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Abstract
In this paper, the new extension of the extended Exponential model named inverted

intervened Exponential distribution has been proposed. To explore the model, the essen-
tial statistical properties have been presented in this study, the parametric estimation was
also carried out by using the method of maximum likelihood estimation (MLE) technique.
Moreover, the reliability characterization has been given which includes the mathematical
functions of the reliability, hazard rate, aging intensity, and mean residual life. Also, the
Rényi and Shannon entropy measures have been derived. Monte Carlo simulation study by
employing the acceptance-rejection algorithm was performed to judge the performance of
maximum likelihood estimates (MLEs) based on the calculated results of absolute average
bias (Abias) and mean square error (MSE) of the parametric estimates. Lastly, the model
applicability checkup was also done by analyzing real data set.
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1. Introduction

In literature, the traditional models such as Exponential, Normal, Rayleigh, Gamma,
Weibull, etc. are the basic fundamental models in statistical theory. From the past few
decades, many developments have been observed in the form of modifications and general-
izations to develop more flexible distributions for data analysis purposes. In history, one
could observe the most exploiting and frequently used distribution in the field of reliability
and survival analysis among them being the Exponential model for reference see Balakr-
ishnan (2019). However, the disadvantage of the Exponential model is meant due to the
constant hazard rate, as there arise situations where it is observed the model requirement
for increasing, decreasing, bath-tub shaped hazard rate situations as well, to model the fail-
ure data. In this context, the successful efforts of the researchers who developed different
types of models to cope with these situations to some extent. It gives a clear picture that ev-
ery new technique has added several types of flexible distributions in statistical theory. Since
a few years ago, a new concept intervention was introduced in the distribution theory, and it
was Shanmugam (1985) who made a noble attempt to develop a discrete intervention based
Poisson model, later which laid to a beginning new intervention-based model development in
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the statistical literature. A similar attempt on continuous Exponential distribution by Shan-
mugam et al. (2002) developed the intervened Exponential model (IvED), the outstanding
medical applications of the model motivated us to develop a new extension of the model
named as inverted intervened Exponential model (IIvD). The cumulative density function
(cdf) of the newly developed model along with its probability density function (pdf) are
given by:

FIIvD(y; Θ) =


ρe−(1−δy)/ρηy−e−(1−δy)/ηy

(ρ−1) ρ ̸= 1(
1−(δ−η)y

ηy

)
e−(1−δy)/ηy ρ = 1

(1)

and,

fIIvD(y; Θ) =


e−(1−δy)/ρηy−e−(1−δy)/ηy

(ρ−1)ηy2 ρ ̸= 1
(1−δy)
η2y3 e−(1−δy)/ηy ρ = 1

(2)

where 0 < y < 1
δ
, and the desired parametric space of the model is denoted by Θ =

{(ρ, δ, η) : ρ > 0, δ > 0, η > 0} containing η as the rate parameter, ρ being the intervention
parameter, and the parameter δ is treated as the truncation point of the model. Further, the
graphical illustration of the proposed model based on the desired set of parametric values
for pdf is shown below:
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Figure 1: PDF plot
It could be easily predicted from graphical behavior that different shapes for pdf are exhibited
on the selected set of parameters.

2. Statistical properties

We attempted in this section, to provide the mathematical derivation of the different
statistical properties that would help to understand the nature of IIvD. The mathematical
expressions of the obtained results include mean (µy), median (Md), and the variance (σ2

y)
of the model. The other results mentioned in subsections are the mean deviations, rth order
moment expressions about the origin, the mean, and the different generating functions for
moments. So, to begin this section, the mean of the distribution obtained is as follows:

µy = 1
ρ− 1

{
eδ/ρηΓ(0, δ/ρη) − eδ/ρΓ(0, δ/ρ)

}
(3)

The variance of the IIvD is given by,

σ2
y = 1

ρ(ρ− 1)η
{
eδ/ρηΓ(−1, δ/ρη) − eδ/ρΓ(−1, δ/ρ)

}
− (µy)2 (4)
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Now to find the median of IIvD mathematically, we make use of the definition of median as
given below: � 1/δ

Md

fIIvD(y; Θ)dy = 1/2

1
(ρ−1)η

� 1/δ

Md

{
e−(1−δy)/ρηy − e−(1−δy)/ηy

}
(1/y2)dy = 1/2

ρe(δMd−1)/ρηMd − e(δMd−1)/ηMd = (ρ− 1) /2
Note: Γ(c, t) =

� ∞
t
yc−1e−ydy is the upper incomplete gamma function.

2.1. Mean deviations

In statistics, two well-known measures that are used to measure the scatteredness
present among the data are called the mean deviations about the mean, and another one is
considered as mean deviations about the median. Henceforth, these two measures are rep-
resented by Dµy and DMd

respectively. The mathematical derivation for these two measures
is given in the following theorem.
Theorem 1: If a random variable (r.v.) Y ∼ IIvD(ρ, δ, η), then the derived expression for
Dµy and DMd

for the proposed model are as:

(i) Dµy =
{
µyFIIvD(µy) − eδ/ρη

(ρ− 1)ηΓ(0, 1/µyρη) + eδ/η

(ρ− 1)ηΓ(0, 1/µyη)
}

(ii) DMd
= (µy −Md) + 2

{
MdFIIvD(Md) − eδ/ρη

(ρ− 1)ηΓ(0, 1/Mdρη) + eδ/η

(ρ− 1)ηΓ(0, 1/Mdη)
}

Proof: (i) For, any r.v. Y the mean deviation about mean is given by

Dµy = 2
{
µyFIIvD(µy) −

� 1/δ

0
yfIIvD(y; Θ)dy

}

= 2
{
µyFIIvD(µy) −

� µy

0

e−(1−δy)/ρηy − e−(1−δy)/ηy

(ρ− 1)ηy dy

}

=
{
µyFIIvD(µy) − eδ/ρη

(ρ− 1)ηΓ(0, 1/µyρη) + eδ/η

(ρ− 1)ηΓ(0, 1/µyη)
}

Hence, completes proof for part first.

(ii) Again, for a continuous, and non-negative r.v., Y ∼ IIvD(ρ, δ, η), we can write the
mathematical expression for median deviation as,

DMd
= µy −Md + 2

{
MdFIIvD(Md) −

� Md

0
yfIIvD(y; Θ)dy

}

= (µy −Md) + 2
{
MdFIIvD(Md) −

� Md

0

e−(1−δy)/ρηy − e−(1−δy)/ηy

(ρ− 1)ηy dy

}

= (µy −Md) +
{
MdFIIvD(Md) − eδ/ρη

(ρ− 1)ηΓ(0, 1/Mdρη) + eδ/η

(ρ− 1)ηΓ(0, 1/Mdη)
}
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This completes proof for part (ii).

2.2. Moments and moments generating functions

Here in this subsection, we shall derive the expression for rth moments about the origin
and the moments about mean, and the generating functions for moments in the following
subsequent theorems,

Theorem 2: If Y be any non-negative r.v. possessing IIvD, then the moments about the
origin and the mean are given by:

(i) µ′
r = 1

(ρ− 1) ηr

{
eδ/ρη

ρr
Γ (1 − r, δ/ρη) − eδ/ηΓ (1 − r, δ/η)

}
, r = 1, 2...n.

(ii) µr = 1
(ρ− 1)

r∑
n=0

rCn
(−µ)r−n
ηn

{
eδ/ρη

ρn
Γ (1 − n, δ/ρη) − eδ/ηΓ (1 − n, δ/η)

}
; r = 1, 2...n.

Proof: (i) For a random variable Y ∼ IIvD(ρ, δ, η), the expression for rth moment about
origin is,

µ′
r = E(yr) = 1

(ρ− 1)η

� 1/δ

0
yr−2

{
e−(1−δy)/ρηy − e−(1−δy)/ηy

}
dy

= 1
(ρ− 1) ηr

{
eδ/ρη

ρr
Γ (1 − r, δ/ρη) − eδ/ηΓ (1 − r, δ/η)

}

where r = 0, 1, ..., n.
(ii) Again, for a random variable Y ∼ IIvD(ρ, δ, η), the expression for rth moment about
mean is

µr = E(y − µy)r = 1
(ρ− 1)η

� 1/δ

0
(y − µy)r

{
e−(1−δy)/ρηy − e−(1−δy)/ηy

}
y2 dy

= 1
(ρ− 1)

r∑
n=0

rCn
(−µ)r−n
ηn

{
eδ/ρη

ρn
Γ (1 − n, δ/ρη) − eδ/ηΓ (1 − n, δ/η)

}

where r = 0, 1, ..., n.

Theorem 3: If Y be any non-negative r.v. possessing IIvD, then the generating functions
for moments are given by:
(i)My(t) = 1

(ρ−1)η
∑∞
r=0

tr

ηrr!

{
eδ/ρη

ρr Γ (1 − r, δ/ρη) − eδ/ηΓ (1 − r, δ/η)
}
,is the moment generat-

ing function.
(ii)ϕy(t) = 1

(ρ−1)η
∑∞
r=0

tr

ηrr!

{
eδ/ρη

ρr Γ (1 − r, δ/ρη) − eδ/ηΓ (1 − r, δ/η)
}
, is the characteristic func-

tion.
(iii)Ky(t) = log

[
1

(ρ−1)η
∑∞
r=0

tr

ηrr!

{
eδ/ρη

ρr Γ (1 − r, δ/ρη) − eδ/ηΓ (1 − r, δ/η)
}]

, is the cumulant
generating function.
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Proof: (i) Let the r.v. Y ∼ IIvD(ρ, δ, η), then My(t) is derived by

My(t) = E(ety) =
� 1/δ

0
etyfIIvD(y; Θ)dy

= 1
(ρ− 1) η

∞∑
r=0

tr

ηrr!

{
eδ/ρη

ρr
Γ (1 − r, δ/ρη) − eδ/ηΓ (1 − r, δ/η)

}

(ii) To prove the characteristic function the same procedure has to be repeated that
we used to derive the moment generating function, but the only change is instead of t we
have to proceed with ιt.

(iii) Let the r.v. Y ∼ IIvD(ρ, δ, η), then Ky(t) is defined by

Ky(t) = log {My(t)}

= log
[

1
(ρ− 1) η

∞∑
r=0

tr

ηrr!

{
eδ/ρη

ρr
Γ (1 − r, δ/ρη) − eδ/ηΓ (1 − r, δ/η)

}]

3. Reliability properties

The probability measurement of any component or a system, that will not fail before
time t to perform its complete operation is called the reliability of the system. Mathemati-
cally, it is calculated as:

RIIvD(y; Θ) = Pr.(Y > y) = 1 − Pr.(Y ≤ y)

Thus, for a r.v. Y ∼ IIvD(ρ, δ, η) the derived reliability function is obtained as

RIIvD(y; Θ) =

 1 − ρe−(1−δy)/ρηy−e−(1−δy)/ηy

(ρ−1) ρ ̸= 1
1 −

(
1−(δ−η)y

ηy

)
e−(1−δy)/ηy ρ = 1

(5)

If ρ̂, δ̂ and η̂ are the MLEs, then by the in-variance property the reliability estimate are
given by

R̂IIvD(y; Θ̂) =


1 − ρ̂e−(1−δ̂y)/ρ̂η̂y−e−(1−δ̂y)/η̂y

(ρ̂−1) ρ ̸= 1

1 −
(

1−(δ̂−η̂)y
η̂y

)
e−(1−δ̂y)/η̂y ρ = 1

(6)

The hazard rate for IIvD, which we will denote by hIIvD(y) is the ratio of pdf and the
RIIvD(y) as given below:

hIIvD(y; Θ) = e−(1−δy)/ρηy − e−(1−δy)/ηy

ηy2 [(ρ− 1) − {ρe−(1−δy)/ρηy − e−(1−δy)/ηy}] (7)

The graphical plot of hazard function for different set of parametric values is shown in Figure
2.
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Figure 2: Hazard plot

The hazard rate in the reverse direction of time is called reverse hazard rate which we denote
by hrIIvD(y), this measure is obtained by taking the ratio of pdf and cdf and the obtained
expression is

hrIIvD(y; Θ) = e−(1−δy)/ρηy − e−(1−δy)/ηy

ηy2 [ρe−(1−δy)/ρηy − e−(1−δy)/ηy] (8)

The famous reliability measure called aging intensity (A.I) developed by Jiang et al. (2003)
are used for quantitative aging measurement purposes, as aging representation for the system
by uni-modal hazard rate is difficult because of its varying trends observed in the form of
constant, increasing and decreasing hazard rates. The A.I for a r.v. Y ∼ IIvD(ρ, δ, η),
denoted by Ly is give as

A.I = e−(1−δy)/ρηy − e−(1−δy)/ηy

ηy [log (ρ− 1) − log {ρe−(1−δy)/ρηy − e−(1−δy)/ηy}] [ρe−(1−δy)/ρηy − e−(1−δy)/ηy] (9)

3.1. Mean residual life function

The mean residual life (MRL) function having a variety of applications in differ-
ent branches of statistical and applied sciences, to define this measure, suppose a sys-
tem/component functions without fail up to time y ≥ 0, then the residual life is counted
as the working hours of the system beyond time y until it fails, and the conditional r.v.
Y − y|Y > y is used to define this measure Finkelstein (2008).
For non-negative r.v. Y ∼ IIvD(ρ, δ, η), the MRL function denoted by mIIvD(y,Θ) is derived
as

mIIvD(y; Θ) = E [Y − y|Y > y] = 1
RIIvD(y; Θ)

� 1/δ

y

RIIvD(y; Θ)dy.

= 1
(ρ− 1)RIIvD(y; Θ)

� 1/δ

y

{
(ρ− 1) − ρe(1−δy)/ρηy + e(1−δy)/ηy

}
dy.

= 1
(ρ−1)RIIvD(y;Θ)

{(ρ−ρeδ/ρη−eδ/η−1)(1−δy)
δ

−
(eδ/ρη+eδ/η) log(δy)

η
+

∑∞
r=2

(−1)r+2
r!ηr(1−r)(δr−1−y1−r)(ρ1−reδ/ρη−eδ/η)

}

4. Entropy measures

Entropy measurements are useful to determine, how much the random variable’s distri-
bution varies in terms of its level of variations, and the two important measures to address
this variation are given by Rényi entropy and Shannon entropy (Refer Rényi, A. (1961,
January) and Shannon (1948)).
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4.1. Reńyi entropy

The Rényi entropy metric for a non-negative r.v. Y ∼ IIvD(ρ, δ, η) of order ϑ is given
by

HR(ϑ) = 1
1 − ϑ

log
[� 1/δ

0
{fIIvD(y; Θ)}ϑ dy

]
; ϑ ≥ 0, ϑ ̸= 1 (10)

= 1
1 − ϑ

log
 1

(ρ− 1)ϑ ηϑ
ϑ∑
r=0

(
ϑ
r

)
(−1)r+2eψ

r!ψ2ϑ−1 Γ (2ϑ− 1, ψδ)


where ψ = (ρ−1)
ρη

(
r + ϑ

(ρ−1)

)
and fIIvD(y,Θ) is the pdf given in equation (2), when ρ ̸= 1.

4.2. Shannon entropy

In this subsection, we will derive the expression for Shannon measure of entropy for
a non-negative r.v. Y ∼ IIvD(ρ, δ, η), the derivation steps for this extend concept of Reńyi
entropy are given by

HIIvD(y) = −
� 1/δ

0
fIIvD(y; Θ) log {fIIvD(y; Θ)} dy.

Now, substitute the density function fIIvD(y; Θ), given in equation (2), when ρ ̸= 1, and
solve the integral we get

= ∑∞
r=1

ρB(r+ 1
(ρ−1) ,2)

r(ρ−1)2 + (ρ+1)
ρ

− 2 ∑∞
r=1

(−1)r+1ηr(ρr+1−1)Γ(r+1)
r(ρ−1)δr + ρB( 1

(ρ−1) ,2) log{(ρ−1)η}
(ρ−1)2 − 2 log δ

5. Order statistics

In the field of reliability, order statistics finds massive applications in life testing ex-
periments for understanding system characterization of system. Let a random sample of size
n be taken as Y = (y1, y2, ... ,yn) be drawn from IIvD(ρ, δ, η). Then the life of (n− i+ 1)
components out-of-n i.i.d systems based on ordered random sample y(1:n) ≤ y(2:n) ≤ ... ≤
y(n:n) are given by yi:n; (i = 1, 2, ..., n). Thus for IIvD(ρ, δ, η) the ith order statistics density
function of y(i:n); 1 ≤ i ≤ n are given as

fi:n(y,Θ) = M1[FIIvD(y)]i−1[1 − FIIvD(y)]n−ifIIvD(y). (11)
Also, the pdf of (i, j)th order statistics density for (y(i:n), y(j:n)); 1 ≤ i ≤ j ≤ n are as

fi:j:n(yi, yj) = M2[FIIvD(yi)]i−1[FIIvD(yj) − FIvD(yi)]j−i−1[1 − FIIvD(yj)]n−jfIIvD(yi)fIIvD(yj). (12)

where F (.), f(.) is the cdf, pdf of IIvD defined in (1) and (2), and the constants M1 and
M2 are given by

M1 = n!
(i−1)!(n−i)! and M2 = n!

(i−1)!(j−i−1)!(n−j)!

The smallest observation of ordered sample is called first-order statistic given by y(1) =
min.(y(1), y(2), ... ,y(n)), the largest observation is called the nth order statistic, and the
middle observation is called the median order given by ym+1
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5.1. Order statistic density function of IIvD

Let y(1), y(2), ... ,y(n) be i.i.d ordered random sample from IIvD then according to
equations (1) and (2) we can write the first order statistics density (f1:n(.)) on substituting
i = 1, in equation (11), the nth order statistics density (fn:n(.)) by substituting i = n in
equation (11) and the median order statistics density denoted by (fm+1:n(.));[m = n

2 ] are
given below:

f1:n(y) = n
[
1 − FIIvD(y(1))

]n−1
fIIvD(y(1))

f1:n(y) =
n

η(ρ− 1)ny2
(1)

[
(ρ− 1) −

{
ρe−(1−δy(1))/ρηy(1) − e−(1−δy(1))/ηy(1)

}]n−1 [
e−(1−δy(1))/ρηy(1) − e−(1−δy(1))/ηy(1)

]
(13)

Similarly,

fn:n(y) = n [FIIvD(y)]n−1 fIIvD(y(n))

fn:n(y) =
n

η(ρ− 1)ny2
(n)

[
ρe−(1−δy(n))/ρηy(n) − e−(1−δy(n))/ηy(n)

]n−1 [
e−(1−δy(n))/ρηy(n) − e−(1−δy(n))/ηy(n)

]
(14)

and,
fm+1:n(y) = (2m+ 1)!

(m!)2 [FIIvD(ȳ)]m [1 − FIIvD(ȳ)]m fIIvD(ȳ). (15)

5.2. Joint order statistics density of IIvD

The joint pdf of IIvD is obtained by using the pdf and cdf in (12) as shown below:

fi:j:n(y(i), y(j)) = M2

η2(ρ− 1)ny4

[
ρe−(1−δy(i))/ρηy(i) − e−(1−δy(i))/ηy(i)

]i−1

.
[{
ρe−(1−δy(i))/ρηy(i) − e−(1−δy(i))/ηy(i)

}
−

{
ρe−(1−δy(j))/ρηy(j) − e−(1−δy(j))/ηy(j)

}]j−i−1

.
[
(ρ− 1) −

{
ρe−(1−δy(j))/ρηy(j) − e−(1−δy(j))/ηy(j)

}]n−j [
e−(1−δy(i))/ρηy(i) − e−(1−δy(i))/ηy(i)

]
.

[
e−(1−δy(j))/ρηy(j) − e−(1−δy(j))/ηy(j)

]

6. Stochastic ordering

Stochastic ordering measurement for lifetime distributions has vital importance in re-
liability theory, nicely discussed by Shaked and Shantikumar (2007). Let the r.v.′s Y1 and
Y2 possessing the IIvD with pdf’s fY1(y), fY2(y), and cdf’s FY1(y), FY1(y) respectively. Then
one would say Y1 is smaller than Y2 according to the stochastic ordering measurements given
below:

[1] Stochastic order (Y1 ≤st Y2), if FY1(y) ≥ FY2(y) for all y.
[2] Hazard rate order (Y1 ≤hr Y2), if HY1(z) ≥ HY2(y) for all y.
[3] Mean residual life order (Y1 ≤MRL Y2), if mY1(y) ≥ mY2(y) for all y.
[4] Likelihood ratio order (Y1 ≤LR Y2), if f1(y)

f2(y) decreasing in y.
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Hence the following implication is revealed according to the above orderings
Y1 ≤LR Y2 ⇒ Y1 ≤hr Y2 ⇒ Y1 ≤MRL Y2 and Y1 ≤hr Y2 ⇒ Y1 ≤st Y2.
Following theorem illustrate likelihood ratio ordering for IIvD w.r.t the strongest likelihood.
Theorem 4: Let Y1 ∼ IIvD(δ1, ρ1, η1), and Y2 ∼ IIvD(δ2, ρ2, η2). If δ1 = δ2 = δ, (ρ1>ρ2) >
1, and (η1>η2) then (Y1 ≤lr Y2), (Y1 ≤st Y2), (Y1 ≤hr Y2), and (Y1 ≤MRL Y2).

Proof: To prove the result, the ratio of probability densities is

fY1(y; Θ1)
fY2(y; Θ2)

= (ρ2 − 1)η2

(ρ1 − 1)η1

{
e−(1−δ1y)/ρ1η1y − e−(1−δ1y)/η1y

}
{e−(1−δ2y)/ρ2η2y − e−(1−δ2y)/η2y}

Then,
d

dy
log

{
fY1(y; Θ1)
fY2(y; Θ2)

}
= [{η2B (A1 − ρ1A2)} − {η1A (B1 − ρ2B2)}]

y2AB

where, A =
{
e−(1−δ1y)/ρ1η1y − e−(1−δ1y)/η1y

}
, B =

{
e−(1−δ2y)/ρ2η2y − e−(1−δ2y)/η2y

}
,

A1 = e−(1−δ1y)/ρ1η1y, A2 = e−(1−δ1y)/η1y, B1 = e−(1−δ2y)/ρ2η2y, and B2 = e−(1−δ2y)/η2y.
Hence, If δ1 = δ2 = δ, (ρ1>ρ2), and (η1>η2) then d

dy
log

{
fY1 (y;Θ1)
fY2 (y;Θ2)

}
≤ 0, which implies that

(Y1 ≤lr Y2), (Y1 ≤st Y2), (Y1 ≤hr Y2), and (Y1 ≤MRL Y2).

7. Stress-strength reliability

In this section, we study system reliability estimation under stress strength modeling,
which possesses a cluster of applications, particularly in engineering statistics. Let Y1 be
the strength of the system subjected to stress Y2. The system fails, when Y2 > Y1 (stress
> strength), and functions smoothly, when Y1 > Y2 (stress < strength). Then the system
reliability is measured by using the formula R = Pr. (Y1 > Y2).
For two independent r.v.′s, Y1 ∼ IIvD(δ, ρ1, η1), and Y2 ∼ IIvD(δ, ρ2, η2), having the same
parameter δ. For the given, pdf of Y1 and cdf of Y2 the stress-strength reliability function R
is derived by

FIIvD(y; Θ2) = ρ2e
−(1−δy)/ρ2η2y − e−(1−δy)/η2y

(ρ2 − 1) ρ2 ̸= 1 (16)

and,

fIIvD(y; Θ1) = e−(1−δy)/ρ1η1y − e−(1−δy)/η1y

(ρ1 − 1)η1y2 ρ1 ̸= 1 (17)

Therefore, possible derived cases are given by:
Case (i): when ρ1 ̸= 1, and ρ2 ̸= 1.

R =
� 1/δ

0

{� y

0
fy2(y)dy

}
fy1(y)dy =

� 1/δ

0
FY2(y)fY1(y)dy

=
� 1/δ

0

{
ρ2e

−(1−δy)/ρ2η2y − e−(1−δy)/η2y

(ρ2 − 1)

} {
e−(1−δy)/ρ1η1y − e−(1−δy)/η1y

(ρ1 − 1)η1y2

}
dy

= η2
2

ρ2 − 1

{
ρ3

2
(ρ1η1 + ρ2η2) (η1 + ρ2η2)

− 1
(ρ1η1 + η2) (η1 + η2)

}
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Case (ii): when ρ1 ̸= 1, and ρ2 = 1.

R = η2

(ρ1 − 1)

{
ρ2

1η1

(ρ1η1 + η2)2 + ρ1

(ρ1η1 + η2)
− η1

(η1 + η2)2 − 1
}

Case (iii): when ρ1 = 1, and ρ2 ̸= 1.

R = η2
2

(ρ2 − 1)

{
ρ3

2

(η1 + ρ2η2)2 − 1
(η1 + η2)2

}

Case (iv): when ρ1 = 1, and ρ2 = 1.

R = η2
2 (3η1 + η2)
(η1 + η2)3

8. Estimation of the parameters

Let us consider a random sample of n observations, say y1, y2, ... ,yn drawn from IIvD
with desired defined parametric space Θ = (ρ, δ, η)T consisting k × 1 vector of parameters.
Then the completer data log-likelihood of the model when ρ ̸= 1 is given by

logL =
n∑
i=1

log
{
e−(1−δy)/ρηy − e−(1−δy)/ηy

}
− n log (ρ− 1) − n log(η) −

n∑
i=1

log(y2
i )

Let us take, V1 = e−(1−δy)/ρηy, and V2 = e−(1−δy)/ηy, then we re-write the above equation as

logL =
n∑
i=1

log {V1 − V2} − n log (ρ− 1) − n log(η) −
n∑
i=1

log(y2
i ) (18)

Now, the partial derivative for the above equation (18) with respect to the parameters ρ, δ,
and η are obtained as:

∂ logL
∂ρ

=
n∑
i=1

[1 − δyi]V1

[V1 − V2] ρ2ηyi
− n

(ρ− 1) (19)

∂ logL
∂δ

=
n∑
i=1

V1 − ρV2

ρη[V1 − V2]
− 0 − 0 (20)

∂ logL
∂η

=
n∑
i=1

(1 − δyi)[V1 − ρV2]
[V1 − V2] ρη2yi

− n

η
(21)

Equating the partial derivatives given in equations (19), (20), and (21) to zero, i,e ∂ logL
∂ρ

=
0, ∂ logL

∂δ
= 0, and ∂ logL

∂η
= 0, we get ρ̂, δ̂, and η̂ as the MLEs of the parameters space Θ =

{(ρ, δ, η) > 0}. Since the equation (19), (20) and (21) does not reveal the explicit solution,
to get the parametric solution of the equations, one can counter this situation by employing
the Newton Raphson algorithm. However, log-likelihood maximization could be done by
using nlm or optim function in R-software.
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The first-order derivatives of the log-likelihood equation of IIvD(ρ, δ, η) are defined in equa-
tions (19), (20), and, (21). The continuity of these partial derivatives reflects the second
order partial derivatives of the log-likelihood equation does exist. If we denote the MLEs of
the parametric space, Θ = {(ρ, δ, η) > 0} by Θ̂ =

{
(ρ̂, δ̂, η̂) > 0

}
, then the Fisher information

matrix is given by

I (Θ) = −E


∂2 logL
∂ρ2

∂2 logL
∂ρ∂δ

∂2 logL
∂ρ∂η

∂2 logL
∂δ∂ρ

∂2 logL
∂δ2

∂2 logL
∂δ∂η

∂2 logL
∂η∂ρ

∂2 logL
∂η∂δ

∂2 logL
∂η2

 (22)

The second order partial derivatives of I (Θ) are given by
∂2 log L

∂ρ2 =
n∑
i=1

(1 − δyi)2 [V1 − V2] V1 − (1 − δyi) V1 {2ρη [V1 − V2] yi + (1 − δyi) V1}
[(V1 − V2) ρ2ηyi]2

+ n

(ρ − 1)2 (23)

∂2 logL
∂δ2 =

n∑
i=1

[V1 − V2] [V1 − ρ2V2] − [V1 − ρV2]2

[(V1 − V2) ρη]2
(24)

∂2 logL
∂η2 =

n∑
i=1

(1 − δyi)2 [V1 − V2]
[
V1 − ρ2V2

]
− (1 − δyi) [V1 − ρV2] {2ρη [V1 − V2] yi + (1 − δyi) [V1 − ρV2]}

[(V1 − V2) ρη2yi]2
−

n

η2 (25)

∂2 logL
∂δ∂ρ

=
n∑
i=1

V1 [V1 − V2] {(1 − δyi) − ρηyi} − V1 [V1 − ρV2] (1 − δyi)
[(V1 − V2) η]2 ρ3yi

(26)

∂2 logL
∂η∂ρ

=
n∑
i=1

V1 [V1 − V2] (1 − δyi)2 − V1 (1 − δyi) {ρη [V1 − V2] yi + (1 − δyi) [V1 − ρ]}
[(V1 − V2) yi]2 (ρη)3 (27)

∂2 logL
∂η∂δ

=
n∑
i=1

η [V1 − V2] [V1 − ρ2V2] (1 − δyi) − [V1 − ρV2] {ρη2 [V1 − V2] yi − [V1 − ρV2]}
[(V1 − V2) ρη2]2 yi

(28)

It is difficult to obtain the expectation of second-order partial derivative expressions. Thus,
in this situation, one can use the alternative measure called observed Fisher information
matrix given by

I
(
Θ̂

)
= −


∂2 logL
∂ρ2

∂2 logL
∂ρ∂δ

∂2 logL
∂ρ∂η

∂2 logL
∂δ∂ρ

∂2 logL
∂δ2

∂2 logL
∂δ∂η

∂2 logL
∂η∂ρ

∂2 logL
∂η∂δ

∂2 logL
∂η2


(ρ,δ,η)=(ρ̂,δ̂,η̂)

(29)

The inverse of the observed Fisher information matrix I
(
Θ̂

)
, will give diagonal elements as

variances whereas the off-diagonal elements represents the co-variances of the matrix. The
approximate (1 − σ) 100% confidence intervals for all the three parameters of IIvD i,e ρ,
δ, and η are ρ̂ ± ψσ/2

√
V (ρ̂), δ̂ ± ψσ/2

√
V (δ̂), and η̂ ± ψσ/2

√
V (η̂) respectively. where,

V (ρ̂), V (δ̂), and V (η̂) are variances given in diagonal elements of I(Θ)−1 and the upper (σ/2)
percentile of a standard normal distribution is denoted by ψσ/2.
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9. Simulation

In this section, a Monte Carlo simulation study with 1000 repetitions has been per-
formed through R-software, to illustrate the theoretical findings of the proposed model. Since
data generation has been done by employing the acceptance-rejection algorithm due to the
complexity of the quantile function. The performance of the parametric space Θ with dif-
ferent sample sizes n = (25, 75, 125, 175, 250, 400) are checked by observing the calculated
AAbias and the MSE of the estimated parameters. The output result of the simulation are
summarized in Table 1, given below:

Table 1: Simulated results of parameters for different sample sizes

(δ, η, ρ) n
AAbias MSE

δ̂ η̂ ρ̂ δ̂ η̂ ρ̂

(0.53, 0.92, 0.94)

025 0.13926 0.36362 36.61545 0.01939 0.13222 1340.691
075 0.05185 0.25571 02.96885 0.00269 0.06539 08.81406
125 0.03573 0.22752 01.26163 0.00128 0.05177 01.59170
175 0.02620 0.20220 00.74678 0.00069 0.04088 00.55769
250 0.02049 0.18039 00.59632 0.00042 0.03254 00.35560
400 0.01488 0.16094 00.50596 0.00022 0.02590 00.25599

(1.53, 0.92, 1.04)

025 0.13811 0.32654 21.63234 0.01907 0.10663 467.9582
075 0.05757 0.21819 02.32618 0.00331 0.04761 05.41112
125 0.03954 0.19292 01.01383 0.00156 0.03722 01.02784
175 0.02690 0.16254 00.61841 0.00072 0.02642 00.38243
250 0.02142 0.13128 00.46323 0.00046 0.01724 00.21458
400 0.01614 0.12249 00.40460 0.00026 0.01500 00.16370

(0.53, 1.92, 0.94)

025 0.30424 0.77793 37.09144 0.09256 0.60518 1375.775
075 0.11171 0.52213 03.76642 0.01248 0.27262 14.18596
125 0.07156 0.44599 01.42634 0.00512 0.19891 02.03445
175 0.05285 0.39587 00.70007 0.00279 0.15671 00.49010
250 0.04294 0.36643 00.59156 0.00184 0.13427 00.34995
400 0.02577 0.31186 00.45712 0.00066 0.09726 00.20896

It is easily noticed in Table 1 while increasing the sample size the AAbias and MSE are
reducing. Hence, this admits the consistency property of the parametric space of our model.

10. Applications

This section is about the model applicability checkup on a real-life data basis. The data
set has been analyzed. In this study, the performance of newly developed IIvD is compared
with existing distributions like the Exponential distribution (ED), Inverse Exponential dis-
tribution (IED), generalized Exponential distribution (GED), and the generalized inverse
Exponential distribution (GIED). The best model is chosen having minimum value of
Akaike information criteria ( defined as, AIC = - 2 logL(y,Θ) + 2k ), Bayesian information
criteria ( defined as, BIC = - 2 logL(y,Θ) + k log(n) ), Hannan Quinn information criteria
(defined as, HQIC = - 2 logL(y,Θ) + 2k log[log(n)] ), and the goodness of fit tests, that
includes Cramér-von Mises (Cvm) test, Anderson Darling (An) test, Kolmogorov Smirnov
(KS) statistic respectively. The constant k denotes the number of parameters in the model.
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For a given real-life data set, the results of different information criteria, the goodness of
fit measures, and the p-value are reported in Table 2. The IIvD is compared with existing
models whose probability density functions are given by

ED = f(y; δ) = δe−δy (30)

IED = f(y; δ) = δ

y2 e
−δ/y (31)

GED = f(y; δ, η) = δηe−δy
(
1 − e−δy

)η−1
(32)

GIED = f(y; δ, η) = δη

y2 e
−δ/y

(
1 − e−δ/y

)η−1
(33)

The given data set is taken from the paper published by Ahmed M. A. (2021), which
represents the lifetime (in hours) of traditional lights, for 50 devices. The data are: 0.913,
0.786, 0.860, 0.904, 0.971, 0.616, 0.961, 0.789, 0.817, 0.722, 0.956, 0.835, 0.853, 0.692, 0.850,
0.677, 0.898, 0.965, 0.820, 0.964, 0.865, 0.947, 0.798, 0.746, 0.926, 0.709, 0.615, 0.747, 0.931,
0.913, 0.895, 0.745, 0.839, 0.766, 0.690, 0.531, 0.838, 0.846, 0.876, 0.817, 0.719, 0.907, 0.915,
0.879, 0.890, 0.865, 0.869, 0.772, 0.933, 0.875.

Table 2: Results of information measures and goodness of fit tests

Models
Part − I

δ̂ η̂ ρ̂ log L AIC BIC HQIC
IIvD 1.02014 0.02359 7.68817 50.175 -94.35043 -88.61436 -92.16610

GIED 7.68390 7145.98 - 45.414 -86.82726 -83.00322 -85.37104
GED 8.67100 838.120 - 34.645 -65.29067 -61.46663 -63.83445
IED 0.81630 - - -40.742 83.48415 85.39617 84.21226
ED 1.20440 - - -40.699 83.39836 85.31039 84.12647

Models
Part − II

δ̂ η̂ ρ̂ Cvm An KS p-value
IIvD 1.02014 0.02359 7.68817 0.02439 0.19464 0.05978 0.9941

GIED 7.68390 7145.98 - 0.09202 0.57741 0.11345 0.5405
GED 8.67100 838.120 - 0.34397 2.05467 0.16876 0.1159
IED 0.81630 - - 0.24371 1.47237 0.56858 1.82 × 10−14

ED 1.20440 - - 0.18330 1.11543 0.50322 2.01 × 10−11

From Table 2, it is well observed that the IIvD fits best as it has a minimum value for all
the information criteria ( AIC, BIC, and HQIC ) as well as the goodness of fit tests, and
a higher p-value.

11. Conclusion

This manuscript presents an intervention-based model called inverted intervened Ex-
ponential distribution. The graphical plots based on a different set of parameters for pdf
and hazard rate are shown, pdf having different shapes where the hazard rate function has
upside down and exponentially increasing shapes, that could be useful to model different
types of failure data. The essential statistical and reliability properties are derived. The
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parameters have been estimated by using the method of maximum likelihood estimation. A
Monte Carlo simulation study has been done, where it is observed that both bias and mean
square error for all the parameter decreases while increasing the sample size. The real-life
data set have been analyzed and it is predicted that the values of all the information mea-
sures and the different goodness of fit tests for the proposed distribution are very less, with
a higher p-value as compared to the existing models, which ensures the real-life applicability
of the model.
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