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Abstract
In ROC literature, there are good number of Bi-distributional ROC curves which

are developed to address the practical need and are based on normal and non-normal data.
The most widely used ROC form is the Bi-Normal. However, the practical situations in
diagnostic medicine and other life testing frameworks, data may not be attributed to make
use of the Bi-Normal ROC curve. We have considered such situations using SAPS III dataset,
where the data underpins Generalised Half-Normal distribution and not that of any existing
bi-distributional ROC forms. The ROC and AUC expressions are derived and these are
supported with SAPS III dataset and simulation. The present work is demonstrated by
considering minimum (better case), moderate (moderate case) and maximum (worst case)
overlapping scenarios at various sample sizes.

Key words: ROC curve; AUC; Non-normal data; Confidence intervals; Generalized Half-
Normal distribution.
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1. Introduction

In classical statistics and machine learning, the problem of classifying an individ-
ual/ object/ image/ voice/ signal has grabbed the attention of researchers from diagnostic
medicine, experimental psychology, finance and many more. The statistical tool that sup-
ports in explaining the performance of a classifier is the receiver operating characteristic
(ROC) curve. Even though the tool originated in early 1950s to analyze the radar signals,
researchers from the medical domain started using it in the early 1970s. The theoretical
contributions started during mid 1970s wherein the mathematical frame work was proposed
by by assuming the data of two populations follow a particular distribution, say ‘normal’;
hence the name ‘binormal ROC model’ Egan (1975). However, basing on the practical need
and situations, the theoretical development happened under non-normal data structures.
Over the years, many researchers have attempted in proposing the bi-distributional ROC
models by considering gamma (Hussain (2012)), logistic (Dorfman and Alf (1969)), half-
normal (Vishnu and Kiruthika (2015)), exponential, and Weibull (Vishnu et al. (2012)) etc.
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A comprehensive coverage of such bi-distributional ROC models was made by Balaswamy
and Vishnu (2016). In understanding the non-normal data, we are well aware that the shape
and scale parameters play a crucial role in explaining the tail pattern and asymmetry.

Table 1: One sample KS test for some skewed distributions

Distribution Status Parameters Estimates KS test value p-value

Normal
Alive µ0 25.53 0.9999 <2.2e-16

σ0 17.48

Dead µ1 33.82 0.9565 <4.44e-16
σ1 17.42

Exponential Alive λ0 0.04 0.1639 0.0575
Dead λ1 0.03 0.2543 0.0059

GHN
Alive α0 1.18 0.1141 0.3563

σ0 32.66

Dead α1 1.21 0.1341 0.3936
σ1 42.04

Let us consider a real data namely the Simplified Acute Physiology Score (SAPS)
III, which helps in estimating the probability of mortality for ICU patients/subjects. SAPS
III score and a status variable (Alive(0); Dead(1)) are the two characteristics recorded for
each patient. Figure 1 depicts the density patterns of ‘alive’ and ‘dead’ patients indicat-
ing the deviation from symmetry. Further, goodness of fit criterion using the one-sample

Figure 1: Histogram of SAPS III data
Kolmogorov-Smirnov (KS) test is performed to provide an evidence that the SAPS III data
do not follow normality. Along with the normal distribution, exponential and generalised
half-normal distribution (GHN) were also considered as competitor distributions. The re-
sults of the same are reported in Table 1, clearly indicating that the data is a good fit for
GHN distribution. So, the existing bi-normal and bi-exponential ROC models do not sup-
port in defining a classifier that helps in classifier or allocating a subject into ‘alive’ or ‘dead’
classes of SAPS III data. Hence, the practical situation needs a classifier rule to be defined.
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This motivated us to come out with a newer version of ROC model wherein the data of two
populations follow GHN distribution.

GHN is a special case of the three-parameter generalized gamma distribution. Even
though the GHN distribution is a two-parameter distribution, the hazard rate function can
form variety of shapes such as monotonically increasing, monotonically decreasing, and bath-
tub shapes. Cooray and Ananda (2008) studied some properties of this family and examples
are cited to compare with other commonly used failure time distributions such as Weibull,
gamma, lognormal, and Birnbaum-Saunders. Moreover, there is difficulty in developing
inference procedures with the generalized gamma distribution, particularly, the maximum
likelihood estimation in which the iteration method such as Newton-Raphson fails. Even
with samples of size 200 or 300, the algorithms do not converge (Hager and Bain (1970)).
Some authors such as Parr and Webster (1965) and Stacy and Mihram (1965) faced prob-
lems with the maximum likelihood estimation. In addition, for interval estimation procedures
also they faced difficulties. This prompted us to work on GHN with two parameters such as
shape and scale and illustrated the features of parameters involved in it with the help of a
real data called SAPS III. Simulation studies are also carried out to support the proposed
methodology.

The probability density function and cumulative distribution function of GHN distri-
bution are,
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where Φ(.) is the cumulative distribution function of standard normal deviate, α and σ
are shape and scale parameters respectively. The expression given in (2) resembles the
cumulative distribution function of the half-normal distribution, hence Cooray and Ananda
(2008) named this distribution as GHN distribution. The density curves of GHN for different
values of shape and scale parameters are shown in Figure 2. For fixed scale parameter, the
GHN distribution will be positively skewed if α ∈ (0, 2.17); symmetric if α = 0 and negatively
skewed if α > 2.17.

2. The Bi-generalised Half-Normal ROC curve

Let us assume that the scores or data points, say S={X,Y} in both populations 1 and
2 follow GHN distribution. Using the probabilistic definitions, the false positive rate (FPR)
and true positive rate (TPR) of ROC curve at threshold ‘t’ are given as

FPR = P (S > t/0) = 1 −
[
2
(

Φ
[

t

σ0

]α0)
− 1

]
= 2

[
1 − Φ

(
t

σ0

)α0]
(3)

TPR = P (S > t/1) = 1 −
[
2
(

Φ
[

t

σ1

]α1)
− 1

]
= 2

[
1 − Φ

(
t

σ1

)α1]
(4)



62 DASHINA P. AND R. VISHNU VARDHAN [Vol. 21, No. 2

Figure 2: Density curves of GHN distribution

then from equation (3), the threshold can be expressed as,

t = σ0

Φ−1
[
1 − FPR

2

] 1
α0

 (5)

The ROC expression given in equation (6) is the Bi-Generalised Half-Normal (Bi-GHN)
ROC curve, where Φ−1(.) is the inverse cumulative distribution function of standard normal
deviate. Using equation (5) in equation (4), the ROC model is obtained and is given in
equation (6).

ROC(t) = 2

1 − Φ

σH
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2

] 1
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)
σD


αD
 (6)

where σ0 and σ1 are the scale parameters and α0 and α1 are the shape parameters of the
‘0’ and ‘1’ populations respectively. In next section, the expressions for the area under the
curve (AUC) and Youden’s index are given.

3. AUC of Bi-GHN ROC curve

The AUC can be interpreted as the average TPRs at all possible TNRs (TNR is the
True Negative Rate, which is obtained from 1-FPR). Since ROC curve is only a graphical
representation of a classifier it will be always better if we can summarize our findings by
a single measure. Such a numerical summary measure of ROC curve is termed as AUC.
AUC of an ROC curve explains the accuracy of a diagnostic test. The ability of the test
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to discriminate between ‘1’ and ‘0’ groups can be explained by AUC measure. Higher the
AUC value, better will be the discriminating power of the test. The value of AUC always
lies between 0 and 1. The total area under the ROC curve is always unity because both
TPR and TNR values lie between 0 and 1. The line connecting (0,0) and (1,1) in the ROC
unit square plot is the diagonal line where the AUC will be equal to 0.5. A test for which
AUC < 0.5 need not be considered at all. It means that the test has only 50 percentage or
less chance of discriminating the subjects into ‘1’ and ‘0’ categories. Tests with AUC ≥ 0.5
will alone be considered for further classification. AUC of Bi-GHN ROC curve is,

AUC =
� 1

0
ROC(t) dt

AUC =
� 1
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If we consider σ1 =σ0=1, then it will reduce to one parameter Bi-GHN ROC curve
and its AUC will take the following form.

Then the AUC of the one-parameter Bi-GHN can be obtained as
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α0
(8)

In this paper we consider two parameter Bi-GHN distribution. Since, equation (7)
does not have a closed form, we need to solve it using numerical integration. Variance of AUC
can be obtained using bootstrap method which is described in following section. Another
important summary measure of the ROC curve is Youden’s index (J). The maximum value
of ‘J’ is the value corresponding to the optimal threshold (cut-off) for the marker in the
diagnostic test. The theoretical expression for Youden’s index is

J = max{TPR + TNR − 1}

4. Parameter estimation under maximum likelihood method and their
confidence intervals

Using the results of maximum likelihood estimates presented in the work of Cooray
and Ananda (2008), the expressions for ‘0’ and ‘1’ populations are given in equations (9)
and (10) respectively.
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since α̂0 and α̂1 are fixed point solutions of the above non-linear equations, it can be obtained
by using a simple iterative scheme as follows: h(α(j)) = α(j+1) where λ(j) is the jth iterate of
α̂. The iteration procedure should be stopped when αj less than αj+1 is sufficiently small.
Once we obtain α̂0 and α̂1, we can obtain σ̂0 and σ̂1 from below expressions.
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The (1 − δ) confidence interval for σ̂0 and σ̂1 can be written as
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where γ is the Euler’s constant (=0.5772156649).

The (1 − δ) confidence interval for α̂0 and α̂1 can be written as
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5. Numerical illustrations

To illustrate the proposed methodology, SAPS III dataset is used. Out of the 111
subjects, 66 (59.46%) belong to alive population and the remaining are of dead population.
Table 2 report the parameter estimates along with their confidence limits for both alive and
dead populations. Using the expression given in equation (7) the AUC value turns out to
be 0.5793. Since the AUC expression do not have the closed form, the V (ÂUC) is obtained
using bootstrap method. Upon performing 100 bootstraps, the ÂUCBoot= 0.5629 and its
variance is 0.0014. The bootstrap expressions for AUC and its variance are given below.

ÂUCB = 1
B

B∑
b=1

AUCb (13)
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Table 2: The parameters estimates and confidence limits of Bi-GHN ROC curve

n0 n1
θ̂0 θ̂1 λ̂0 λ̂1

(L0,U0) (L1,U1) (L0,U0) (L1,U1)

66 45
1.2070 1.2071 32.2297 39.8010

(0.9666,1.4474) (0.9158,1.4982) (32.1977,32.2617) (39.7623,39.8397)

Table 3: Bootstrap estimates of measures of Bi-GHN ROC curve

ÂUCBoot V (ÂUCBoot) F̂PRBoot T̂PRBoot ĉ Ĵ

0.5629 0.0014 0.2736 0.4857 36 0.1226

Table 4: Parameter combinations

Scenario α0 α1 σ0 σ1

Better 0.75 2.20 0.99 2.11
Moderate 0.53 0.91 0.92 2.61

Worst 1.21 1.52 2.28 2.52
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Figure 3: Bootstrap ROC curves for SAPS III dataset
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V (ÂUCB) = 1
B − 1

B∑
b=1

(AUCb − ÂUCB)2 (14)

Using the Youden’s index, the optimal theshold is determined, that is, t= 36. At this
cutoff, the FPR and TPR are observed to be 0.2736 and 0.4857 respectively. The obtained
threshold is able to correctly classify 57 subjects out of 100 subjects. It is also noticed that
this threshold generates 27% of false positives and truely detects the subject status upto
48% only. Figure 3 depicts the ROC curves generated at each bootstrap.

5.1. Simulation Studies

Further, to give a generalized view on the working methodology of the proposed
Bi-GHN ROC curve, sizeable simulations are carried out with various parameter combina-
tions at different sample sizes n= {25, 50, 100, 150, 200, 500}. Three different parameter
combinations are considered to illustrate the better, moderate and worst case scenarios.

The parameter estimates and their confidence intervals of populations ‘0’ and ‘1’
for the combinations (Table 4) at different sample sizes are reported in Tables 5, 7 and 9
respectively. Accordingly, the estimated values of the measures of the proposed ROC curve
are reported in Tables 6, 8 and 10 respectively.

Table 5: Parameter estimates at equal sample sizes (Better case)

n0 n1 α̂0 α̂1 σ̂0 σ̂1

(L0, U0) (L1, U1) (L0, U0) (L1, U1)
25 25 0.7503 2.1000 0.9823 2.1026

(0.5086,0.9274) (1.4215,2.7817) (0.7363,1.3569) (2.0499,2.5524)
50 50 0.7499 2.1008 0.9926 2.1078

(0.6553,0.8586) (1.5638,2.5805) (0.8894,1.2258) (2.0616,2.2741)
100 100 0.7501 2.1016 0.9931 2.1102

(0.6609,0.8234) (1.6195,2.4398) (0.9093,1.1403) (2.0897,2.2362)
150 150 0.7482 2.1017 0.9936 2.1062

(0.6642,0.8387) (1.7602,2.3742) (0.9247,1.0979) (2.0924,2.2114)
200 200 0.7499 2.1018 0.9963 2.1115

(0.6745,0.8049) (1.8604,2.3484) (0.9325,1.0089) (2.0943,2.1940)
500 500 0.7524 2.1021 0.9991 2.1129

(0.6996,0.7816) (1.9496,2.3011) (0.9269,1.0018) (2.0995,2.1689)

With respect to better case, the following observations can be seen. For n= 100, the
optimal cutoff is 1.1563, which is determined at the maximum value of Youden’s index Ĵ=
0.5639. The classification of an individual can be in the following way: An individual is
classified into Population ‘1’, if S > 1.1563 and Population ‘0’, if S ≤ 1.1563. The optimal
cutoff is able to detect around 82.92% of true positive cases with 29.63% of false positives.
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Table 6: Accuracy cum intrinsic measures of Bi-GHN ROC (Better case)

n0 n1 ÂUC F̂PR T̂PR ĉ Ĵ V (ÂUC)

25 25 0.9160 0.3282 0.8233 0.9789 0.5111 0.0029

50 50 0.9187 0.3062 0.8265 1.0048 0.5173 0.0132

100 100 0.9218 0.2963 0.8292 1.1563 0.5639 0.0147

150 150 0.9253 0.2923 0.8238 1.0353 0.5315 0.0142

200 200 0.9268 0.2871 0.8226 1.0675 0.5355 0.0068

500 500 0.9283 0.2745 0.8337 0.9992 0.5391 0.0018

The ÂUC is observed to be 0.9218 which means that, the cutoff will be able to classify the
individuals with 92.18% of accuracy. The ROC curves for this situation are shown in Figure
4 with a maximum coverage of area in the unit square plot. Interpretation can be given for
the remaining sample sizes in similar manner.

Figure 4: Better case

Now, let us consider the results of moderate case that are reported in Tables 7 and 8.
For better understanding, let us consider a sample size from the results reported in Table 8.
At n = 150, Ĵ= 0.3526 and the optimal cutoff (ĉ) is 0.8886. At this ĉ, we can observe 71.44%
of true positives and 38.64% of false positives. The ÂUC= 0.7583, which can be interpreted
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Table 7: Parameter estimates at equal sample sizes (Moderate case)

n0 n1 α̂0 α̂1 σ̂0 σ̂1

(L0, U0) (L1, U1) (L0, U0) (L1, U1)
25 25 0.5314 0.9100 1.2429 2.4724

(0.3618,0.7080) (0.6155,1.2044) (1.1210,1.3487) (2.3095,2.8732)
50 50 0.5348 0.9112 1.2497 2.4775

(0.4086,0.6720) (0.6986,1.1408) (1.1807,1.3414) (2.3338,2.8453)
100 100 0.5365 0.9127 1.2538 2.4798

(0.4099,0.6522) (0.7198,1.1361) (1.2357,1.3301) (2.3546,2.7881)
150 150 0.5397 0.9162 1.2606 2.4805

(0.4286,0.6492) (0.7122,1.1289) (1.2312,1.3283 ) (2.3645,2.6754)
200 200 0.5329 0.9113 1.2644 2.4844

(0.4319,0.6434) (0.7035,1.1152) (1.2376,1.3242) (2.3938,2.6072)
500 500 0.5222 0.9275 1.2667 2.4881

( 0.4691,0.6218) (0.6829,1.1008) (1.2456,1.3091) (2.4123,2.5697)

Table 8: Accuracy cum intrinsic measures of Bi-GHN ROC (Moderate case)

n0 n1 ÂUC F̂PR T̂PR ĉ Ĵ V (ÂUC)

25 25 0.7508 0.4057 0.7068 0.8338 0.3041 0.0166

50 50 0.7536 0.4044 0.7086 0.8563 0.3519 0.0189

100 100 0.7547 0.3927 0.7104 0.8598 0.3539 0.0251

150 150 0.7583 0.3864 0.7144 0.8886 0.3526 0.0310

200 200 0.7599 0.3514 0.7187 0.8837 0.3571 0.0035

500 500 0.7615 0.3554 0.7198 0.8503 0.3609 0.0012
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as, ĉ has the ability to classify the individuals with 75.83% of accuracy. The ROC curves
for the moderate case are depicted in Figure 5. Next, we consider the results pertaining to

Figure 5: Moderate case

worst classification scenario presented in Tables 9 and 10. The ÂUC is around 54%. So, this
lower ÂUC will have a maximum overlapping area between the populations ‘0’ and ‘1’.

For n = 100, the ÂUC= 0.5466, where the ROC curve is quite closer to the chance
diagonal line indicating random classification. The ĉ = 1.3878 is able to detect 66.53% of
true positives and 58.57% of false positives. The ROC curves for this case are presented in
Figure 6. Since the curves obtained here are closer to the chance diagonal, the classifier fails
to classify the subjects into one of the populations with better accuracy.

6. Summary

In this paper, Bi-GHN ROC curve is proposed and accordingly the expressions for
AUC, FPR and TPR are derived. Since AUC does not have closed form expression, its
variance is obtained using bootstrap. The proposed work is supported with SAPS III dataset
and simulations. Better, moderate and worst case scenarios are considered at different sample
sizes. For the SAPS III dataset, the optimal threshold is observed to be 36 and ÂUC=
0.5793. The obtained threshold is able to classify the subjects in alive and dead population
with 57.93% of accuracy only.
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Table 9: Parameter estimates at equal sample sizes (Worst case)

n0 n1 α̂0 α̂1 σ̂0 σ̂1
(L0, U0) (L1, U1) (L0, U0) (L1, U1)

25 25 1.2085 1.5200 2.3239 2.6336
(0.8174,1.5996) (1.1281,2.0119) (2.1519,2.5725) (2.4423,2.7656)

50 50 1.2100 1.5183 2.3120 2.6323
(0.9331,1.4868) (1.1609,1.8657) (2.1703,2.5484) (2.4542,2.7614)

100 100 1.2143 1.5169 2.2970 2.5177
(1.0142,1.4014) (1.2072,1.7967) (2.1754,2.5086) (2.4631,2.7547)

150 150 1.2214 1.5210 2.3106 2.6287
(1.0331,1.3857) (1.2740,1.6959) (2.1987,2.4906) ( 2.4782,2.7512)

200 200 1.2150 1.5200 2.3056 2.6269
(1.1198,1.3241) (1.3461,1.6345) (2.2172,2.4239) ( 2.5006,2.7154)

500 500 1.2321 1.5288 2.2917 2.6261
(1.1501,1.3098) (1.4378,1.6190) (2.2562,2.3778) (2.5311,2.6921)

Table 10: Accuracy cum intrinsic measures of Bi-GHN ROC (Worst case)

n0 n1 ÂUC F̂PR T̂PR ĉ Ĵ V (ÂUC)

25 25 0.5319 0.5341 0.6431 1.6358 0.1090 0.0103

50 50 0.5354 0.6101 0.6543 1.3252 0.0908 0.0052

100 100 0.5466 0.5857 0.6653 1.3878 0.0996 0.0050

150 150 0.5490 0.5774 0.6786 1.4026 0.1011 0.0030

200 200 0.5584 0.5540 0.6822 1.5101 0.1082 0.0012

500 500 0.5665 0.5390 0.6909 1.4756 0.1152 0.0003
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Figure 6: Worst case
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