
 

______________________________ 

Corresponding Author: Manisha Pal 

E-mail: manishapal2@gmail.com 

 

Statistics and Applications {ISSN 2452-7395 (online)}  

Volume 17, No. 1, 2019 (New Series), pp 41–51 

Optimum Repeated Measurement Mixture Designs 

Manisha Pal1 and Nripes K. Mandal2 
1Department of Statistics, University of Calcutta, India 

2Retd. Professor, Department of Statistics, University of Calcutta, India 

 
Received: December 29, 2017; Revised September 24, 2018; Accepted September 24, 2018 

______________________________________________________________________________ 

Abstract 

 

In agricultural experiments, we generally study the effect of manure on the yield of a crop, 

where the manure is applied on a single occasion. However, in real life, it is often observed that 

the farmer applies manure on the same plot at different time points. The composition of the manure 

may be same or may change depending on the growth of the plant at the intermediate time points. 

In this paper, we discuss a scenario where manure is applied at two time points – once at the time 

of sowing and next at some intermediate point before harvesting the crop. The composition of the 

manure applied at the second time point depends on the growth of the plant at that point. If the 

growth is found to be unsatisfactory, the manure is enriched with some additional components. 

We propose a linear model to describe the mean yield, which depends on the mixing proportions 

of the ingredients of the manure, and optimum designs are derived for the estimation of the model 

parameters. Examples are given for experiments with two/ three/ four component mixtures. 

Key words: Mixture experiment; Repeated applications of manure; Quadratic yield model; 

Parameter estimation; D- and A- optimal designs. 

AMS subject classification: 62K99; 62J05 

_____________________________________________________________________________ 

1 Introduction 

  

A regression model describes the influence of various factors on the response under study. 

In agricultural experiments, regression models are used to study the effect of manure on the yield 

of a crop. In such experiments, the manure is generally applied on a single occasion. However, in 

real life, it is often observed that the farmer applies manure on the same plot at different time 

points. This is because repeated application on need basis is found to maintain good plant growth 

and crop production. Further, application in smaller amounts at frequent intervals may be more 

beneficial than a single application at a high rate, as some of the manure may be lost, say by 

leaching or in run-off due to heavy rains after it is applied, or a high rate of application may be 

harmful to the plant. 

 

The composition of the manure in repeated applications may be same or may change 

depending on the growth of the plant at time points at which the manure is applied. Due to high 

cost or scarcity of certain organic substances used in the manure, the farmers may not be using 
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them while applying manure before sowing of crop. However, if the crop growth is not found to 

be satisfactory at the time points of observation, they may be willing to enrich the manure with 

those ingredients. As the composition of the manure affects the growth and yield, one may be 

interested in modeling the mean yield of the crop as a function of the mixing proportions of the 

components used in the manure. For an updated account of mixture models and methods as also 

of optimality issues, we refer to a recent monograph by Sinha et al. (2014). In this paper, we assume 

that manure is applied to the soil twice before harvesting, once before sowing and then at some 

point before harvesting. We propose mixture models to describe the mean yield, which may vary 

with time, and optimum designs are derived for the estimation of the model parameters. Since 

manure is a mixture of a number of components, we have concentrated on mixture designs. 

Examples are given for experiments with two, three and four component mixtures. The study is, 

however, quite general, and can be applied to other areas as well, besides agricultural 

experimentation. 

 

2 The Problem and Its Perspectives 

 

Suppose the manure applied during sowing of the crop is a q-component mixture with 

mixing proportions given by x = )( 21 q,..., x, xx , where ,0|){( 211  iq x,..., x, xxx

}.1,1
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As the manure applied at the time of sowing will be retained in the soil to certain extent at 

t0, the effects of the old components used in the manure at t0 will be enhanced. The coefficients of 

the mixing proportions of the old components in (2.1), are, therefore, expected to be functions of 

x, the mixture applied at time 0. Let us approximate the regression coefficients in (2.1) by linear 

functions of x as given below: 

           ,1,,1,
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Suppose the experimenter has some idea about the proportion of times the growth of the 

plant at t0 is less than z0, and let it be p. Since the growth depends on the composition of the manure 
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and the experimental region is: 

  .21           (2.7) 

It is easy to note that model (2.5) is invariant w.r.t. the components within the sets 

).,...,,( and ),...,,( ),,...,,( **
2

*
1

**
2

*
121 rqqqqq xxxxxxxxx   

Our problem is to find optimum designs for estimating the parameters in (2.5). 

3 Optimum Designs for Parameter Estimation 

Consider the class D of all competing continuous designs, for which all the parameters of 

(2.5) are estimable. We want to find a design in D that can estimate the parameters with maximum 

accuracy. 

For a linear model ,)( θxfx
  a continuous design   is given by 

   =  { x1
** , x2

**,  …  , xN
**  ; w1 , w2 ,  …  , wN} ,       (3.1) 

with massesw1 , w2,  …  , wN, at the points x1
** , x2

**,  …  ,xN
**,xi** , where wi 0, wi = 1, and 

its  information matrix is  

  M() = wif(xi
**)f(xi

**). 

Design optimality aims at minimizing some function of )(1 M , or maximizing some 

function of )(M . For comparing different designs in D, let us consider the D-optimality and A-

optimality criteria, given by 

)])(.(ln[det))(( 1  MMD  

],)([))(( 1  MTraceMA        (3.2) 

which are convex in )(M . 

Let B1 and E2 denote, respectively the set of barycentres of 1 and the extreme points, that 

is, barycentres of depth 0 of 2. A point x  1 is called a barycentre of depth  j in 1 (0  j q-1) 

if j +1 of its components are equal to 1/( j +1) and the remaining components are all equal to zero. 

We show that the union of B1 and E2 are the only possible support points of the D-and A-

optimal designs for estimating the parameters of the model (2.5).To do so, we shall first prove the 

following: 

Theorem 3.1: For a q-component full quadratic mixture model given by ,)( θxfx  where 

 xf
222 ,),...,,,,...,,()( 1312121

  qqq xxxxxxxxx x1, and qqqqq ,111211 ,...,,...,,,...,(  θ ) is the vector 

of unknown parameters,  
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(a) the D-optimal design for parameter estimation has support points at the barycentres of 

depth 0 and 1 of 1  each with mass 1/ 2
1Cq ,  

(b) the A-optimal design has support points at  

(i) the barycentres of depth 0 each with mass 1/q, and the barycentres of depth 1, each 

with mass 1/ 2
1Cq , for q≠ 3,  

(ii)  the barycentres of depth 0 each with mass 0.1417, the barycentres of depth 1 each 

with mass0.1873 and the barycentre of depth 2 with mass 0.0130 forq= 3.  

Proof: Because of the natural restriction ,1
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(3.3) 

From (3.3) it is evident that there is a one-to-one relation between  and *. Hence, the 

design that is optimal for estimating * will also be optimal for estimating. 

We note that *
x θx)(  h is the quadratic mixture model in the canonical form, due to 

Scheffé (1958), and (a) is the D-optimal design for estimating the parameters of the model, while 

(b) is the A-optimal design for parameter estimation (cf. Galil and Kiefer, 1977).The theorem 

therefore follows. 

Theorem 3.2: The support points of the D-optimal (A-optimal) design for estimating the 

parameters of the model (2.5) belong to the intersection of B1 and E2. 

The theorem can be proved using the Equivalence Theorem due to Kiefer (1974), which 

gives a necessary and sufficient condition for a design to be optimum in the entire class of 

competitive designs.In the present set-up, the theorem is given by: 

Theorem 3.3 [Equivalence Theorem]: A necessary and sufficient condition for a design *D 

to be D-optimal (A-optimal) for estimating the parameters of the model (2.5) is that   
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),( *
xxd is invariant w.r.t. the components of x, the maximizing points will also be invariant w.r.t. 

the components of x, that is, they will be at the barycentres of . Again, for given x, ),( *
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quadratic convex function in x, since M () is positive definite. Hence it can have atmost 2 maximal 
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maximized at the extremes points of 2. Similar arguments confirm the support points of an A-

optimal design. 

For given x*, *
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function in x*. We know that for a quadratic response function the D-optimal design for parameter 

estimation has its support points at the barycentres of depth 0 and 1 of the simplex, and in a first 

degree model its support points are at the extreme points of the simplex. So, keeping in mind that 

the model (2.5) is invariant w.r.t. the components within the sets 
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It may be noted that the above design is a saturated design, that is, it as many design points 

as there are unknown parameters. The parameters iik for 1  i, k  q are estimated with the help 

of the design points in (i), while the parameters ,*
ik for 1  i  q, q+1  k   q+r, are estimated 

with the help of the points in (iii). Once the parameters iik for 1  i, k  q are estimated, the 

parameters ijk , qkji  ,,1 , i  j,  can be estimated with the help of the points in (ii). (See Sinha 
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et al. (2010) for a better understanding of the aspect of estimability of model parameters based on 

a saturated design.)  

 

The information matrix of any design D1 is given by 

 

 ,)( XXM   

where 

 ,
0

0

00

0
4

1
0

0
4

1

00

0
4

1
0

0
4

1

)2,()2,(

2

q
r

q

r

qC

q

rq

qqC

qq

I
I

B
I

I 

I 

AI

I 

I 

IAI

X 

























































    

    

                         

             

                      

                         

             

            

say,   (3.4)

 ,),,(),,( 3)2,(213)2,(21 2 qrqCqrqqqCq
IIwIwIwDiagIwIwIwDiag                    (3.5)  

 



,

1      ...    0   1  ... 0   0    1    ... 0  0

  ...  ...  ...  ...  ...  ...  ...   ...  ...  ...    

  0      ...    0    1  ... 1   1    0   .. . 0   1

0 ...   0  0 ...  0  0   1  ...  1   1

element 1elements 2-elements 1-

























 qq

A .

4

1
0

4

1

)2,( 



















qC

q

I 

AI

B

         

                 

           (3.6)

 

 

Since the above design is a saturated one, the optimal allocation of the masses under the D-

optimality criterion would be  

.
])2,1([

1
321

rqCq
www


            (3.7) 

 

Theorem 3.4: The D-optimal design in D1 is D-optimal in D. 
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parameters of a q-component full quadratic mixture model, ,)(1 θxfx 
 
where )(1 xf is given in 

(2.6), and (1) is given by Theorem 3.1. Hence, by Equivalence Theorem of Kiefer (1974),  
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To get the A-optimal design, we note that for a quadratic response function in a s –

component mixture experiment the optimal design for parameter estimation has its support points 

at the barycentres of depth 0 and 1 of the simplex for s  3, and at the barycentres of depth 0, 1 

and 2 for s = 3 (cf. Galil and Kiefer, 1977). On the other hand, in a first degree model its support 

points are at the extreme points of the simplex. We therefore, initially confine our search within 

the subclass D1 of D for q  3, and within the subclass D2 of D for q = 3, where a typical design in 

D2 has the support points (i) – (iv) of designs in D1and the support points  
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Proceeding as before, it is easy to check that for any design D1, 
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For q = 3, the information matrix of any design ξ  D2 is given by 
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TT *
1 is the information matrix of a design ξ* for estimating the parameters of a 3-component full 

quadratic mixture model, with support points at the barycentres of depth 0, 1 and 2 and mass w1
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As algebraic derivation is rather tedious, we have numerically checked, using several 

points in the domain (2.7), that the conditions of the Equivalence Theorem are satisfied by the 

above designs. The following table gives the A-optimal designs for some combinations of ( rq, ). 

 

Table 3.1: The A-optimal designs for parameter estimation for some combinations of ( rq, ) 

 

 q 

r w1 w2 w3 w4 

2 

3 

3 

4 

1 

1 

2 

2 

0.0984 

0.0447 

0.0437 

0.0134 

0.1761 

0.0591 

0.0578 

0.0174 

0.1271 

0.0177 

0.0246 

0.0458 

- 

0.0041 

0.0040 

- 
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4 Concluding Remarks 

 

The paper studies a very realistic situation observed in agricultural fields. Manure is used 

to make the soil fertile. For some crops it is added more than once to the soil at intermediate time 

points before harvesting. However, if a crop does not show satisfactory growth, the farmers may 

improve upon the manure by adding some new ingredients. This is done because good growth of 

crop is expected to result in good yield. In our study we treat manure as a mixture and suggest 

optimum designs for estimating the parameters of the yield function. While the D-optimal design 

is a saturated design, the A-optimal design needs one extra point, namely the overall centroid point, 

when there are three components in the manure used during sowing of the crop. However, the mass 

at the overall centroid point is pretty low (vide Table 3.1) so that it may be ignored unless the 

experiment is conducted for a large number of runs.  
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