460" | 0.0982° | 0.07942 | 0.11477 | 0.1142% | 0.08743° | 0.08743°
SRMSE(8) | 0.39927 | 0.2718° | 0.1698" | 0.2150* | 0.2226° | 0.1749? | 0.1955
ARbias(A) | 0.0802% | 0.09185 | 0.08415 | 0.09227 | 0.0776% | 0.0413' | 0.0588>
SRMSE(XA) | 0.3705° | 0.40977 | 0.3270* | 0.3073" | 0.3270° | 0.3137*> | 0.32323
Daps 0.02217 | 0.0124* | 0.0108% | 0.0140° | 0.0125° | 0.0066' | 0.0095

Dmaz | 0.0373% | 0.04296 | 0.0394° | 0.04307 | 0.0361* | 0.0192 | 0.02742

> Ranks | 38%° 4355 222 4355 3845 17.5¢ 22.53

150 | ARbias(a) | 0.0106" [ 0.0375% | 0.0401% | 0.0571° [ 0.05847 | 0.0496° | 0.04757
SRMSE(a) | 0.19557 | 0.15945 | 0.1144' | 0.13915 | 0.1350* | 0.11852 | 0.12253
ARbias(3) | 0.0639' | 0.0895° | 0.0807% | 0.12157 | 0.1193° | 0.0860%° | 0.0860%>
SRMSE(3) | 0.30257 | 0.26047 | 0.1612! | 0.2035* | 0.2117° | 0.1655% | 0.1861°
ARbias(A) | 0.0601° | 0.0554* | 0.0491 | 0.07407 | 0.0622% | 0.0187" | 0.04252
SRMSE(A) | 0.3234% | 0.34137 | 0.2784 | 0.2640" | 0.2886° | 0.2697* | 0.27783
D 0.01957 | 0.0108* | 0.0079% | 0.01215 | 0.0108% | 0.0050' | 0.00813

Dmaz | 0.0297% | 0.0260* | 0.0233% | 0.03517 | 0.0295° | 0.0088' | 0.02012

> Ranks 40° 38% 192 4365 4365 17.5! 23.53
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Table 4: Numerical results for « = 0.8, 5 =1.5, and\ = 0.5
n Estimate MLE MPS CVM AD RAD LS WLS
30 | ARbias(r) | 0.08417 | 0.0240% | 0.0113" | 0.0365* | 0.0306° | 0.0547° | 0.0424°
SRMSE(a) | 0.26157 | 0.2171% | 0.1645" | 0.1778* | 0.1914° | 0.1692® | 0.1671?
ARbias(8) | 0.0506' | 0.14625 | 0.0948% | 0.17417 | 0.1649° | 0.12923° | 0.12923"
SRMSE(S) | 0.45427 | 0.4360° | 0.2716' | 0.3205% | 0.3506° | 0.2864? | 0.2917°
ARbias(A) | 0.14795 | 0.22637 | 0.0943% | 0.1258% | 0.1156* | 0.0251% | 0.0228'
SRMSE(A) | 0.6135° | 0.65227 | 0.5121% | 0.4906' | 0.5163 | 0.5212* | 0.5313°
Dy 0.03697 | 0.0239% | 0.0157% | 0.0210* | 0.0211° | 0.0067" | 0.0087?
Dmax 0.0612° | 0.088947 | 0.0376% | 0.0495° | 0.0454* | 0.0118" | 0.0135
> Ranks 477 46° 16! 344 35° 22.52 23.5%
50 | ARbias(c) | 0.0498 | 0.02577 | 0.0238T | 0.0410° | 0.0386" | 0.0491° | 0.0365°
SRMSE(a) | 0.21237 | 0.1810° | 0.1371% | 0.1508* | 0.1598° | 0.1423% | 0.1357*
ARbias(3) | 0.0678" | 0.1309° | 0.1056* | 0.17317 | 0.1494% | 0.1216>> | 0.1216>°
SRMSE(f) | 0.42717 | 0.3980° | 0.2470" | 0.3016* | 0.3055° | 0.2530% | 0.25784°
ARbias(A) | 0.0980° | 0.1297" | 0.0837* | 0.1207° | 0.0750° | 0.0001' | 0.0269°
SRMSE()) | 0.5355% | 0.58427 | 0.4386° | 0.4344% | 0.4395 | 0.4304! | 0.4648°
Das | 0.02897 | 0.0183% | 0.0134° | 0.0195° | 0.0152* | 0.0054 | 0.0083"
Dmazx 0.0445° | 0.0563" | 0.0363* | 0.0519° | 0.0320® | 0.0103' | 0.0124%
> Ranks 4565 4555 202 405 344 18.5! 21.5%
100 | ARbias(cr) | 0.0247" | 0.0309% | 0.0339° | 0.0448° | 0.0427° | 0.0477" | 0.03617
SRMSE(a) | 0.16327 | 0.1518% | 0.1078% | 0.1167* | 0.1264° | 0.1115% | 0.1030"
ARbias(8) | 0.0659" | 0.1458° | 0.1129% | 0.15767 | 0.1375° | 0.1225%5 | 0.1225%°
SRMSE(f) | 0.3705° | 0.39467 | 0.2186' | 0.2538" | 0.2689° | 0.2236* | 0.2400°
ARbias(\) | 0.0980° | 0.1401° | 0.1192° | 0.14477 | 0.1014* | 0.0762" | 0.0871°
SRMSE(A) | 0.4657% | 0.5196" | 0.3696% | 0.3869" | 0.3858° | 0.3686' | 0.4070°
Das | 0.02167 | 0.0192° | 0.0127° | 0.0169° | 0.0131* | 0.0085" | 0.0104>
Dmazx 0.0452% | 0.0648% | 0.0554° | 0.06707 | 0.0469* | 0.0353' | 0.0404*
> Ranks 344 467 233 445 35° 19.5 22.52
150 | ARbias(a) | 0.0021" | 0.0426% | 0.0451% | 0.0574" | 0.0454° | 0.0536° | 0.04127
SRMSE(a) | 0.1380° | 0.14027 | 0.1017% | 0.1109° | 0.1089* | 0.1043% | 0.0917*
ARbias(3) | 0.1010" | 0.1664°% | 0.1394% | 0.18547 | 0.1344% | 0.1439%5 | 0.1439*5
SRMSE(S) | 0.36355 | 0.38437 | 0.2292' | 0.2412% | 0.2395% | 0.2322% | 0.2435°
ARbias(A) | 0.09723 | 0.1316° | 0.13245 | 0.15977 | 0.0971% | 0.1010* | 0.0917*
SRMSE()) | 0.4207% | 0.45627 | 0.3144? | 0.3365* | 0.3298% | 0.3084' | 0.3445°
D s 0.01947 | 0.0183° | 0.0138* | 0.01745 | 0.0117 | 0.0108* | 0.0106"
Dmazx 0.0460? | 0.0623° | 0.0630° | 0.0758" | 0.0461% | 0.0480* | 0.0436"
Y. Ranks 32° 4655 28* 4655 252 26.5° 20.5
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Table 5: Numerical results for « = 0.8, =0.5, and A =0.5
n Estimate MLE MPS CVM AD RAD LS WLS
30 | ARbias(a) | 0.06037 | 0.0356° | 0.0027%7 | 0.0271° | 0.0223% | 0.0413% | 0.0314%
SRMSE(a) | 0.23347 | 0.22035 | 0.1472' | 0.1656* | 0.1684° | 0.1561% | 0.1479?
ARbias(3) | 0.0849% | 0.20427 | 0.0725' | 0.1555% | 0.1477° | 0.0989%5 | 0.0989%5
SRMSE(3) | 0.43875 | 0.50167 | 0.2511' | 0.3126* | 0.3248° | 0.2635% | 0.25422
ARbias(\) | 0.1630% | 0.23357 | 0.0405% | 0.0890° | 0.0867* | 0.0829° | 0.0356
SRMSE()) | 0.59896 | 0.68527 | 0.4927% | 0.4623' | 0.5096% | 0.4946° | 0.5343°
Doaps 0.03657 | 0.0291% | 0.0128% | 0.0200* | 0.0202° | 0.0111% | 0.0087*
Dmax 0.0658% | 0.09327 | 0.0187% | 0.0353° | 0.0347% | 0.0353* | 0.0160"
S Ranks 476 517 13! 324 33° 27.5° 19.52
50 | ARbias(a) | 0.04287 | 0.0385° | 0.0128" [ 0.03106 | 0.02743 | 0.0361° | 0.02442
SRMSE(a) | 0.18747 | 0.1817% | 0.1245% | 0.1369* | 0.1474° | 0.1301® | 0.1130*
ARbias(8) | 0.0533! | 0.17577 | 0.0665% | 0.1343° | 0.1115° | 0.0781%5 | 0.0781%5
SRMSE(3) | 0.38835 | 0.44977 | 0.2145% | 0.2809° | 0.2639* | 0.2139% | 0.2128!
ARbias()\) | 0.1125° | 0.17957 | 0.0626% | 0.1131% | 0.0720* | 0.0183% | 0.0089!
SRMSE(A) | 0.5420% | 0.62637 | 0.43226% | 0.4320' | 0.4612* | 0.4346% | 0.4817°
Daps 0.025157 | 0.02252% | 0.009755% | 0.01655° | 0.01277* | 0.00392 | 0.0038"
Dmax 0.0490* | 0.07817 | 0.0274% | 0.0492° | 0.0311% | 0.0087" | 0.0613°
> Ranks 436 537 18! 36° 324 21.5° 20.52
100 | ARbias(a) | 0.00767 | 0.0486° | 0.0244% | 0.0494" | 0.0393° | 0.0354* | 0.0325°
SRMSE(a) | 0.15157 | 0.1456° | 0.0977% | 0.1154° | 0.1052* | 0.1005° | 0.0887!
ARbias(f) | 0.1026* | 0.18637 | 0.0911% | 0.18095 | 0.1332° | 0.0948%° | 0.09482
SRMSE(B) | 0.3691¢ | 0.39127 | 0.1885' | 0.2554° | 0.2314* | 0.1886% | 0.1943°
ARbias()\) | 0.1147° | 0.15917 | 0.074643 | 0.15804% | 0.1005* | 0.0288' | 0.05712
SRMSE(A) | 0.4450% | 0.51137 | 0.3426% | 0.3454% | 0.3645* | 0.3372' | 0.3783°
Dops 0.02317 | 0.0203% | 0.0106% | 0.0193° | 0.0135* | 0.0062' | 0.0086
Dmax 0.0528* | 0.07347 | 0.0345% | 0.0730° | 0.0464° | 0.0131' | 0.0263?
> Ranks 40° 537 202 436 354 15.5! 20.5°
150 | ARbias(a) | 0.0028" | 0.0367% | 0.0303% | 0.05447 | 0.0416° | 0.0384° | 0.02942
SRMSE(a) | 0.13477 | 0.1326° | 0.0902%2 | 0.1079° | 0.0923% | 0.0949* | 0.0775!
ARbias(3) | 0.1020% | 0.1439° | 0.0997 | 0.1844°% | 0.1243* | 0.1050%° | 0.1050%°
SRMSE(B) | 0.3407% | 0.34497 | 0.1846' | 0.2442° | 0.2099* | 0.1917% | 0.1918°
ARbias(\) | 0.1186° | 0.1258% | 0.1009% | 0.17827 | 0.1060* | 0.0717% | 0.0690*
SRMSE(A) | 0.40726 | 0.43847 | 0.29822 | 0.3103% | 0.3188* | 0.2905' | 0.3281°
Doaps 0.02017 | 0.0167° | 0.0112% | 0.0189% | 0.0117* | 0.0085% | 0.0081!
Dmax 0.0563° | 0.0600% | 0.0481% | 0.08477 | 0.0505* | 0.0341%? | 0.0329!
> Ranks 39° 465 182 465 334 21.5° 17.5!
5. Bayesian Estimation

In this section, Bayesian estimation of the three unknown parameters of the TINH dis-

tribution will be discussed. Approximate Bayes estimates are computed using the Gibbs sam-
pling procedure with generating samples from the posterior distributions. This requires prior
density functions of the unknown parameters («, 5 and ). Here, we assume that «, 3 and A
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are independent random variables. The parameters o and [ have gamma distributions while
A follows uniform distribution. Their pdfs, respectively are gi(a) oc @@ Vel=0) g,(B) o
Be=Ne=d8) and g5(\) = constant. The hyper-parameters a, b, ¢ and d are assumed to be
known.

The joint prior distribution for (c, 3 and \) takes the form g(a, 8, \) oc al@= 1 gle=(—ba—df)
and the likelihood function is given by

L(x;a,8,0) o a"fre o dim e o= Yo, (b ) gad i, (a)

n (1*(14’517; ) )\ —
£ e Dizt n(+A=22e )t (19)

Then the joint posterior is given by

g(a,ﬁ,)\\x) o OénJra 1ﬁn+c 16704 b+z 1+ﬁx’1) 1) 7(d/8+z1 1 1+ﬁ:1:71 70‘2?:1(1*533;1)

The conditional posterior distributions used in the Gibbs sampling algorithm are given by
g(alB, N z) o artrlemebt i in(aBe )T gma 3l (b )
x e—ZLIn(lﬂ—er“‘“*‘“? R (21)
g(Bla, A x) o Brretemelb iy n(ikpar )T o (dB 3T, (M) pma 3L, (B
* e*Zizll"(1+>\*2>\€(17(1+mi e H- (22)

and

" - -y
g(Maaﬁax) X 672i=1ln(1+)\*2)\e(1 (A+B2; %)y 1' (23)

The computation can be achieved using the WinBUGS software which requires only the
specification of the joint distribution for the data and the prior distributions for the model
parameters. Gibbs sampling algorithm works as follows

1. Specify the size of the samples we wish to generate, say m.

2. Choose an initial value of 8, say 6 .

3. For iteration i from 1 to m, generate GJ(-i) from g(9j|9§i), . 98.)_1) 08+11 L0670,
for 5 from 1 to p.

4. Return the values 8,0 .. ™).

Discarding the early mg number of burn-in draws and using the remaining m — my,
glmot1) glmot2) —  9(m) a5 the chosen draws from the joint posterior distribution, the Bayes

estlmate of 0; is
m—mo (1)
0, = @J =1,2,3.
m — My
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Furthermore, the lower and upper bounds of the 100(1—v)%,0 < v < 1, Bayesian probability
interval of f; can be obtained using v/2 100 th and (1—v/2) 100 th percentlles of the sequence
of the m — mq draws; §(mo+1) glmo+2) — g(m),

Here, we generate 10,000 samples of a, B and A, after a “burn-in-sample” of size 1000 and
the approximate Bayes estimates with some posterior summaries, such as MC error, 95%
credible interval, median, are given in Table 6. Table 7 has the results of Bayesian estimation
for real data set (mentioned in the section 5) and the graphical representation of the marginal
posteriors of o, f and A are displayed in Figure 3. One can note that the posteriors of a and
B are approximately normal while skewed for A\. Another MCMC method called Metropolis-
Hastings algorithm is used to generate random draws from the joint posterior distribution
without deriving its explicit form. Metropolis-Hastings algorithm unlike Gibbs-sampling,
it requires a proposal distribution and a common choice of it is the multivariate normal
distribution. Metropolis-Hastings algorithm steps are

1. Set the size of the random draws we wish to generate, say m.
2. Choose an initial value of @, say 8.

3. For 1 =1,2,...,m, repeat the following steps:
Set 0 = g—1),

Generate a candidate value #* from a proposal distribution p(6*)|6)).

1. 90 |data)/p(6‘ >|9(”)
" 9(8(")|data)/p(6()|6+))

(a
(b
(c
(d) Generate a random value u from uniform distribution on (0, 1).
(e) Put 8% = @*, if k > u, otherwise put ) = #i-1,

Calculate the ratio Kk = min(1,

)
)
)
)

4. Return the values 8,80 . 9™,

The lower and upper bounds of the 100(1 — v)% Bayesian probability interval of ; as
given above. The computations are carried out using R software. We use the two previously
MCMC methods to analyze the same real dataset. We generate 10,000 samples of «, § and A,
after a “burn-in-sample” of size 1000 with assuming gamma priors for o and § and uniform
prior for A\. The results of Bayesian estimation for real dataset are given in Tables 7-8. Table
7 has the results of Bayesian estimation for real data set (mentioned in the section 5) and
the graphical representation of the marginal posteriors of «,  and A are displayed in Figure
5. One can note that the posteriors of o and § are approximately normal while skewed for
A. Table 8 displays the posterior mean, median, standard deviation and the limits of a 95%
credible interval of each parameter. Figure 6 shows The approximated marginal Posterior
density functions of «, f and .
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Table 6: Summary results for the posterior parameters in the case of the TINH

model

Parameter | n | Estimate SD MC error | 95% Credible Interval | Median
a=2 30 2.0140 0.4468 | 0.013930 (1.2990, 3.0340) 1.9660
50 2.3050 0.4715 | 0.017700 (1.5210,3.3660) 2.2540

100 | 1.9060 0.4109 | 0.021700 (1.2910,2.8780) 1.8400

150 | 1.7690 0.3769 | 0.022720 (1.2200,2.6930) 1.7090

5=0.5 30 0.5695 0.1794 | 0.005541 (0.2963,0.0986) 0.5428
50 0.5178 0.1397 | 0.005364 (0.3031,0.8414) 0.5000

100 | 0.5614 0.1701 | 0.008805 (0.2924,0.9551) 0.5417

150 | 0.5597 0.1729 | 0.010350 (0.2776,0.9335) 0.5384

A=0.5 30 0.4009 0.2585 | 0.004148 (0.0172,0.9304) 0.3726
50 0.8234 0.1485 | 0.002417 (0.4459,0.9933) 0.8612

100 | 0.3069 0.1925 | 0.005165 (0.0181,0.7155) 0.2857

150 | 0.4439 0.1966 | 0.007221 (0.0585,0.8048) 0.4533

a=2 30 1.9590 0.3896 | 0.011880 (1.3330, 2.8670) 1.9090
50 2.1540 0.3982 | 0.013320 (1.5060,3.0490) 2.1120

100 | 2.2250 0.4046 | 0.017630 (1.5400,3.1500) 2.1760

150 | 2.1170 0.3882 | 0.019640 (1.4970,2.9960) 2.0550

B=15 30 1.5260 0.3962 | 0.012380 (1.4820,2.4280) 2.4280
50 1.7240 0.4165 | 0.014080 (1.0370,2.6490) 1.6800

100 | 1.4540 0.3508 | 0.014830 (0.8763,2.2910) 1.4230

150 | 1.4660 0.3605 | 0.018850 (0.8729,2.2600) 1.4400

A=0.5 30 0.7376 0.2166 | 0.002997 (0.1965,0.9917) 0.9917
50 0.7676 0.1897 | 0.003344 (0.2849,0.9909) 0.8152

100 | 0.6903 0.1674 | 0.002574 (0.3211,0.9637) 0.7069

150 | 0.3957 0.1627 | 0.003313 (0.0792,0.7070) 0.3990

a=0.28 30 0.6644 0.1216 | 0.003085 (0.4721, 0.9483) 0.6484
50 0.7987 0.1368 | 0.003655 (0.5742,1.0200) 0.7822

100 | 0.7989 0.1256 | 0.005275 (0.5978,1.0800) 0.7839

150 | 0.8240 0.1186 | 0.005274 (0.6321,1.0950) 0.8093

65=0.5 30 0.5976 0.2113 | 0.005306 (0.2687,1.0880) 0.5706
50 0.5635 0.1921 | 0.005415 (0.2774,1.0300) 0.5332

100 | 0.5212 0.1750 | 0.007392 (0.2570,0.9230) 0.4954

150 | 0.4990 0.1490 | 0.006292 (0.2595,0.8474) 0.4822

A=0.5 30 0.2354 0.1876 | 0.003029 (0.00653,0.6865) 0.1903
50 0.3402 0.2279 | 0.004328 (0.01394,0.8417) 0.3101

100 | 0.4408 0.2238 | 0.006032 (0.03971,0.8596) 0.4437

150 | 0.4422 0.1905 | 0.005595 (0.05382,0.7761) 0.4587

a=0.28 30 0.9075 | 0.16500 | 0.004467 (0.6420, 1.2850) 0.8889
50 0.6691 | 0.09102 | 0.002224 (0.5147,0.8685) 0.6598

100 | 0.9733 | 0.14330 | 0.005941 (0.7385,1.2970) 0.9598

150 | 0.8045 | 0.10710 | 0.004466 (0.6268,1.0430) 0.7936

Continued on next page
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Parameter | n | Estimate SD MC error | 95% Credible Interval | Median
B=1.5 30 1.2040 0.3524 | 0.009401 (0.6320,2.0060) 1.1590
50 1.8200 0.4637 | 0.011370 (1.0370,2.8300) 1.7790

100 | 1.3500 0.3489 | 0.014150 (0.7682,2.1310) 1.3140

150 | 1.4280 0.4045 | 0.016750 (0.7979,2.3730) 1.3710

A=05 30 0.6908 0.2128 | 0.002818 (0.1850,0.9612) 0.7307
50 0.1735 0.1394 | 0.002083 (0.00468,0.5163) 0.1409

100 | 0.7858 0.1563 | 0.003428 (0.4087,0.9894) 0.8163

150 | 0.3297 | 0.1892 | 0.005103 (0.02239,0.7159) 0.3160

Table 7: Summary results for the posterior parameters in the case of the TINH
model based on 128 bladder cancer patients (Gibbs sampling)

Parameter | n Estimate SD MC error | 95% Credible Interval | Median
« 128 0.6774 | 0.04840 | 9.059E-4 (0.5871, 0.77580) | 0.67620
I5; 5.1520 | 0.75810 0.01403 (3.8190,6.78600) | 5.10800
A 0.05183 | 0.05317 8.52E-4 (2.815E-4,0.1935) | 0.03513
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Figure 3: Posteriors of o, 5 and )\ using Gibbs sampling for real data set
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Table 8: Summary results for the posterior parameters in the case of the TINH
model based on 128 bladder cancer patients (Metropolis-Hasting algorithm)

Parameter n  Estimate SD 95% Credible Interval Median

o 128 0.6481  0.03593 (0.5834, 0.7227) 0.64583
o] 0.0640  0.38463 (4.6554, 5.9891) 5.6639
A 0.05183  0.04823 (0.01154, 0.1956) 0.05007

From Tables 7-8, one can note that all Bayesian point estimates are close however the
Metropolis-Hastings provides narrower credible intervals.

6. Applications

Now, to illustrate the potentiality of the TINH distribution, we use a real data set and
show that the new distribution is fit to this data set. The data set represents the remission
times (in months) of a random sample of 128 bladder cancer patients. Bladder cancer is a
disease in which abnormal cells multiply without control in the bladder. The most common
type of bladder cancer recapitulates the normal histology of the urothelium and is known as
transitional cell carcinoma. The data are as follows: 0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90,
1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64,
2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88,
4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41,
5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59,
7.62, 7.63, 7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34,
10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24,
14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63,
25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 79.05. These data were studied by Zea
et al. (2012), among others. According to real data set the maximum likelihood estimates
are obtained for the TINH distribution as follow:

& =3.15,=18and XA = 0.85.

Given the cumulative distribution function Fy(x) of the hypothesized distribution (here
TINH distribution) and the empirical distribution function Fdata (x) of the observed data,
the popular Kolmogorov-Smirnov goodness of fit test (K-S) was carried out at 5% level of
significance. The test statistic is given by:D = sup |Fy(z) — Fyaa(z)].For above data set, K-S

statistic D = 0.117 with p-value 0.1 > 0.05.

In many applications, there is qualitative information about the hazard rate shape,
which can help with selecting a particular model. The empirical scaled TTT transform
(Aarset, 1987) can be used to identify the shape of the hazard function. The scaled TTT
transform is convex (concave) if the hazard rate is decreasing (increasing), and for bathtub
(unimodal) hazard rates, the scaled TTT transform is first convex (concave) and then concave
(convex). The TTT plot for complete data is the plot of (i/n, G(i/n)), where G(%) =
Zjlgj"j;:”ﬂm fori =1,2,...,n, Z;Zl Tjn + (n — i)T}.y is the total time on test at the
ith failure for i = 1,2,...,n and T{;.,),j = 1,2,...,n, are the order statistics of the sample.
Figure 4 presents TTT of complete data. As displayed in Figure 4: the TTT plot has first
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Figure 4: The approximated marginal Posterior density functions of o, and A
using Metropolis-Hastings for real data set

a concave shape and then a convex shape. It depicts a unimodal shaped failure rate which
agrees with the estimated parameters.

[=]

0 20 4] &0 =] 100 120

Figure 5: the TTT for real data set
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Now we will compare the fits of the TINH, TMIW, TMIR, TMIE and MIW models
by mean of another real data set to illustrate the potentiality of the TINH model. The cdfs
associated with the competitive models are given by:

() = e TP A= N TN 25 0,0, 8,7 > 0 and A < 1,
Frumr(z) = e 72704 =2 ) 250,87 >0and A <1,

(z) = e O L A=A 07 250,87 >0and | <1,

()

,ﬁ/z—lfﬁz—a

= e , z2>0,a,0>0, and v > 0.

The following data represents a complete data with the exact times of failure. This data
is considered a data set of the life of fatigue fracture of Kevlar 373 /epoxy that are subject to
constant pressure at the 90% stress level until all had failed. The data are: 0.0251, 0.0886,
0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696,
0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733,
1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263,
1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048,
2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260,
2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295,
6.5541, 9.0960. This data is considered by Ogunde et al. (2017). For model comparison,
we consider some well-known measures such as the Akaike information criterion (AIC), the
Bayesian information criterion (BIC), the consistent Akaike information criterion (CAIC)
and the Hannan-Quinn information criterion (HQIC). These criterions are defined by:

AIC = —21(8) + 2p;

BIC = —2I(8) + plog(n):

CAIC = —21(0)+—22" .
n—p-—1

HQIC = —2I(8) + 2log(log(n)).

A

where [(8) denotes the log-likelihood function evaluated at the maximum likelihood estimates
for parameters 6, p is the number of parameters and n is the sample size. The model with
minimum AIC (or BIC, CAIC and HQIC) value is chosen as the best model to fit the data.
Also we consider the statistics AD (A*) and CVM (W*) to compare the models, where
lower values of these statistics indicate a good fit. Table 9 lists the mles of the model
parameters, the values of the measures AIC, BIC, CAIC and HQIC and from this table
one can conclude that the TINH model provides a better fit to the current data than the
other models. Furthermore, the values of the statistics in Table 10 indicate the TINH model
provides the best fit compared to the other models.
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Table 9: The MLEs and some measures for the fitted models

Model | Estimates 1(0) AIC BIC | CAIC | HQIC
TINH | & =0.60,3=1.99,\ = .08 -145.6 | 297.13 | 304.12 | 297.46 | 299.92
TMIW | & = 0.69, 3 = 1.09, \ = 0.97,4 = 0.17 | -150.4 | 308.73 | 318.05 | 309.29 | 312.45
TMIR | B =0.01,\=0.57,4 = 0.68 -189.3 | 384.69 | 391.68 | 385.02 | 387.48
TMIE | 3 =0.50,\ = 0.02,4 = 0.12 -163.5 | 332.92 | 339.91 | 333.25 | 335.71
MIW | & =0.71,3=0.74,4 = 0.14 155.4 | 316.7| 323.7| 317.1| 3195

Table 10: Statistics A* and W*

Distribution | A* W
TINH 4.120 | 0.693
TMIW 4.983 | 0.851
TMIR 8.529 | 1.542
TMIE 6.851 | 1.206
MIW 5.720 | 0.988
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