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Abstract
The normal distribution, though widely popular and heavily used in modelling datasets,

has its own limitations, especially dealing with engineering and environmental data. In the
univariate case, when the variable of interest is positively skewed, one can use a host of other
distributions such as Gamma, Weibull, Lognormal etc., just to name a few. However, in a
multivariate set-up, the multivariate normal distribution appears to be the default choice,
either by omission or by commission. The multivariate normal model has a host of advan-
tages as its inferential problems are well studied, and the sampling distributions of its key
statistics are relatively convenient to deal with. To be precise, the sample average follows
a multivariate normal, and the sample cross-product matrix follows a Wishart distribution,
and these two statistics are independent. Further, conditional expectation of any component
given the remaining components is a linear function (of those remaining components) which
is the foundation of the linear regression analysis.

But what happens if our multivariate data, which we commonly see in many applied
problems, do not follow normal? The first casualty is the aforementioned mutual indepen-
dence between the two commonly used statistics, let alone them being the minimal sufficient.
Secondly, the linear regression model may not hold, thereby complicating the further con-
ditional inferences. Also, multivariate normality forces one to assume marginally univariate
normal distributions which may not seem reasonable as seen from the marginal empirical
relative frequency histograms. One possible way out of this difficult situation is to transform
the individual components to achieve multivariate normality, but this faces two big hurdles –
(a) it would be an ad hoc approach to begin with; and (b) such ad hoc transformations may
distort the natural association(s) among the components as well as the units being used,
thus rendering the subsequent analyses questionable. On this backdrop, the copula theory
comes handy in modelling multivariate data. Multiple individual components, apparently
following skewed distributions, can be adequately combined by a suitable copula (also known
as a link function) in order to model the given multivariate data. As opposed to the multi-
variate normal distribution’s ‘top-down’ approach, the copula theory provides a ‘ground-up’
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approach where diversely distributed marginals can be combined into a suitable multivariate
distribution for further inferences, including regressions.

Our study of the copula theory was motivated by an environmental dataset from
the Mekong Delta Region (MDR) of Vietnam. In a bivariate set-up we have used a special
copula, known as the Farlie-Gumbel-Morgenstern Copula (FGMC) to analyze the data. But
this has also opened up a host of other research problems, such as estimation of the copula
parameter, hypothesis testing, goodness of fit tests of FGMC, etc. Further, FGMC is just
one of many, - possibly three dozen copulas, and thus this is a very rich emerging research
field which has received relatively less attention, but has tremendous implications in ‘Big
Data’ or ‘Data Analytics’. We will also discuss some of the major challenges in copula theory
which are related to heavy yet efficient computations in a reasonable amount of time. Thus
this is a rich research area where experts in efficient algorithms and/or numerical analysis
are very much welcome.

Key words: Copula; Jeffrey’s prior; Parametric bootstrap method; Prediction mean absolute
error; Prediction root mean squared error; Kolmogorov-Smirnov statistic.
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1. Introduction

1.1. Why copula?

The normal distribution, though widely popular and heavily used in modelling datasets,
has its own limitations. In the univariate case, when the variable of interest is positively
skewed, one can use a host of non-normal distributions such as Gamma, Weibull, Lognor-
mal etc., just to name a few. However, in a multivariate set-up, the multivariate normal
distribution appears to be the default choice, either by omission or by commission. The
multivariate normal model has a host of advantages as its inferential problems are well stud-
ied, and the sampling distributions of its key statistics are relatively convenient to deal with.
To be precise, let X = (X1, X2, ..., Xp)′ be a p-variate random vector whose distribution is
assumed to be Np(µ, Σ) where µ ∈ Rp and Σ = ((σij)) > 0 (p.d.). Based on a random
sample Xi, 1 ≤ i ≤ n, (i.e., n copies of X), assuming n > p, the maximum likelihood
estimators (MLEs) of µ and Σ are respectively µ̂ = X = ∑n

i=1 Xi/n, and Σ̂ = S/n, where
S = ∑n

i=1(Xi − X)(Xi − X)′. Further, under the above normality of X = (X1, ...., Xp)′, it is
well known that E(X1|X2, ..., Xp) = β1 +∑p

k=2 βkXk, for suitable value of β = (β1, β2, ..., βp)′

which depends on µ and Σ, and this is the motivation behind the usual multiple linear re-
gression where X1 is intended to be explained as a linear function of (X2, ..., Xp) subject to
some variation. But what happens if X does not follow Np(µ, Σ)?
(a): Can we have the aforementioned X and S/n as the MLE of µ and Σ?
- Possibly not.
(b): Can we have the independence of X and S (which is the foundation of most of the
normality based inferential results)?
- Most likely not.
(c): Does regressing X1 on (X2, ..., Xp) through a linear function make sense?
- Doesn’t seem so, since E(X1|X2, ..., Xp) may not be linear at all if the distribution of X is
non-spherically symmetric and/or does not follow homoscedasticity.
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Also, if X = (X1, ..., Xp) ∼ Np(µ, Σ), then it yields Xk ∼ N(µk, σkk = σ2
k), 1 ≤ k ≤ p.

Thus, in dealing with a multivariate data set, if one assumes the Np(µ, Σ) model then
inadvertently univariate normality is assumed for individual components, and this can be
problematic. Yet, in multivariate modelling, ranging from psychology to anthropology, from
agriculture to environmental science, especially in a ‘Big Data’ setting, multivariate normal
distribution is being used hastily without paying closer attention to whether such model
fitting is appropriate or not.

If the multivariate normal is found to be inappropriate for the data Xi, 1 ≤ i ≤ n,
then one may transform the variable(s) suitably hoping that the transformed data would
follow normal. But there are two major issues with such transformations. There is no magic
formula to tell us what transformation would be suitable for normality. Secondly, often such
transformed variables are hard to interpret, and they lose significance to the original problem
which gave rise to the dataset to begin with.

This study has been motivated by several datasets where component-wise histograms
indicate that marginals are heavily skewed, and therefore the joint distribution of the
marginals ought to be something other than a multivariate normal distribution (not even el-
liptically symmetric one). In such a situation, it makes sense to follow a ‘ground-up’ approach
to build a multivariate model starting with marginals, rather than the ‘top-down’ approach
of starting with a (questionable) multivariate model and then live with its consequences at
the marginal level.

Copula theory is a convenient ‘ground-up’ approach where one theorizes a multivariate
distribution for the random vector X = (X1, X2, ..., Xp)′ based on the marginal of each
Xk, 1 ≤ k ≤ p. This is based on the understanding that the desired joint distribution ought
to obey a particular structure involving the marginals which we have much control over.
The following subsection gives a brief introduction of the copula theory. The focus of this
work is on the bivariate set-up; however, we may present some general multivariate results
occasionally.

1.2. General copula framework

The path breaking theorem in Sklar (1959) plays the most important role in the
Copula theory. In the simplest case of a bivariate distribution, it tells us that given a random
vector (X1, X2) with absolutely continuous marginal cumulative distribution functions (cdfs),
F1 and F2, with corresponding probability density functions (pdfs) f1 and f2 respectively,
and its joint cdf denoted by F , with joint pdf f , there exist unique copula C (a functional),
such that

F (x1, x2) = C(F1(x1), F2(x2)),
i.e., f(x1, x2) = ∂2F (x1, x2)/∂x1∂x2

= C(x1,x2)(F1(x1), F2(x2))f1(x1)f2(x2),
(1)

where C(u,v)(u, v) := ∂2C(u, v)/∂u∂v.

In general, given a continuous random vector in p-dimension, i.e., X = (X1, X2, ..., Xp)′,
with marginal cdfs Fk, k = 1, 2, ..., p, if we use the transformations such that Uk := Fk(Xk), k =
1, 2, .., p, then we have Uk ∼ Uniform(0, 1), k = 1, 2, ..., p. The copula function C : [0, 1]p →
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[0, 1] is a joint multivariate cdf of U := (U1, U2, ..., Up)′, i.e.,

C(u1, u2, ......, up) = P (U1 ≤ u1, ...., Up ≤ up). (2)

The joint cdf of X, denoted by F (x1, ..., xp), can be given in terms of C(u1, ..., up). By Sklar’s
theorem there exists a unique copula C such that

F (x1, x2, ..., xp) = C(F1(x1), F2(x2), ...., Fp(xp). (3)

Simply put, the copula C is viewed as a dependence structure among the marginal cdfs.

Since the inception of the copula idea, one can find several copulas in the literature
such as Gaussian copula, Exponential copula, Clayton copula, Frank Copula etc., just to
name a few. Out of the many available copula structures we focus on the Farlie-Gumbel-
Morgenstern copula (FGMC) (see Morgenstern (1956)). The following section gives a brief
introduction about the joint distribution based on FGMC, henceforth referred to as Farlie -
Gumbel - Morgernstern Distribution (FGMD). The main reason behind our choice of FGMC
(and subsequently that of FGMD) is its simplicity. Moreover, the nature of our investigation
is completely new, and to the best of our knowledge the type of our investigation has not
been carried out for FGMC. Therefore, this work of ours can be used as a template of future
research for all other copulas as needed.

1.3. Farlie - Gumbel - Morgenstern Copula (FGMC) and the resultant model

As mentioned in the earlier section, a host of Copula structures have been discussed
in the existing literature and one can find an overview of the available copula structures in
Nelsen (2007). Several bivariate and multivariate non-normal probability distributions based
on copula structures can be found in Kotz et al. (2004).

Morgenstern (1956) first introduced the following bivariate probability distribution
on the square [−1, 1] × [−1, 1] of the form

f(x1, x2) = 1
4(1 + λx1x2), (4)

where |λ| ≤ 1 and −1 ≤ x1, x2 ≤ 1. Farlie (1960) further studied various standard correlation
coefficients between X1 and X2 for the bivariate distribution in (4). The limitations that a
bivariate normal distribution brings to a dataset were first pointed out by Gumbel (1960)
while he constructed a bivariate distribution with exponential marginals using Morgenstern’s
underlying copula in (4).

The pdf of the bivariate Farlie-Gumbel-Morgenstern distribution (FGMD) with gen-
eral marginals based on the FGMC is given by

f(x1, x2) = f1(x1)f2(x2)[1 + λ(2F1(x1) − 1)(2F2(x2) − 1)], (5)

where |λ| ≤ 1 is the association parameter, f1, f2 are the marginal pdfs of the components
X1 and X2, with corresponding marginal cdfs F1, F2 respectively. The range of λ happens
to be [−1, 1], similar to many common correlation coefficients.

As a special case of (5), D’este (1981) considered a special biavriate Gamma dis-
tribution with gamma marginals and studied the structures of the covariance, conditional
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expectations as well as other distributional properties. Since the inception of the FGMC, it
has undergone several modifications over the years leading to some wider family of FGMC
by different researchers. All these modifications were done with the goal of capturing a wider
range of dependence among the components through common dependence measures such as
Pearson’s Correlation Coefficient (ρ), Spearman’s Correlation coefficient (ρs), Kendall’s Tau
(ρK), etc. In their modified FGMD Huang and Kotz (1999) showed that with a polynomial
type single parameter extension of the FGMC with uniform marginals the maximal attain-
able range of ρ is [−0.39, 0.333...]. Bairamov and Kotz (2002) proposed a new generalization
of FGMD by introducing new association parameters and were able to attain a maximal pos-
itive (Pearson’s) correlation of ρ = 0.5021 for some specific values of the model parameters.
All these generalizations were made to accommodate a larger spectrum of the Pearson’s
correlation coefficient values. However the Pearson’s correlation coefficient measures the
strength of linear relationship between the components; therefore, paying attention only to
this aspect of dependency, at the cost of adding more parameters to the model, is a rather
narrow approach. Amblard and Girard (2009) gave a new family of copulas by generalizing
the FGMC and highlighted the main feature of the proposed family as to permit modelling of
data with high positive dependency, in particular over the range of ρs ∈ [−0.75, 1]. Another
new generalization of the FGMC was put forward by Bekrizadeh et al. (2012) and they were
able to show the usefulness of the proposed generalized model in data with high negative
dependence value by showing the (Spearman’s rank correlation) values of ρs ∈ [−0.5, 0.43].
All these generalizations were made by introducing new parameters which only adds to the
complexity of the statistical inferences of the FGMD model.

1.4. A motivational example with a real life dataset

This work has been motivated by an excellent investigation carried out by Merola
et al. (2015) where the researchers have presented, among other things, a useful dataset on
arsenic (As) concentration as well as a few other apparently benign elements from a survey
carried out in Dong Thap province within the Mekong Delta Region (MDR) of Southern
Vietnam. The complete dataset is given in Appendix A.1.

Vietnam is one of the worst affected countries where arsenic contamination in ground-
water is particularly worrisome in two areas, - The Red River Delta (RDR) in the northern
part, and the Mekong Delta Region (MDR) in the southern part. The MDR is the most
economically vibrant region of the country which comprises twelve southern provinces and
one major city (Can Tho) municipality. The provinces adjacent to Mekong river and its dis-
tributaries have been witnessing a very high concentration of arsenic in groundwater which
is caused by both natural as well as man-made factors as discussed below.

As mentioned at the beginning of this section, Merola et al. (2015) collected data on
arsenic concentration in groundwater in two subregions within Dong Thap province of MDR.
Dong Thap, along with An Giang and Long An, is one of the provinces bordering Cambodia
that has a high level of arsenic and poses a public health hazard. Thus, measuring arsenic
in groundwater and issuing guidelines if and when needed is of paramount importance for
the local administrations to mitigate arsenic poisoning. However, measuring arsenic level
frequently and accurately is a time consuming and/or expensive exercise. Therefore it would
be of great help to all the stakeholders if the level (or concentration) of arsenic could be
predicted from the other benign elements when it is established, based on some existing
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survey data, that in certain region there is an association between arsenic and one or more
benign element(s) which can be measured easily (and cheaply), often through user friendly
devices.

1.5. Scope of this research

The initial exploratory analysis points towards the fact that the MDR dataset con-
sists of components which, firstly, have distinct distributions over the two sub-regions as
mentioned above and secondly, have mostly skewed marginal distributions. We further delve
into the exploration of the nature of pairwise association present among the variables in this
dataset. We employ the FGMD model for the purpose.

The flexibility of the copula structure lies in allowing the freedom of choice of the
desired marginal distributions. Hence, the association parameter λ of the copula structure
(5) becomes a pivotal parameter in conserving the dependency between the components. As
a result, inferences on the association parameter λ in (5) is of paramount interest. The basis
of this current work has been the FGMD given in (5) with the goal of studying the inferential
aspects of the association parameter λ comprehensively, with known marginals.

The inferential aspect includes parameter estimation where we have discussed a host
of estimators and recommend the most suitable ones. Secondly, we have studied the existence
of association among the variates through hypothesis testing under the FGMD model. We
proposed a family of parametric bootstrap (PB) tests which addresses the problem of λ = 0
vs λ ̸= 0. Along with the regular asympototic tests, we have studied the proposed PB tests
and have shown that they tend to attain the nominal level very accurately.

While various correlation measures reveal some interesting patterns in terms of asso-
ciation between Arsenic (As) and Chlorine (Cl), between As and Hydrogen Potential (pH),
and between As and Redox Potential or level (Eh), they do not address the objective of
this work, i.e., predicting the value of As when a suitable covariate, which is known to be
significantly associated with As, is known. For example, in the southern region, where As
and Cl are apparently strongly associated, can we predict the value (or, do we know the
expected value) of As when Cl is equal to, say, 10 ppm? The prediction problem which
has been posed above can be answered only by fitting an appropriate bivariate probability
distribution to the given data on two relevant variates.

Let us denote the variate As by Y for the time being, and its suitable covariate by
X (where X can be either Cl, or pH, or Eh). (For convenience in notation, these three
covariates can be denoted by X1, X2 and X3, respectively.) We addressed the suitable distri-
bution of (X, Y ) through FGMD which fits the given data. Once that suitable distribution
of (X, Y ) fits the data, then we use the conditional distribution of (Y |X) to draw inferences
on Y when X is given. As noted earlier, the joint probability distribution of (X, Y ) has to
be a non-normal one because the univariate normality tests reject such a notion most of the
time (six out of eight cases - four variables in two subregions).

Finally, one can raise the question of ‘goodness of fit’ (GoF) of FGMD. It is worthy
of noting that there is no “one stop solution” for the goodness of fit problem for the host of
available copula in the literature and it remains an open problem. Several goodness of fit
tests are available across the literature but to the best of our knowledge there doesn’t exist
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one for FGMC which considers the parametric nature of the distribution. We have proposed
and developed a novel data driven goodness of fit test for FGMD, which does not assume
any known distribution of the test statistic under the null hypothesis. A detailed study of
this goodness of fit test including the test procedures, as well as its performance is discussed
which validates the application of FGMD model to the MDR dataset.

2. Point estimation of the association parameter

If one looks at the existing applications of the copula theory with real-life data sets
then it becomes abundantly clear that the preferred estimator of the association parameter
has always been the maximum likelihood estimator (MLE). But how good is the MLE? From
an asymptotic point of view the MLE has nice tractable limiting distributional properties.
But, for small to moderate sample sizes the performance of the MLE of the FGMD association
parameter λ is totally unknown. Worse, the existing literature is completely silent on other
possible estimators, especially the Bayes ones under noninformative priors. In a parametric
set up, one should study various estimators of all the model parameters simultaneously which
include the association parameter λ as well as other parameters of the marginal distributions.
(For example, if one assumes a two parameter gamma model for each of the two marginals,
then one ends up with a total five parameters.) It has been noted that estimating just
the association parameter with known marginals itself is a research problem as it entails
several point estimators with corresponding sampling distributions, followed by hypothesis
testing which allows us to verify, under the FGMD assumption, whether the components are
independent or not. The computational challenges that one faces with Bayes estimators in
this simplistic scenario (i.e., just for the association parameter) can be quite overwhelming.
However, the simplistic model that we are using in this work can be applied in a totally non-
parametric marginal set up where one can use the empirical marginal cdf of each component
to replace the aforementioned known marginal, and then can proceed with the subsequent
inferences. With that above objective in mind, the following subsections present a brief
review of parametric estimation of the association parameter λ as available in the existing
literature. Also, the following lemma will be useful in deriving Bayes estimators under
noninformative priors.

Lemma 1: Based on the iid observations X1, X2, ..., Xn from (5) with marginals f1 and f2
completely known, the Fisher information I(λ) is given as I(λ) = nI0(λ), where I0(λ) is the
Fisher information per observation (FIPO), and

I0(λ) = (1/4)
� +1

−1

� +1

−1
u2

1u
2
2(1 + λu1u2)−1du1du2. (6)

Note that the FIPO expression is free from f1 and f2. A further simplification yields

I0(λ) =
∞∑

m=0
λ2m/(2m + 3). (7)

Note that the infinite sum in the above expression is convergent. Using that expression
of the infinite sum, the final form of the FIPO, is given by

I0(λ) = {−λ + tanh−1(λ)}/λ3, (8)
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where tanh−1(λ) = (0.5)log((1 + λ)/(1 − λ)). See Chatterjee (2022) for the proof.

Remark 1: It is not at all surprising to see that the expression of I0 in (7) or (8) is free
from fk’s (k = 1, 2). Since the marginals are assumed to be completely known, without any
loss of information one can look at Yik = Fk(Xik), k = 1, 2, 1 ≤ i ≤ n. Note that Yik’s
are iid Uniform(0, 1). Each Yi = (Yi1, Yi2)′ then follows the FGMD(λ) with joint pdf , say
g(y) = [1+λ(2y1 −1)(2y2 −2)] on the unit square [0, 1]× [0, 1]. The transformation Xi → Yi

does not change the problem as far as inference on λ is concerned, and yields the FIPO
expression as stated above.

In the following subsections, we propose a wide variety of estimators of the association
parameter λ based on n iid observations from (5) with known marginals f1 and f2.

2.1. Method of moment estimation

Method of moment estimator is attained essentially by equating the sample raw
moment with the population moment. For the joint population moment, using the simple
calculation of the expectation of the distribution in (5) and some further simplification lead
us to the following form

E(X1X2) = E(X1)E(X2) + λI1I2, (9)

where Ik =
� 1

−1(u/2)F −1
k ((1 + u)/2)∂u, k = 1, 2. For convenience define µk = E(Xk),

k = 1, 2, i.e., the means of the known marginals. Therefore from (9) it can be easily
established that Cov(X1, X2) = λI1I2. For the method of moment estimator λ̂MM we equate
λI1I2 with the sample equivalent of Cov(X1, X2) which is (1/n) ∑n

i=1(X1i − X1)(X2i − X2)
where Xk = (1/n) ∑n

i=1 Xki, k = 1, 2. Therefore,

λ̂MM = (nI1I2)−1
n∑

i=1
(X1i − X1)(X2i − X2). (10)

2.2. Maximum likelihood estimation

For the brevity in derivation, let us denote 2Fk(xik) − 1 = Gk(xik), k = 1, 2. The
log-likelihood function of the data denoted by l(λ) is as follows

l(λ) = C +
n∑

i=1
ln(1 + λG1(xi1)G2(xi2)), (11)

where C is a constant, free of λ. It is tempting to take derivative of l(λ) and equating it
with zero, i.e.,

n∑
i=1

G1(xi1)G2(xi2)/(1 + λG1(xi1)G2(xi2)) = 0, (12)

to find the MLE of λ. But this can lead to a computational error as the solution may lie
outside the parameter space which may go unnoticed in simulation studies. (We suspect
that this issue may arise for other copula - based joint distributions as well, and may have
gone unnoticed in applications.)
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Theorem 1: The MLE of λ i.e., λ̂ML as it is called here, which maximizes l(λ) in (11),
exists, and it is unique.

Proof. See Appendix of Chatterjee (2022).

Remark 2: Define ai = G1(xi1)G2(xi2), 1 ≤ i ≤ n, and Gk(xik) = 2Fk(xik) − 1, k = 1, 2.
Let h(λ) = ∑n

i=1 ai/(1 + λai), λ ∈ [−1, +1]. As seen from the details of the proof of the
above theorem, λ̂ML takes the following form

λ̂ML =


−1 if h(−1) < 0
solution of (12) if h(−1) > 0 and h(+1) < 0
+1 if h(+1) > 0,

(13)

Remark 3: It is further seen that if all the ai’s are > 0, which happens with probability
(0.5)n, then l(λ) is monotonically increasing in λ. Hence λ̂ML is +1. Thus, {(a1, ..., an)| ai >
0 ∀ i} ⊆ {(a1, ..., an)| h(+1) = ∑n

i=1 ai/(1 + ai) > 0}. Similarly, if all the ai’s are < 0, which
again happens with probability (0.5)n, then l(λ) is monotonically decreasing in λ. Hence
λ̂ML is −1. Thus, {(a1, ..., an)| ai < 0 ∀ i} ⊆ {(a1, ..., an)| h(−1) = ∑n

i=1 ai/(1 − ai) < 0}.
We will see later in our simulation study that λ̂ML can take ±1 with substantially high
probabilities depending on the sample size as well as λ.

2.3. Bayes’ estimators

For any suitable prior π(λ) over the parameter space [−1, +1], the posterior distri-
bution of (λ|data), denoted by g(λ|data), is

g(λ|data) =
∏n

i=1[1 + λG1(Xi1)G2(Xi2)]π(λ)� 1
−1

∏n
i=1[1 + λG1(Xi1)G2(Xi2)]π(λ)∂λ

. (14)

A natural choice of the prior for the association parameter is a modification of the
beta distribution which is originally defined over the space (0, 1). The beta-type prior density
function defined over the parameter space [−1, +1] is

π(λ) = 1/(2B(a, b))((1 + λ)/2)a−1((1 − λ)/2)b−1, (15)

where a, b are the hyper-parameters.

The most common loss function for estimating a parameter is the usual squared error
loss. However, when a parameter is restricted to a finite range, as we have here for the
association parameter λ, a weighted quadratic loss is more meaningful which can assign a
heavy penalty near the boundary. Hence, we consider a general structure of the loss function
of the form

L(λ̂, λ) = w(λ)(λ̂ − λ)2, (16)

where w(λ) is a suitable weight function. In this work we are going to consider weight
function w(λ) of the form

wδ(λ) = (1 − λ2)−δ, δ ≥ 0. (17)
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Note that δ = 0 leads to the usual squared error loss. For any δ > 0, the loss (16) goes to
∞ as λ approaches ±1 and |λ̂ − λ| > 0. In other words, a small deviation of λ̂ from λ near
the boundary can be very costly.

Under the general weighted quadratic loss (16), the general structure of the Bayes’
rule is given as

λ̂B = E(λw(λ)|λ ∼ g(λ|data))
E(w(λ)|λ ∼ g(λ|data))

=
� 1

−1 λw(λ) ∏n
i=1[1 + λG1(Xi1)G2(Xi2)]π(λ)dλ� 1

−1 w(λ) ∏n
i=1[1 + λG1(Xi1)G2(Xi2)]π(λ)dλ

.

(18)

With the special structure of w(λ) = wδ(λ) = (1 − λ2)−δ, we are now ready to derive the
Bayes’ rule, denoted by λ̂Bδ as follows.

In order to attain a tractable structure of the Bayes’ rule, we resort to a sim-
ple algebraic manipulation within Equation (18). Let us focus on the term ∏n

i=1(1 +
λG1(Xi1)G2(Xi2)) in the Equation (18). Recalling from Remark 2 that ai = G1(Xi1)G2(Xi2),
the following product term can be rewritten as

n∏
i=1

(1 + λG1(Xi1)G2(Xi2)) = (1 + λa1)(1 + λa2)....(1 + λan)

= 1 + λ
n∑

i1=1
ai1 + λ2 ∑

(1≤i1<i2≤n)
ai1ai2 + ...

... + λk
∑

(1≤i1<i2<...<ik≤n)
ai1ai2 ...aik

+ .... + λnai1ai2 ...ain .

(19)

Call ∑
(1≤i1<i2<...<ik≤n) ai1ai2 ...aik

= Dk, 1 ≤ k ≤ n, and define D0 = 1. Therefore ∏n
i=1(1 +

λG1(Xi1)G2(Xi2)) = ∑n
k=0 λkDk. Hence, the Bayes’ rule in (18) can be simplified as -

λ̂B =
∑n

k=0 Dk

� 1
−1 λk+1(1 − λ2)−δπ(λ)dλ∑n

k=0 Dk

� 1
−1 λk(1 − λ2)−δπ(λ)dλ

. (20)

Further, we will consider the special case of a = b = d, which implies a symmetric prior
about 0. We are going to introduce the notation β as β = d − δ and the estimator (18) with
the prior in (17) will be denoted as λ̂Bβ, i.e.,

λ̂Bβ =
∑n

k=0 Dk

� 1
−1 λk+1(1 − λ2)β−1dλ∑n

k=0 Dk

� 1
−1 λk(1 − λ2)β−1dλ

. (21)

2.3.1. Special case of β = 1 (Bayes estimator under flat prior or BFP)

A particular case of interest is β = 1 which can happen if δ = 0 and d = 1 or δ = 1
and d = 2 etc. Since β = 1 (due to δ = 0 and d = 1) also implies the Bayes’ estimator under



2024] USE OF FGMC TO MODEL A BIVARIATE WATER QUALITY DATA 71

the flat prior (FP ) using the ordinary squared error loss function, we denote λ̂B1 as λ̂BF P

and is given by

λ̂BF P =
∑n

k=0 Dk

� 1
−1 λk+1dλ∑n

k=0 Dk

� 1
−1 λkdλ

=
∑n

k=0(Dk/(k + 2)){1 − (−1)k}∑n
k=0(Dk/(k + 1)){1 − (−1)k+1}

. (22)

2.3.2. Bayes’ estimator under Jeffrey’s prior (BJP)

Let us step back to the initial form of the Bayes’ estimator as mentioned in equation
(20). A natural non-informative prior is the Jeffrey’s prior, denoted by πJP (λ), which is

πJP (λ) ∝ (I(λ))1/2,

where I(λ) = Fisher Information of λ from a sample of size n. Hence, from (7), we have

πJP (λ) ∝
∞∑

m=0
λ2m/(2m + 3)

Therefore, the Bayes’ estimator under Jeffrey’s prior using δ = 0 in the weight function in
(18) and, denoting λ̂BJP , is given by

λ̂BJP =
∑n

k=0 Dk

� 1
−1 λk+1(∑∞

m=0 λ2m/(2m + 3))1/2dλ∑n
k=0 Dk

� 1
−1 λk(∑∞

m=0 λ2m/(2m + 3))1/2dλ
. (23)

2.3.3. Bayes’ estimator under an approximate Jeffrey’s prior (BAJP)

Note that in either of (20) or (18) the Bayes’ estimator involves an infinite series.
For the ease of simplification and being able to study the performance of a suitable Bayes’
estimator analytically, we propose a simplistic approximation of the Jeffrey’s prior which is
given by ∑∞

m=0 |λ|m/(2m + 3)1/2. Also, note that this infinite series is convergent and has
a finite value. In fact, the above series converges to

√
2Φ(|λ|, 1/2, 3/2)/2, where Φ(x, y, z)

is called the confluent hypergeometric function of the first kind (Abramowitz and Stegun
(1964)), which is a function of x when y, z are held constants. Due to this fact, we can use
this approximation as a new prior distribution. We call this as the approximate Jeffrey’s
prior and is given by

πAJP (λ) ∝
∞∑

m=0
|λ|m/(2m + 3)1/2. (24)

Hence, the Bayes’ estimator with respect to (24), denoted by λ̂BAJP , is

λ̂BAJP =
∑n

k=0
∑∞

m=0 Dk(2m + 3)−1/2(1 + (−1)k+1)(m + k + 2)−1∑n
k=0

∑∞
m=0 Dk(2m + 3)−1/2(1 + (−1)k)(m + k + 1)−1 . (25)

The derivation of (25) is available in Chatterjee (2022).
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2.4. Sampling distributions of various point estimators

One has to be extremely careful about obtaining the MLE by maximizing the log-
likelihood function by differentiation which yields (11). However, the solution of this equation
exhibit a tendency to go outside of the parameter space [−1, +1], especially when true λ is
near the boundary values, with a high probability. Therefore, λ̂ML needs to be truncated
at ±1 which shows a high probability concentration (i.e., high relative frequency in the
simulation study) at the boundaries. This feature hasn’t been discussed by other researchers
earlier. As the sample size increases, this behavior of λ̂ML diminishes considerably, especially
for n ≥ 50 (see Chatterjee (2022)).

On the other hand, the Bayesian estimators are always strictly within the parameter
space compared to the traditional estimator MLE showing a bimodal trend while estimating
λ close to the center of the parameter space, (see Figure 2.1 in Chatterjee (2022)). Figure
1 illustrates the simulated sampling distributions of the 4 estimators described earlier for a
sample of size n = 25 based on 104 replications.

As a demonstration, we apply the FGMD model to the MDR dataset. This gives us
an opportunity to estimate the pairwise association among the variates in our dataset.

Table 1: Estimates of the FGMD association parameter in two MDR subregions

Pair of Elements North South
λ̂ML λ̂BF P λ̂BJP λ̂BAJP λ̂ML λ̂BF P λ̂BJP λ̂BAJP

As vs Cl 0.085 0.053 0.064 0.108 −0.982 −0.621 −0.674 −0.81
As vs Eh −1 −0.587 −0.646 −0.803 −1 −0.872 −0.892 −0.941
As vs pH 0.746 0.423 0.475 0.666 0.611 0.431 0.469 0.648

Remark 4: (a) With the application of FGMD(λ) we were able to estimate the underly-
ing association among the pairwise variables using the four estimators. According to the
estimates in Table 1 there exists a strong negative association between Eh and As in the
northern region. λ̂ML estimates the strongest negative association among the variables, fol-
lowed by λ̂BAJP , λ̂BJP and λ̂BF P . The highly negative association between As and Eh in the
northern subregion, which was partially captured by the Spearman’s and Kendall’s, is rati-
fied by the estimates of the association parameter of FGMD (see the details of the standard
estimated correlation measures in Table 7 within Section 5).

(b) In the instance of As vs pH it is crucial to note that in the northern sub-region, Spear-
man’s rho and Kendall’s Tau contradicted pearson’s correlation coefficient which showed a
strong linear association. This is in agreement with our FGMD model.

(c) In the southern subregion, the standard correlation coefficients estimate a considerable
negative linear association in (As, Eh). Although there is visible evidence of association
present in (As, Eh) and to some extent in (As, Cl) but labeling it as a linear association
will be an over simplification and inaccurate. The estimates in Table 1 of the association
parameter λ shows a strong negative association in (As, Eh) and in (As, Cl). The MLE
registers the strongest association among the variables (As, Eh) followed by λ̂BAJP , λ̂BJP
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and λ̂BF P . The same holds for (As, Cl) as well. There is a positive association among the
variables (As, pH) as estimated by all the standard correlation measures, reiterating the
same phenomenon by FGMD.
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Figure 1: Simulated relative frequency histograms of four estimators of λ, n = 25

3. Hypothesis testing on the association parameter

3.1. The rationale behind hypothesis testing

In most of the applied cases one would be interested in knowing whether the compo-
nents are associated or not. The copula based distributions such as FGMD which preserves
the information of association through a single parameter λ (in the bivariate case), if proven
to be suitable, can provide an answer to this problem. In this Section, we study the perfor-
mance of different types of hypothesis testing procedures to test the hypotheses H0 : λ = λ0
vs HA : λ ̸= λ0. Hence to examine whether the association indeed exists or not, one partic-
ular value of λ0 is of interest, that is λ0 = 0. The following tests have been proposed and
studied through size and power for the aforementioned hypotheses.

1. Asymptotic tests:

(a) Asymptotic Normal Test. (ANT )

(b) Asymptotic Likelihood Ratio Test (ALRT )

2. Parametric bootstrap tests based on the LRT statistic (PBLRT )
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3.2. Asymptotic normal test (ANT)

While testing the values of λ, this is probably the simplest approach of developing a
hypothesis test utilizing the asymptotic property of the MLE of λ. Earlier we have already
seen that for an iid sample of size n from FGMD(λ) the MLE exists and it is unique. It is
a well known result that as n → ∞, λ̂ML

d→ N(λ, AV (λ)), where AV (λ) is the asymptotic
variance of the MLE and is given by the inverse of the fisher information of λ, i.e. I−1(λ),
assuming that marginals are fully known. Therefore, if we assume that the null hypothesis
is true, then λ̂ML

d→ N(λ0, I−1(λ0)) as n → ∞. Therefore we reject the null hypothesis if

|
√

nI0(λ0)(λ̂ML − λ0)| > z(1−α/2),

where z(1−α/2) is the right tail (α/2) - probability cutoff point of the standard normal distri-
bution and I0(λ0) is the FIPO in the relation I(λ0) = nI0(λ0).

3.3. Asymptotic likelihood ratio test (ALRT )

Based on the iid observations derive the likelihood ratio statistic Λ as

Λ =
Sup

H0

L(λ|data)

Sup
H0UHA

L(λ|data) = L(λ0|data)
L(λ̂ML|data)

.

Define Λ∗ = −2ln(Λ). Asymtotically, as n → ∞, Λ∗
d→ χ2

1 under H0. So we reject
the null hypothesis at level α if

Λ∗ > χ2
1;(1−α),

where χ2
1;(1−α) is the right tail (α) - probability cut off point of Chi squared distribution

with 1 degree of freedom. The following Table 2 shows the simulated size values of the two
asymptotic tests based on the MLE λ̂ML.

Table 2: Simulated size values of the two asymptotic tests for λ0 = 0, α = 0.05

Test n = 10 n = 20 n = 30 n = 40 n = 50 n = 75 n = 100
ANT 0.000 0.297 0.284 0.274 0.270 0.265 0.262
ALRT 0.002 0.017 0.026 0.028 0.028 0.027 0.026

Remark 5: Both the asymptotic tests are far from satisfactory as far as size is concerned.
For n = 10, both of them are hopelessly conservative. For n ≥ 20, ANT is overall a very
liberal test and ALRT on the other hand is a very conservative test. It is clearly visible that
ANT has a monotonically decreasing (albeit very slowly) size property with the increase in
sample size, whereas ALRT ’s size values indicate a conservative behavior. Even for sample
of size 100, which are generally considered to be ‘large’, these tests are still unable to achieve
the level condition satisfactorily.
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3.4. Parametric bootstrap (PB) tests

As seen in the earlier section, the asymptotic tests do not perform well for small to
moderately large sample sizes. Therefore, in this subsection we propose a class of four tests
based on the idea of LRT with the added parametric bootstrap (PB) concept.

The traditional LRT calls for using Λ∗ = −2 ln(Λ) which, under H0, follows χ2
1

asymptotically. However, in this present FGMD case, the null distribution of Λ∗ has been
found to be way off from the asymptotic distribution χ2

1. Therefore, the cut-off point χ2
1;(1−α)

is not applicable for the statistic Λ∗ in order to test H0. A situation like this calls for coming
up with different cut-off points for Λ∗ depending on sample size n as well as the data X
through a PB method. Note that the expression Λ has λ̂ML in the denominator as an
estimator of λ while the numerator uses the null value λ0 of λ. As a result, the value of Λ
is always between 0 and 1, and a value of Λ closer to 1 implies a probable validity of H0.

We extend the above traditional LRT concept a bit further by incorporating the other
three estimates of λ which have shown considerable improvement over λ̂ML, especially in the
mid region of the parameter space. In this regard we are going to consider λ̂BF P , λ̂BJP and
λ̂BAJP (along with λ̂ML) in the LRT structure. In its generic form, the structure of Λ∗ is
going to be redefined as Λ∗(λ̂) = −2 ln(Λ(λ̂)), where Λ(λ̂) = [ L(λ0|data)/L(λ̂|data) ], where
λ̂ can be any one of the four aforementioned estimators of λ.

One difficulty with the above Λ(λ̂) is that the denominator is not guaranteed to be
greater or equal to the numerator unless λ̂ = λ̂ML. In other words, Λ∗(λ̂) = −2 lnΛ(λ̂) is
not guaranteed to be non-negative unless λ̂ = λ̂ML. However, a value of Λ∗(λ̂) closer to 0
still conforms the validity of H0. Therefore, to find suitable cut-off points for the statistic
Λ∗, we consider

Λ∗∗(λ̂) = |Λ∗(λ̂)|, (26)

which is always nonnegative. The four versions of Λ∗∗ using four aforementioned estimators
will be referred to as

Λ∗∗1 (orPBLRT 1) = Λ∗∗(λ̂ML)
Λ∗∗2 (orPBLRT 2) = Λ∗∗(λ̂BF P )
Λ∗∗3 (orPBLRT 3) = Λ∗∗(λ̂BJP )
Λ∗∗4 (orPBLRT 4) = Λ∗∗(λ̂BAJP )

(27)

Algorithmic steps to implement Λ∗∗(λ̂) as a test:
Step - 1: For the given data X = (X1, X2, ..., Xn) from FGMD, compute λ̂ (which is one
of the above 4 estimators as mentioned earlier). Obtain the corresponding Λ∗∗(λ̂).
Step - 2: Assume that H0 : λ = λ0 is true. Generate a bootstrap sample of size n (say,
X∗

1, X∗
2, ..., X∗

n) from FGMD(λ0). Once this bootstrap data is generated, pretend that λ is
unknown, estimate λ using the bootstrap data by λ̂, and call it λ̂∗, which in turn produces
the value of Λ∗∗(λ̂∗). (See Chatterjee (2022) about generating data from FGMD(λ).)
Step - 3: Repeat the above Step - 2 a large number of times (say, B times). This produces
B copies of Λ∗∗(λ̂∗), and call them as Λ(b)

∗∗ (λ̂) = Λ∗∗(λ̂∗(b)), 1 ≤ b ≤ B, where λ̂∗(b) is the bth
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copy of λ̂∗ as mentioned in Step - 2. These Λ(b)
∗∗ (λ̂) values are supposed to approximate the

null distribution of Λ∗∗(λ̂).
Step - 4: Order Λ(b)

∗∗ (λ̂), 1 ≤ b ≤ B, and let Λ∗∗(λ̂|α) be the 100(1 − α)th percentile value of
Λ(b)

∗∗ (λ̂), 1 ≤ b ≤ B. This Λ∗∗(λ̂|α) is the critical value for Λ∗∗(λ̂) in Step - 1.
Step - 5: Reject H0 if Λ∗∗(λ̂) (from Step -1) > Λ∗∗(λ̂|α), and retain H0 if otherwise.

A complete comparison of the four PB test in terms of size and power, for different
sample size is detailed in Chatterjee (2022)

3.5. Application to MDR dataset

Using the estimates of λ from the MDR dataset in Table 1, we proceed to perform
PBLRT1, PBLRT2, PBLRT3 and PBLRT4 to test the hypothesis H0 : λ = 0 vs HA :
λ ̸= 0. The following Table 3 gives the PBLRT test statistic values along with the simulated
P -values.

Table 3: PBLRT test statistic and their p-values for the MDR data

Test North South
As vs Cl As vs Eh As vs pH As vs Cl As vs Eh As vs pH

PBLRT1 0.017 3.959∗ 1.366 4.447∗ 17.099∗ 1.364
(0.899) (0.047∗∗) (0.263) (0.039∗∗) (0.000∗∗∗) (0.251)

PBLRT2 0.013 2.792 1.108 3.841 15.266∗ 1.262
(0.208) (0.101∗) (0.485) (0.076∗) (0.002∗∗∗) (0.503)

PBLRT3 0.015 2.986 1.186 4.006 15.577∗ 1.305
(0.216) (0.101∗) (0.491) (0.076∗) (0.000∗∗∗) (0.506)

PBLRT4 0.016 3.475 1.350 4.309 16.280∗ 1.353
(0.239) (0.098∗) (0.503) (0.076∗) (0.000∗∗∗) (0.495)

Remark 6: The results of Table 3 show that As is not associated with pH in both the
regions based on the FGMD model. However, As is significantly associated with both Cl
and Eh in the southern subregion, and with Eh in the northern subregion thereby opening
up the possibility of further prediction (see more in Section 5).

4. Goodness of fit tests for FGMD

4.1. The rationale behind goodness of fit (GoF) tests

Since the pathbreaking work of Sklar (1959) about three dozen copulas have been
proposed by various researchers for different applications. A particular copula presents
a particular family of multivariate distributions of the random vector X which combines
p suitably hypothesized univariate marginal distributions of the components. Therefore,
before adopting a particular copula for a specific dataset one must come up with a suitable
GoF test for that copula, and this is where there appears to be an ample room for further
research.

The problem of finding an optimal GoF for a given copula is an open problem. It
appears that there does not exist a robust test which can identify the most appropriate
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copula for a given dataset. Therefore, one can take each copula, from a handful of copulas
and see their applicability by running a GoF for a given dataset. Most of the available GoF
tests in the literature are developed with either a specific copula or a specific family of copula
based probability distributions in mind. A brief review of the available GoF tests and their
inadequacy is discussed in the following section.

4.2. Inadequacy in the existing literature

There are several works on GoF tests involving copulas, such as Fermanian (2005),
Genest et al. (2006), Genest and Favre (2007), Genest et al. (2009) (which is primarily a
review of the existing methods with a limited power study), Genest et al. (2011) (which is a
goodness of fit test for the bivariate extreme value copulas). However Genest et al. (2006)
appears to encompass the overall GoF test methods for copulas.

Genest et al. (2006) provided two test statistics that have been developed to test
the GoF of a given copula. These two test statistics, say Sn and Tn, which are essentially
Cramer-Von Mises and Kolmogorov-Smirnov statistics respectively, can be computed for
FGMD through the following steps.

(i) Given the bivariate data Xik, i = 1, 2, ..., n and k = 1, 2, define the pseudo observations
V1, V2, ..., Vn as Vi = (1/n) ∑n

l=1 I(Xl1 ≤ Xi1, Xl2 ≤ Xi2), 1 ≤ i ≤ n.

(ii) Define Kn(t) = (1/n) ∑n
i=1 I(Vi ≤ t) = (Number of Vi’s ≤ t)/n.

(iii) Define K(t|λ) as

K(t|λ) =
� t

0

� 1

s

h(x, s|λ)dxds,

where

h(x, s|λ) = 1
(1 − x)r(x, s|λ) + 1

x
− 1

(1 − x) ,

with
r(x, s|λ) = [{1 − λ(1 − x)}2 + 4λ(1 − x)(1 − s/x)]1/2.

Note that while implementation of the GoF tests, λ in the above expression is to be
replaced by a suitable estimate λ̂.

(iv) Both Kn(t) and K(t|λ̂) are to be evaluated at (j/n) as well as ((j + i)/n) with j =
0, 1, 2, ..., (n − 1) and i = 0, 1, such that the test statistics Sn and Tn have the desired
expressions as follow (Genest et al. (2006))

Sn = n

3 + n
n−1∑
j=1

K2
n( j

n
){K(j + 1

n
|λ̂) − K( j

n
|λ̂)}

−n
n−1∑
j=1

Kn( j

n
){K2(j + 1

n
|λ̂) − K2( j

n
|λ̂)}

Tn =
√

n max
i=0,1;0≤j≤n−1

{|Kn( j

n
) − K(j + i

n
|λ̂)|}.
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Remark 7: The above tests are shown to be applicable on samples coming from a few chosen
copulas but the applicability of these tests has not been demonstrated when the data follow
FGMD. In our work we have tried to implement the tests proposed by Genest et al. (2006)
for a sample coming from FGMD. Following are the observations made while implementing
these tests and why they do not work.

(a) In order to apply the above GoF tests, K(t|λ = λ̂) needs to be evaluated at t = 1 which
is encountered when j = (n − 1). Note that we have used the extension of the Gaussian
quadrature in two dimension to evaluate the definite integral. This numerical integration
can be implemented by the ‘quad2d’ function in the ‘pracma’ package in R software.

(b) The function K(t|λ̂) does not take a finite value, meaning the double integration is not
convergent at the boundary for a given value of λ̂. This issue is particularly evident at t = 1,
but it can also occur at other values of t depending on the value of λ̂. This phenomenon
should be taken into account when implementing the GoF tests.

(c) The double integration for K(t = 1|λ̂) yields an “NaN” error in R since the integration
fails to converge to a finite value. We provided a plot of this phenomenon in the following
Figure 2 where K(t|λ) has been plotted over t, 0 ≤ t ≤ 1, for five different values of
λ, λ = −1, −0.5, 0, 0.5, 1. It is evident from Figure 2 that the double integration fails to
converge at the boundary value of t = 1 for all λ values. Also, note that for λ = 0.5 and 1
the integration fails to converge not only at t = 1 but also at other values of t between (0,1),
thereby making the test statistic Sn or Tn questionable.

(d) The behavior of the function K(t|λ̂) can be studied for any arbitrary λ̂ ∈ [−1, 1]. For
example, at λ̂ = 0, this function fails to converge to a finite value. The function K(t|λ̂) fails
to attain a finite value when the upper limit of the definite integral is 1, and this is evident
from Figure 3, where the function K(t = 1|λ̂) has been redefined as K(1 − 10−L|λ̂) has
been plotted against L such that the value of t = 1 is dependent on L through the relation
t = 1 − 10−L, i.e. as L → ∞, t → 1. This plot gives us an idea on how close to 1 we can
achieve a finite value for the integration which defines the function K(t|λ̂). The integration
yields finite value approximately upto L = 13 i.e. the double integration would converge
only upto t = 1 − 10−13, not beyond that.

(e) Interestingly, K(t|λ̂) is a distribution function of the iid pseudo observations Vi’s, and by
definition it is supposed to demonstrate the non-decreasing property. However, going by the
definition of Genest et al. (2006) as applied for the bivariate FGMD, K(t|λ̂) as a function of
t for any given λ fails to show the non-decreasing property as seen in Figure 2.

(f) The two test statistics Sn and Tn seem to work well for some non-FGMDs with large
sample sizes of 100, 250 or 1000 in case of simulated data, or sample sizes of 1500 and 655
in case of application to real data Genest et al. (2006). It is crucial to note that FGMD,
although briefly mentioned in Section 3.4 of Genest et al. (2006), it has neither been applied
to any simulation exercise nor in the real data example. Hence, a GoF test for samples
from FGMD became imperative, which has been developed and discussed in the following
subsections.
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(g) Finally, there is no evidence that the above mentioned tests based on Sn and Tn would
work well in case of small and moderate sample sizes for any copula in terms of size as well
as power. Table 5 and Table 6 of Genest et al. (2006) presents the size and power values
only for large samples whereas in this study of ours, the datasets have sample sizes of 23
and 44.

Figure 2: Plot of K(t|λ) for different values of λ.

Figure 3: Plot of K(1 − 10−L|λ) as a function of L for λ = 0.

4.3. A Bootstrap approach to GoF test for FGMD

4.3.1. Developing the test statistic (bivariate case)

Suppose X = (X1, X2)′ follows a bivariate distribution with pdf f(x) and the corre-
sponding cdf F (x). How do we test that f(x) is the FGMD pdf given earlier?

For convenience let us denote the marginal pdf and cdf of Xk by fk(.) and Fk(.),
respectively, k = 1, 2. If X follows FGMD, then the above joint pdf f(x) and the cor-
responding bivariate cdf will be denoted by say FF GMD(x|λ) as well. Our objective is to
test

H0 : F = FF GMD(x|λ), for some λ vs HA : F ̸= FF GMD(x|λ), for any λ, (28)
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where λ ∈ [−1, +1].

Note that if we use the transformed data Yi, 1 ≤ i ≤ n, where Yi = (Y1i, Y2i)′,
i = 1, 2, ..., n and Yki = Fk(xki), k = 1, 2, i = 1, 2, .., n, then Yi’s are n copies of the bivariate
random vector Y = (Y1, Y2)′ where marginally Y1 and Y2 are uniformly distributed over (0,1),
and have the joint pdf, say g(y) with the corresponding cdf, say G(y) over the unite square
(0, 1) ⊗ (0, 1).

If X has the specified distribution in (5), then equivalently Y has the distribution
with pdf , say gF GMD(y|λ), where

gF GMD(y|λ) = (1 + λ(2y1 − 1)(2y2 − 1)) (29)

over the unit square (0, 1) ⊗ (0, 1). Testing (28) then boils down to testing

H0 : G = GF GMD(y|λ) for some λ vs HA : G ̸= GF GMD(y|λ) for any λ, (30)

based on the data Y = (Y1, Y2, ..., Yn), where GF GMD is the cdf corresponding to the pdf
gF GMD given in (29).

Remark 8: The broad idea of our testing mechanism will rely on finding a suitable distance
between G(Y) and GF GMD(Y|λ). But since Fi’s (i = 1, 2) are unknown, we are going to
replace them by the corresponding marginal empirical cdfs, i.e., we are going to work with

Ŷij = F̂ij(Xij), i = 1, 2 and j = 1, 2, .., n.

= (1/n)((Number of Xik values ≤ Xij)), 1 ≤ k ≤ n.
(31)

Theoretically, Y is supposed to have a joint distribution with approximate pdf g(y)
and approximate cdf G(y) whose marginals are uniform. The joint cdf G(y) can be approx-
imated by the observed empirical cdf Ĝ(y) as

Ĝ(y) = (1/n){Number of (Ŷ1s, Ŷ2t) values ∋ Ŷ1s ≤ y1 and Ŷ2t ≤ y2}, (32)

1 ≤ s, t ≤ n. Notice that Ĝ(y) is a bivariate step function which can be visualized on the
grid points (Ŷ1s, Ŷ2t), 1 ≤ s, t ≤ n.

At the same time, if we assume that X ∼ fF GMD(x|λ) (i.e., equivalently, Y ∼
gF GMD(y|λ)), then the cdf of Y under H0 can be approximated by

GF GMD(y|λ̂) =
� y1

0

� y2

0
gF GMD(u|λ̂) du2 du1, (33)

where λ̂ is the estimated value of λ, and gF GMD(.|λ̂) expression is given in (29). It is easy
to see that

GF GMD(y|λ) = y1y2{1 + λ̂(y1 − 1)(y2 − 1)}, (34)

where y ∈ (0, 1) ⊗ (0, 1). Similar to Kolmogorov - Smirnov test statistic, the distance
between Ĝ(y) in (32) and GF GMD(y|λ̂) can be measured by the statistic ∆(Y) for the given
(transformed) data Y = (Y1, Y2, ..., Yn); as

∆(Y|λ̂) = Sup
y∈(0,1)⊗(0,1)

|Ĝ(y) − GF GMD(y|λ̂)|. (35)
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Numerical computation of ∆(Y|λ̂) can be done easily by taking a very fine mesh over the unit
square (0, 1) ⊗ (0, 1). Intuitively, one should reject H0 if ∆(Y|λ̂) is too “large”, and retain
H0 otherwise. In the following we present a bootstrap method to find a data dependent
cut-off value and the p-value.

4.3.2. Leveraging ∆(Y|λ̂) to draw an inference via bootstrap

Step - 1: For the given data Y = (Y1, Y2, ..., Yn), compute ∆(Y|λ̂), where λ̂ is the
estimated value of λ (from one of the four estimators as discussed in Section 2).
Step - 2: Assume that H0 holds. Using λ̂ computed in Step - 1, generate a bootstrap
sample Y∗

1, Y∗
2, ..., Y∗

n iid from gF GMD(y|λ̂). [This is equivalent to generating X∗
1, X∗

2, ..., X∗
n

iid from fF GMD(x|λ̂), and then transforming them back to Y∗
j ’s.]

Step - 3: Using the bootstrap data Y∗ = (Y∗
1, Y∗

2, ..., Y∗
n), recalculate λ̂ as in Step-1

(pretending that it were unknown). Call this estimate of λ as λ̂∗ (i.e., λ̂ based on Y∗). Then
compute ∆(Y|λ̂) using this bootstrap data Y∗, and λ̂∗. Call this ∆∗ = ∆(Y∗|λ̂∗).
Step - 4: Repeat the above Step - 2 and Step - 3 a large number of times (say, B times).
This yields B copies of ∆∗, say ∆∗b, 1 ≤ b ≤ B, which are then ordered as ∆∗(1) ≤ ∆∗(2) ≤
... ≤ ∆∗(B).
Step - 5: Our α-level bootstrap cut-off point is found as ∆B

α = ∆∗((1−α)B). If ∆ (from Step
- 1) > ∆B

α , then reject H0, and retain it otherwise.

Alternatively, one can obtain the bootstrap p-value of the GoF test as

pB = {Number of ∆∗b values > ∆(Y|λ̂)}/B,

and compare it with α. Essentially with the four proposed estimators of λ we can have four
different GoF tests which are named as follows - (i) GoF1 when λ = λ̂ML, (ii) GoF2 when
λ = λ̂BF P , (iii) GoF3 when λ = λ̂BJP and (iv) GoF4 when λ = λ̂BAJP .

4.4. Results of goodness of fit tests on MDR dataset

In the following table we present the bootstrap p-values of FGMD goodness of fit
test through the statistic ∆(Y|λ̂) for the MDR data as discussed earlier. The results have
been obtained for both north and south regions using all the four estimators of λ (i.e.,
λ̂ = λ̂ML, λ̂BF P , λ̂BJP and λ̂BAJP ).

Table 4: Goodness of fit p-values through bootstrap for testing FGMD

Variable Combination North South
MLE BFP BJP BAJP MLE BFP BJP BAJP

As and Cl 0.499 0.498 0.496 0.496 0.647 0.661 0.665 0.660
As and Eh 0.571 0.558 0.557 0.562 0.838 0.826 0.829 0.837
As and pH 0.926 0.926 0.927 0.927 0.509 0.500 0.508 0.519

Table 4 clearly shows that bivariate FGMD is definitely an acceptable joint distri-
bution to model As along with each of the three other variables, i.e., Cl, Eh and pH.
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Obviously a natural extension of this observation is that of studying the conditional distri-
bution of As given a benign element, and then making a suitable prediction of As. This
aspect of prediction will be reported in a separate comprehensive work.

Remark 9: (a) In this section, we have made an attempt to address the elusive query of
goodness of fit of a copula, specifically the FGMC. We have proposed a class of parametric
bootstrap (PB) tests based on the Kolmogorov - Smirnov (KS) distance between the two cdfs,
- the hypothesized FGMD and the empirical one (see (32)). To the best of our knowledge,
this is first time that GoF of FGMD has been addressed in a comprehensive manner for
small to moderate sample sizes.

(b) We have been able to show that our proposed parametric bootstrap tests not only
adhere to the size criterion (see Chatterjee (2022)) but also there is no need to know the
null distributions of the test statistics, either for a fixed sample or asymptotically. The
performance of the tests in terms of power indicate that they are almost identical, and hence
any one of the four can be used in applications.

(c) Though this section deals with GoF of a bivariate FGMD to model As with another
element, one should look at a possible extension in a multidimensional set up (i.e., going
beyond the dimension 2) so that As can be modeled along with (Cl, Eh, pH) for a more
meaningful analysis of the data. This is a future research problem which will be taken up
later. Another potential avenue for further GoF study is to use a different distance measure
(other than the KS one) and study the resultant implications.

5. Predictions under FGMD

5.1. The rationale behind prediction

Our in-depth analysis of the given data shows that each variate (As, Cl, pH and Eh)
individually has a vastly different probability distribution in each of the two subregions. The
following Figure 4 shows the sample relative frequency histograms of the four variables in
two subregions.

We have used two well-known and widely accepted formal test methods, namely -
Anderson-Darling Test (ADT) and Shapiro - Wilk Test (SWT), to check if the sample his-
tograms in Figure 4 conform to normality. Unfortunately six out of eight sample histograms
rejected normality. Only the variate pH, and that too for the southern subregion, accepted
normality (by both ADT and SWT) comfortably with very high p-values. In the north,
Eh appears to follow normality with moderately large p-values. Usually one should feel
comfortable with the assumption of normality if both ADT and SWT show substantially
large p-values. The following Table 5 shows the p-values for all the four variates in the two
subregions when both the tests are applied.

Further rigorous investigation showed that not only the six out of eight subdatasets
(four variables in two subregions) are non-normal, each variable’s probability distributions in
the two subregions are vastly different. In this regard we show the p-values of the well known
Kolmogorov-Smirnov Test (KST) to test the equality of two distributions in the following
Table 6.



2024] USE OF FGMC TO MODEL A BIVARIATE WATER QUALITY DATA 83

Table 5: ADT and SWT p-values to test the normality in two subregions

Test Subregion As Cl Eh pH

North ADT < 0.0001 0.0414 0.1404 0.0029
SWT < 0.0001 0.0286 0.0914 0.0012

South ADT < 0.0001 < 0.0001 < 0.0001 0.4363
SWT 0.0002 < 0.0001 < 0.0001 0.6933

Table 6: KST p-values to check equality of distributions in two subregions

As Cl Eh pH

p-value < 0.0001 0.0004 < 0.0001 < 0.0001

The above observations about the distributional properties of four variables now set
the ground for bivariate scatter plots between As and each of the other three variables.
Figure 5 comprehensively shows the six scatterplots in the two subregions.

Notice that out of six bivariate scatterplots, four do not show any linear trend (and
these are (a), (b), (d) and (f)). Plots (c) and (e) are somewhat linear, but the variations (or
dispersion) of As against Eh (in (c)), and pH (in (e)) do not look uniform (i.e., the condi-
tional probability distribution of As given another variable appears to be heteroscedastic).
As a result, the standard Pearson’s correlation coefficient ρP is not going to be an adequate
measure to assess the association between As and other variables in a bivariate framework.

Yet, for the sake of argument, one can compute the three standard correlation esti-
mates, including ρP , while the other two being the Spearman’s rank correlation (denoted by
ρS) and Kendall’s ‘Tau’ (or, Kendall’s rank correlation), denoted by ρK , to get an overall
sense of these associations. While ρP measures the strength of linear association, ρS and ρK

are much more robust, and indicate the strength of monotonic association between the two
variables of interest. The following Table 7 provides the three sample correlation measures
for three pairs of variables in the two subregions. The value in parentheses under each entry
is the p-value for testing the null hypothesis (H0) which states that the true (or population)
correlation measure is zero, against the alternative hypothesis (HA), which negates the null.
Note, in Table 7: ‘***’ implies p - value ≤ 0.01; ‘**’ for ≤ 0.05; and ‘*’ for ≤ 0.10.

Table 7: Estimated standard correlation coefficients with corresponding p-values

North (nN = 23) South (nS = 43)
As vs Cl As vs Eh As vs pH As vs Cl As vs Eh As vs pH

ρ̂P 0.182 0.525 0.754 −0.325 −0.668 0.119
(0.405) (0.010∗) (0.000∗∗∗) (0.031∗∗) (0.000∗∗∗) (0.442)

ρ̂S 0.018 −0.414 0.260 −0.320 −0.753 0.156
(0.936) (0.050∗∗) (0.231) (0.035∗∗) (0.000∗∗∗) (0.314)

ρ̂K 0.012 −0.323 0.188 −0.230 −0.577 0.101
(0.937) (0.032∗∗) (0.213) (0.028∗∗) (0.000∗∗∗) (0.336)
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Figure 4: Relative frequency histograms of the four variables in two subregions
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(f) As vs pH (South)

Figure 5: Scatter plots of As against each of the other three benign variables
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Remark 10: The three estimated standard correlation measures portray some interesting
scenarios as summarized below.

(a) Between As and Cl, in the North, all three correlations indicate that there is no associ-
ation. However, in the South, they all indicate a significant negative association.

(b) Between As and Eh, there appears to be a significant negative association in both the
subregions mostly. Only a conflicting picture is provided by ρP in the north which shows a
significant positive linear association.

(c) Between As and pH, there appears to have no significant association mostly as all but
one p-values are quite high (more than 20%). However, only ρP shows a strong linear positive
association in the north.

The usual correlation measures show interesting associations between As and Cl, As
and pH, and As and Eh, but they do not help predict As values based on these variables.
For instance, in regions where As and Cl are strongly associated, predicting As when Cl is
10ppm or Eh is 100mv requires more than just linear regression, which assumes normality and
homoscedasticity. The problem is better addressed by fitting a suitable bivariate probability
distribution to the data. Specifically, we need a non-normal bivariate distribution of (X, Y ),
where Y is As and X can be Cl, pH, or Eh, using copula theory. This approach allows us to
use the conditional distribution of Y given X to make predictions. The goal is to explore the
association between As and the other variables beyond linear correlation and to exploit this
association for prediction, recognizing that simplistic linear models might lead to incorrect
conclusions.

5.2. Prediction of Y using a covariate under FGMD

The parameter λ, by its appearance, has some similarities with the three standard
correlation measures discussed earlier. If λ = 0, then X and Y are independent; if λ < 0
(> 0), then they are negatively (positively) associated.

Note that, marginally the pdfs fX and fY of X and Y are unknown, and so are the
cdfs FX and FY . It is possible to adopt a suitable parametric model for fX and fY , but that
is not the main focus of our study. We want to bypass this aspect of unknown marginals
by replacing FX (and FY ) by F̂X (and F̂Y ) where F̂X (and F̂Y ) represents the empirical
distribution function defined as (where the subscript has been dropped for generalization)

F̂ (t) = {number of observed data points ≤ t}/n, (36)

n being the sample size. Therefore, we pretend that the marginals (FX and FY ) are known,
and they can be replaced by their estimates whenever needed.

The conditional distribution of Y given X is

fY |X(y|x) = fY (y)[1 + λ(2FX(x) − 1)(2FY (y) − 1)], (37)

and this will be used in predicting the value of Y when X = x is given. The main challenge
here is the estimation of λ. Some noteworthy works along this line, i.e., regressing Y based
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on X from copula based predictive models is discussed as follows. We now proceed with the
conditional distribution given in (37) to predict the value of Y when X = x is given. We
have discussed the structures of the predictors of Y based on the three standard measures
of center of a conditional probability distribution as follows.

5.3. Conditional mean as a predictor

The first predictor is the conditional mean, denoted by Ŷmean(x), given as

Ŷmean(x) = E(Y |X = x) =
�

yfY |X(y|x)dy, (38)

where the integration is over the appropriate range of Y given X = x. In the current
context where Y represents the As level, this range of Y is (0, ∞). It can be shown that (see
Chatterjee (2022)) the expression (38) simplifies to

Ŷmean(x) = µY + λGX(x)IY (FY ), (39)
where µY is the unconditional mean of Y , GX(x) = (2FX(x) − 1) and

IY (FY ) =
� 1

−1
(t/2)F −1

Y ((1 + t)/2)dt. (40)

In applications, µY will be replaced by µ̂Y = Y = sample mean of Y observations, and
GX(x) will be replaced by ĜX(x) = 2F̂X(x) − 1 with IY (FY ) being replaced by IY (F̂Y ).
Also, λ will be replaced by a suitable estimator as mentioned earlier.

5.4. Conditional median as a predictor

Another simple predictor is the median calculated from the conditional distribution of
Y |X. When the conditional distribution is skewed, which is expected in real life applications,
the conditional median tends to be a robust predictor than the mean. We get the conditional
median Ŷmedian(x) of Y |X by solving the following Equation (41) in terms of M , the desired
median of the conditional distribution.

0.5 =
� M

−∞
fY (y)(1 + λ(2FX(x) − 1)(2FY (y) − 1)∂y. (41)

For brevity, we use the following notation λGX(x) = A and FY (M) = w. It can be
shown (see Chatterjee (2022)) that solving Equation (41) boils down to solving

2Aw2 + 2(1 − A)w − 1 = 0. (42)
The feasible solution from the above quadratic equation and inverting the cdf for Y gives
us our estimate of the Y for a given x based on the median of the conditional distribution.
Hence the predictor is as follows

Ŷmedian(x) = F −1
Y [

{λ(2FX(x) − 1) − 1} +
√

1 + λ2(2FX(x) − 1)2

2λ(2FX(x) − 1) ]. (43)
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In applications, λ will be replaced by λ̂, the marginal FX(x) is replaced by F̂X(x), and F −1
Y

should be replaced by F̂ −1
Y .

5.5. Conditional mode as a predictor

One can use a predictor of the third kind, i.e., the conditional mode, which can be
found simply by deriving the mode of the conditional distribution of Y |X, which is found
by differentiating the conditional pdf and equating it with zero, i.e.,

(∂/∂y)(fY |X(y|x)) = 0, (44)

assuming that the fY |X is absolutely continuous. Using the usual notation of fY (y) =
fY and λ(2FX(x) − 1) = λGX(x) = A, the equation (44) above then can be written as
f ′

Y + A(2(fY )2 + (2FY (y) − 1)f ′
Y ) = 0. Substituting for 2FY (y) − 1 = u(y) = u(say), we

have 2fY = u′ and 2f ′
Y = u′′. The above equation (44) thus yields a second-order ordinary

differential equation as (u′′/2) + 2A(u′/2) + Auu′′/2 = 0, i.e., (u′)2 + (B + u)u′′ = 0 where
B = 1/A. Let (B + u) = v, i.e., u′ = v′, i.e., u′′ = v′′. Then the above equation boils down
to the differential equation (v′)2 + vv′′ = 0, i.e., ∂(vv′) = 0, i.e., vv′ = c, for some constant
c, i.e., v∂v/ = c∂y, i.e., v2/2 = cy + d, i.e.,

(B + u)2 = c1y + d1, (45)

where c, d, c1, d1 are suitable constants. The above final expression (45) gives the general
solution of the differential equation (44). In order to find the values of the constants in
the solution, specific boundary values were chosen, say y = y∗ and y = y∗∗, where y∗ and
y∗∗ are two suitable small and large extreme values of the variable y over its support. For
the purpose of computational convenience we have taken y∗ = y(1) and y∗∗ = y(n), the
smallest and the largest observed values of the variable Y respectively. Then, u(y∗) ≈ −1
and u(y∗∗) ≈ 1 respectively. Plugging-in these choices of y = y∗ and y = y∗∗ as boundary
values in our general solution (45), we get the following solution with c1 = c∗

1 = 4B/y∗∗ and
d1 = d∗

1 = (B − 1)2 as

4(F̂Y (y))2 + 2(B − 1)(F̂Y (y)) = c∗
1y. (46)

Remark 11: The solution of (46) in terms of Y gives an approximate mode of the conditional
distribution of Y |X. Further, note that this conditional mode depends on X = x, through
the term B = 1/A, which involves x. Thus the solution of the Equation (46) will be the
intersection of the plots of the left hand side (LHS) and the right hand side (RHS) of the
said equation within the range of Y . But the plot of the LHS depends on the sign of B.
The sign of B in turn is dictated by the sign of λ and the sign of the term (2FX(x) − 1).
For example, in the southern subregion, the data on As and Eh, all the estimates of λ are
negative. This phenomenon is true for the estimate calculated for the entire data and all the
estimates calculated by the “Leave-One-Out Bootstrap” (LOOB) computation (elaborated
in Section 5.6). This means, the sign of B is determined on the basis of three distinct
scenarios eventually giving rise to three distinct cases: (i) x > median (X); (ii) x < median
(X); (iii) x ≡ median (X).

Eventually, the mode predictor of the conditional distribution, denoted by Ŷmode(x),
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is defined in the following way

Ŷmode(x) =
{

(possible) solution(s) of (46) if x ̸= median(X)
unconditional mode of (Y ) if x ≡ median(X).

(47)

Remark 12: Regarding the above predictor expression in (47) note the following -

(a) The sign of B (negative or positive) is determined by whether x > median(X) or
x < median(X) from the definition of B as noted earlier.

(b) For example, in As vs Eh in the southern subregion, we observe that median(X) =
−106.5 mV . When x < median(X), B is positive and we have noted the plots of
both RHS and LHS are monotonically increasing. The opposite happens when x >
median(X). Representative plots for both the cases have been considered in Figure 6
and Figure 7 i.e., As vs Eh data from the southern subregion in MDR for x = −126 mV
and x = 126 mV which are less than and greater than the median(X) respectively.

(c) Analytically, there is a possibility of having multiple solutions of (46) due to multiple
intersections between LHS and RHS. The intuition behind finding the mode of the
conditional density function is as follows. One can collect all the multiple solutions
and check which one yields the maximum value of the conditional density given in
(37). Under the assumed parameter free model of the marginals, the next step is to
estimate the marginal density in the expression (37), i.e. how to get fY (y). This can be
achieved in a multiple ways but we have presented a simple and straightforward way in
our LOOB calculations. Assume one obtains multiple solutions as y∗

i , i = 1, 2, ..., k in
(47) and k < n within the range of Y , then the unconditional density function at y∗

i , by
definition, is the rate of change of the cumulative distribution function at y∗

i . In light
of this definition, one can approximate fY (y∗

i ) as fY (y∗
i ) ≈ (1/nh) ∑n

i=1 K((y∗
i −yi)/h),

where K(.) is a suitable kernel - a non-negative function, yi, i = 1, 2, ..., n are the
sample observations and h > 0 is a smoothing parameter called the bandwidth.

(d) An in-built R-package has been used for the above density estimation which uses the
Gaussian kernel function. While choosing the bandwidth in Kernel, which is still an
open topic of research, the default choice of bandwidth rule selection in the R - package
is by Silverman’s ‘rule of thumb’ (Silverman (1986, page 48, eq.(3.31)). This choice
is more appropriate if the original distribution (i.e. the true marginals) is bell-shaped
and symmetric in nature. In contrast, none of our marginals are symmetric and bell-
shaped. Therefore, in our case Sheather and Jones method (Sheather and Jones (1991))
is more applicable which is a more robust and data dependant approach. Moreover, in
theory, a finer kernel bandwidth reveals more intricacies in the true distribution. But
there is a risk of under-smoothing by choosing a too small ’h’. On the other hand, a
risk of over-smoothing exists if ‘h’ is too large. We have examined several bandwidths
under the Sheather and Jones rule and have chosen h = 1010.

(e) Finally, when x ≡ median(X), it is straightforward to note from the conditional dis-
tribution in (37) that the predictor would be the unconditional mode of Y, say Ymode.

However, the exact sampling distributions of these three predictors are intractable
theoretically. Therefore, the performance of these three predictors have been evaluated
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through the ‘Leave-One-Out-Bootstrap’ (LOOB) method, which has been discussed and
applied on the groundwater data from MDR in the following subsection. Extending on the
existing idea and incorporating ten estimators of λ the association parameter of FGMD (one
traditional estimator - MLE, and nine Bayes’ estimators - under each of the three types
of priors - Flat, Jeffrey’s and approximate Jeffrey’s prior, three types of central tendency
measure (expectation, median and mode) of the three resulting posterior distribution) and
three predictors, we have achieved a collection of thirty predicted values of Y for a given
value of X.
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Figure 6: Plots of LHS and RHS of equation (46) when x = −126 mV (<
median(X)), where X = Eh in the southern subregion.
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Figure 7: Plots of LHS and RHS of equation (46) when x = 126 mV (>
median(X)), where X = Eh in the southern subregion.
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5.6. Applications: Predicting arsenic from Cl

In this section we are going to demonstrate how to predict As from the three covari-
ates but focusing mostly on Cl in the southern subregion just as an example. Before delving
into the performances of the different predictors in the As prediction study, let us look at
the FGMD association parameter estimates from the two subregions in Table (8). Note
that, for a pair of variables that includes As, we can employ a total of ten estimates of λ.
Selection of an estimator of λ will depend on the overall LOOB performance to be explained
below.

Table 8: Estimates of the FGMD association parameter in the MDR subregions

(a) Northern subregions

Pair of Elements MLE
Posterior

BFP BJP BAJP
Mean Median Mode Mean Median Mode Mean Median Mode

As vs Cl 0.089 0.051 0.065 0.061 0.064 0.075 0.134 0.108 0.195 0.560
As vs Eh −1 −0.585 −0.665 −0.254 −0.646 −0.745 −0.341 −0.803 −0.905 −0.114
As vs pH 0.749 0.418 0.475 0.371 0.475 0.555 0.722 0.666 0.815 0.311

(b) Southern subregion

Pair of Elements MLE
Posterior

BFP BJP BAJP
Mean Median Mode Mean Median Mode Mean Median Mode

As vs Cl −0.979 −0.624 −0.675 −0.176 −0.674 −0.745 −0.242 −0.810 −0.895 −0.083
As vs Eh −1 −0.869 −0.905 −0.001 −0.892 −0.925 −0.001 −0.941 −0.975 −0.001
As vs pH 0.593 0.425 0.465 0.302 0.469 0.525 0.754 0.648 0.765 0.344

We present the findings on the performance of the predictors using As as Y and Cl
as X. In a generic sense, when we apply FGMD to a data set, we should first estimate the
association parameter λ in the model, and call it λ̂. We now apply the three predictors as
discussed in Section 3, to predict As from Cl. We implement a Leave-One-Out-Bootstrap
(LOOB) method to evaluate the performance of the three predictors. The scheme of LOOB
is simple where we drop one observation (a pair of As and the corresponding Cl observation)
from the dataset and then we fit the FGMD model onto that reduced dataset with (n − 1)
observations. We can estimate the association parameter λ by making use of any suitable
estimator as mentioned in Section 2. Finally, with the estimated model, we use Cl (the
independent variable or X in our study) of the dropped off observation to estimate the
corresponding As (the dependent variable or Y in our study). This LOOB mechanism is
applied to all the n observations which in turn helps us to see how a predictor fared against
all the true observations.

The performance of a predictor in conjunction with an estimator of λ is then evaluated
by the Prediction Mean Absolute Error (PMAE) and Prediction Root Mean Squared Error
(PRMSE). The following Table 9 presents LOOB − PMAE and LOOB − PRMSE of the
three predictors each with one of the ten estimators of λ. Let Yi be the ith observation of Y (=
As), and Ŷ

(−i)
i is the predicted value of Yi based on the remaining (n − 1)observations (after

fitting the FGMD) and using Xi (= the ith value of Cl), then PMAE = ∑n
i=1 |Yi − Ŷ

(−i)
i |/n,

and PRMSE = [∑n
i=1(Yi − Ŷ

(−i)
i )2/n]1/2.
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Table 9: Performance of the predictors of As from Cl in the southern subregion

λ Estimate Used

Predictor MLE
Posterior Mean Posterior Median Posterior Mode

BFP BJP BAJP BFP BJP BAJP BFP BJP BAJP

PMAE
Mean 248.12 247.15 246.90 245.86 247.37 247.15 245.73 248.98 245.12 251.70

Median 242.06 243.81 244.16 242.64 244.54 244.14 241.19 244.54 244.14 241.19
Mode 230.762 241.98 249.63 253.55 248.69 247.41 237.873 241.42 251.36 204.331

PRMSE
Mean 306.47 305.55 305.26 304.46 305.60 305.41 304.34 305.52 302.033 307.69

Median 314.65 313.65 314.22 314.63 314.55 315.18 313.50 314.55 315.18 313.5
Mode 298.862 319.35 325.18 334.94 324.57 328.74 309.14 319.5 330.34 286.281

Remark 13: (a) Overall, the mean predictor and the mode predictor based on the condi-
tional distribution show better performance than the mode predictor in terms of both
PRMSE as well as PMAE. Out of the ten estimators of the association parame-
ter, MLE of λ is consistently the top performer followed by BAJP2 in the second
place and BJP3 in the third place. This LOOB based work is highly data dependent,
i.e., for another dataset the performance evaluation measures can vary drastically and
hence one must apply all the three predictors and all the ten estimators of the as-
sociation parameter to see which predictor (along with which λ̂) has the best overall
performance.

(b) If the parabolic shape of the scatterplot between As and one of the covariates is ignored
and the usual simple linear regression model is force-fitted, then it can cause several
theoretical as well as practical complexities, such as: (i) the normality assumption of
the errors which is implicit in linear regression, is violated; (ii) the homoscedasticity
of the error variance is not tenable; and (iii) the predicted value of As may result in
negative values as seen for several of our data points.

(c) Forcing a linear regression upon ignoring the previously stated concerns, and truncating
the As value at 0 for negative predicted values (unrealistic in nature though) may still
result in poor performance.

(d) One has to keep in mind that these aforementioned computational results are based on
using a single predictor (Eh, Cl or pH). Things will definitely improve if we use two
predictors (say, Eh and Cl) or all the three predictors (Eh, Cl and pH). This requires
upgrading our bivariate FGMD to a trivariate or a quadravariate FGMD and this
is currently under investigation. While a bivariate FGMD has a single association
parameter λ (= λ12) between the components 1 and 2, a trivariate FGMD has four
association parameters λ12, λ13, λ23 and λ123. Expanding it further, a quadravariate
FGMD has a total eleven association parameters. Ota and Kimura (2021) considered
the three variate FGMC and the resultant FGMD mainly from an asymptotic point of
view. More specifically, they considered the special case of λ12 = λ23 = λ13 = λ123 = λ
(say), and considered estimation of the common association parameter λ. However,
more work needs to be done to investigate the exact sampling distribution of the MLE
either for all the four parameters or the single common parameter in dimension three.
How the behavior of high probability concentration of MLE near the boundary, as we
have seen in the bivariate case and discussed in Section 2, permeates to 3 or higher
dimensions, needs to studied extensively especially for small to moderate sample sizes.
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Further, the Bayesian estimation of the association parameter vector in dimension
greater than 2 may lead to interesting results.

(e) The main challenge in dealing with a p-dimensional (p > 2) FGMD is to carry out a
very complex set of computations within a reasonable amount of time which requires
sophisticated computational codes. We are currently studying the trivariate FGMD
and how it can be used for the arsenic prediction study. This will be reported in
near future as we sort out the computational complexities. The case of p = 2 is the
springboard for the higher dimensional generalizations. Even for p = 3, in order to
find the maximum likelihood estimates of λ12, λ13, λ23 and λ123 is a computational
nightmare as the optimization is to be done in a 4-dimensional space over a feasible
region subject to 8 linear inequalities (i.e., the feasible region has a ‘diamond cut’
shape).

6. Conclusion

With the onset of copula theory which brought about an influx of several copula based
joint distributions and its growing application across several disciplines, it is of paramount
interest to investigate the copula models more closely. The flexibility of the copula model lies
in producing a unique link function (in the continuous random variate case) which essentially
joins the marginals. This copula function preserves the entire information about the mutual
dependence between two marginals through a single association parameter.

In our work, we have provided a template of a comprehensive inferential investigation
of the association parameter of FGMD. In our application, we have taken up the bivariate
case i.e., we have studied the pairwise components of the groundwater data of MDR. There
is, in fact, an array of future directions that are in the works for this research stream -

(a) The generalization of the copula model to a p - dimensional (p > 2) set up. Inves-
tigating the sampling distribution of the different estimators in the general case and
construction of confidence bands.

(b) We have seen the superiority in performance of the Bayes’ estimators but the compu-
tational challenge was stifling at times. It is intuitive that this challenge will only grow
as p increases. Tackling this computational challenge in itself will be an interesting
data science research problem.

(c) Development of higher dimensional predictors and subsequent GoF test will be another
research problem. Our GoF tests which show adherence to the size criteria in the
bivariate case, need to be studied in higher dimensional cases.

(d) The nature of our study for bivariate FGMD has been comprehensive and covers
several inferential aspects. This template of investigation can be extended to other
commonly used Archimedean and non-Archimedean copulas.

(e) Even though our comprehensive study on FGMD was motivated by an environmental
dataset, one might be interested to study how the copula based models can reveal some
hidden information for other datasets especially sparse gene expression datasets.
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A. Appendix

A.1. Application data

NOTE: Well ID starting with TH are located in the northern subregion and Well ID starting
with DT or TB are from the southern subregion.
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Table 10: MDR groundwater data

Well ID As (ppb) Cl (ppm) Eh (mv) pH Well ID As (ppb) Cl (ppm) Eh (mv) pH
DT7 563.9 107 -126 6.78 TB19 300.3 160.3 -120 6.68
DT6 0.5 56.1 142 6.71 TBE10 700.4 81.4 -108 7.07
DT5 0.7 46.8 199 7.04 TBE9 196.2 986.6 -110 6.72
DT3 0.4 345.2 169 6.44 TBE7 166.3 20 -84 7.16
DT4 0.1 500.1 165 6.51 TBE4 4.4 1499.6 82 6.09
DT2 1.8 632.8 101 6.66 TBE5 981.4 60.4 -110 6.87
DT1 13.1 19.7 97 7.75 TBE3 6.8 2.7 158 7.17
TB11 462.3 9.2 -114 6.92 TBE1 6.6 61.7 126 7.1
TB18 155.7 25.9 -72 6.52 TBE11 5.3 12.2 60 7.16
TB9 187.6 12.8 -128 6.94 TBE6 3.2 1527 149 6.73
TB2 850.4 10.5 -133 7.14 TH16 0.4 173.6 157 6.14
TB24 370.4 13.9 -90 7.15 TH9 0.2 275.3 253 5.84
TB26 139.9 13.8 -83 7.43 TH13 0 22.7 194 6.19
TB27 77.7 5.4 -33 7.24 TH14 0.3 113.6 184 6.02
TB21 842.1 21.1 -105 6.88 TH22 0.1 228.1 226 6.5
TB1 276.8 19.6 -92 6.85 TH21 0.3 89.9 169 6.1
TB10 377.3 8.2 -129 6.79 TH5 0.8 742.1 251 5.83
TB25 272.9 11.9 -104 7.2 TH12 2.3 182.7 127 6.31
TB13 746 72.7 -125 7.16 TH15 8.4 27.5 60 6.18
TB22 311 13.5 -130 6.63 TH1 6 544.4 210 6.08
TB15 937.7 19.3 -110 7.04 TH10 3.2 277.3 231 6
TB16 314.5 25.8 -115 6.74 TH2 2 487.6 130 5.87
TB20 746.3 6.9 -139 6.61 TH23 0.2 158.5 175 6.04
TB23 270 12.7 -110 7.01 TH3 1.5 560.2 261 6
TB17 224.2 21.5 -126 6.46 TH4 2.6 21.4 80 5.99
TB3 727 10.8 -136 7.14 TH11 8.9 479.8 158 6.56
TB12 931.5 2.9 -125 7.03 TH18 3.6 335.6 181 6.29
TB14 747.7 63.4 -115 7.15 TH8 6 253.2 235 5.85
TB5 416.3 0 -60 7.69 TH7 0.7 122.3 162 6.29
TB4 360.3 42.9 -130 7.34 TH6 0 242.8 200 6.19
TB6 315.5 61.2 -111 7.36 TH17 22.2 40.5 -13 7.03
TB7 101.1 42.7 -28 7.3 TH19 17.5 57.3 145 7.39
TB8 237.6 124.4 -98 7.17 TH20 2.4 0 24 6.51
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