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Abstract

Yeh and Bradley (1983) made a conjecture about the trend-free designs.
Stufken (1988) gave some counterexamples for classes of designs with k is odd
to show the conjecture is not true in general. This paper especially focuses on de-
signs when the block size is odd. The conjecture is further investigated and several
sufficient conditions for a design can be converted into a linear trend-free design by
permuting the positions of treatments within blocks are obtained. Some designs
in two-associate PBIB designs with λ1 = 0 or λ2=0 are proved can be converted
into linear trend-free designs.
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1 Introduction

In the classical block design setting we believe that the observations
are affected by the treatment and the block effects only. Hence the
order of the treatment applied to the experimental units in a block
won’t affect the observations. But in other situations, especially when
the treatments are applied to the experimental units sequentially over
time or spaces in a block, there is a probability that a systematic effect,
or trend, influence the observations in addition to the treatment and
the block effects. Facing this possible trend in the block, the usual
analysis of block designs will not be proper any more.

Bradley and Yeh (1980) introduced the properties and theory of
trend-free block designs. Trend-free block designs, can eliminate the
trend effect by properly rearranging the treatment positions within
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blocks, will allow you to analyze the treatment effects as same as in
the classical block design even if the trend effect is present.

Yeh and Bradley (1983) conjectured that every binary incom-
plete block design with parameters v, b, k and r can be converted into
a linear trend-free block design by exchanges of plot positions for treat-
ments within blocks if and only if 1

2
r(k + 1) is an integer. They also

proved that the conjecture is true when k = 2. Stufken (1988) gave a
family of counterexamples which are designs with k is odd and certain
properties to show the conjecture is not correct in general. Chai and
Majumdar (1993) proved that the conjecture is true for the following
two kinds of designs (i) whenever k is even; (ii) BIBD (BBD) families.
Majumdar (1996) showed that the Yeh-Bradley’s conjecture is valid
for Balanced Treatment Incomplete Block ( BTIB) designs which are
the high efficient designs for test-control treatment comparisons ex-
periments. Lin and Stufken (1999) introduced and discusses a new
algorithm to convert a given binary block design into a linear trend-
free block design. Lin and Stufken (2002) elaborated the connection
between the problem of finding strongly linear trend-free block design
and a well-known problem in graph theory. Based on the connection,
they found more classes of designs with some sufficient conditions can
be converted into the linear trend-free block designs.

In this paper, we study the Yeh-Bradley conjecture further.
Firstly, based on the ideas of the Stufken’s counterexamples, we can
construct more classes of designs that can not be converted into lin-
ear trend-free designs (see Theorem 3.1). Secondly, the connection
of the truth of the Yeh-Bradley conjecture (i) between D(v, b, k, r)
and D( v

v1
, b, k, rv1), with v is multiple of v1; (ii) between D(v, b, k, r)

and D(v, b, αk, αr) for positive integer α, are obtained (see Theo-
rems 3.2 and 3.3). These two results can help us to focus on the
smaller classes of designs when we seek for the truth of the conjecture.
Thirdly, the conjecture is proved to be true for each binary design
d ∈ D(v = 3k, b, k, r) provided k is odd and r is even (see Theorem
3.6). Also, we derive several sufficient conditions for the designs can
be rearranged into a linear trend-free designs ( see Theorems 3.4, 3.6
and 3.7) and those results can be applied to two-associate-class PBIB
designs with λ1 = 0 or λ2=0 (see Remark 3.1).

Some preliminary results and notations about linear trend-free
block designs are given in Section 2. The main results and examples
are given in Section 3. Section 4 has the concluding remarks.
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2 Notation and preliminary results

We assume that the model for an observation in period l of block j,
1 ≤ l ≤ k, 1 ≤ j ≤ b is
(2.1) yjl = u+

∑v
i=1 δi

jlτi +βj + θ1φ1(l) + ǫjl.
Here u is a general effect, τ1, ..., τv the treatment effects, β1, ..., βb

the block effects and θ1 is the regression coefficient of φ1(l). The com-
mon trend effect on period l of each block is θ1φ1(l). Moreover, φ1(l)
satisfies

∑k
l=1 φ1(l) = 0,

∑k
l=1 φ2

1(l) = 1,
and

δi
jl =

{

1, if treatment i is applied in period l of block j,
0, otherwise,

with
∑v

i=1 δi
jl = 1.

A design d will be represented by a k × b array with elements
from S = {1, 2, ..., v}. Thus, if the symbol i appears in cell (l, j) of d,
it means that treatment i has to be applied in period l of block j under
d. Let D(v, b, k) be all connected designs in b blocks , k periods based
on v treatments under model (2.1). To avoid trivialities we consider
henceforth only classes D(v, b, k) with k ≥ 2. For d ∈ D(v, b, k), let
sdil denote the number of times treatment i appears in row (period)
l and rdi =

∑

l sdil denote the number of times treatment i occurs in
the design. We shall use the notation:

D(v, b, k; r1, ..., rv) = {d ∈ D(v, b, k) : rdi = ri, 1 ≤ i ≤ v},

D(v, b, k, r) = {d ∈ D(v, b, k; r1, ..., rv) : ri = r, 1 ≤ i ≤ v}.

Bradley and Yeh (1980) showed that a design d ∈ D(v, b, k, r)
is linear trend-free if and only if
(2.2)

∑k
l=1 sdilφ1(l) = 0, i.e.,

∑b
j=1

∑k
l=1 δi

jll = r(k+1)/2, i =
1, 2, ..., v.

Because of the symmetric properties of the orthogonal polyno-
mial φ1(l), (2.2) is true whenever
(2.3) sdil = sdi(k−l+1), l = 1, ..., [(k + 1)/2], i = 1, ..., v.

Definition 2.1 (Chai and Majumdar (1993)). An array dtf , derived
from a design d ∈ D(v, b, k, r) by permuting symbols within columns,
will be called a linear trend-free version of d if it satisfies (2.2). The
array dtf will be called a strongly linear trend-free version of d if it
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satisfies (2.3).

Remark 2.1. Let r(k + 1)/2 be an integer. Then the following
three statements are equivalent. (i) Yeh and Bradley’s conjecture is
true in D(v, b, k, r); (ii) each design d ∈ D(v, b, k, r) has a linear trend-
free version; (iii) each design d ∈ D(v, b, k, r) can be converted into a
linear trend-free block design by rearranging treatments within blocks.

Theorem 2.1 (Chai and Majumdar (1993)). Let k, r1, ..., rv be even
numbers. For each design in D(v, b, k; r1, r2, ..., rv) there exists a
strongly linear trend-free version.

Theorem 2.2. Let d ∈ D(v, b, k, r) with k odd and r even. Sup-
pose, in d, there exists a collection F , collects one symbol from each
column of d, contains some symbols from the set {1, 2, ..., v}, repeats
an even number of times each. Then d has a strongly linear trend-free
version.
Remark 2.2. Theorem 2.2 is a special case of Theorem 3.2 of Chai
and Majumdar (1993).

Theorem 2.3 (Stufken (1988)). Suppose k is odd and (r, k) = 1
((r, k) denotes the greatest common divisor of r and k). If there ex-
ists positive integers α (> k), and β such that βk = αr−1, then there
exists a design dS ∈ D(v∗, b∗, k, r), with v∗ = αk and b∗ = αr, can’t
be converted into a linear trend-free block design. Hereafter, call dS

is Stufken-type counterexample design.

3 Main results

Yeh and Bradley’s conjecture is still unsolved for some cases. The
following theorem, based on the special construction of the Stufken’s
families, shows more designs can’t be converted into the linear trend-
free designs.

Theorem 3.1. Suppose k is odd and (r, k) = 1. If there exists
positive integers α (> k), α1 (> k), β and β1 such that βk = αr − 1
and β1k = α1r + 2, then exists a design d∗ ∈ D(v∗, b∗, k, r), with
v∗ = 2α+α1 and b∗ = 2β +β1, can’t be converted into a linear trend-
free design.
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Proof. Construct the connected d∗ = [d1|d2|d3], where di is a k × β
array such that symbols (i− 1)α + 1, (i− 1)α + 2, ..., (i− 1)α + α− 1
appear r times and (i − 1)α + α appears (r − 1) times, for i = 1, 2
and d3 is a k × β1 array such that symbols 2α + 1, 2α + 2, ..., 2α + α1

appear r times and symbols α and 2α appear only once and in the
same column. Notice that d1 and d2 exist since βk = αr − 1 and d3

exists since β1k = α1r + 2. Also, it is easy to see d∗ ∈ D(v∗, b∗, k, r)
with v∗ = 2α + α1 and b∗ = 2β + β1. Now, suppose the constructed
d∗ can be converted into a linear trend-free block design. Call the
resulting design d∗∗ = [d∗

1|d
∗

2|d
∗

3]. In d∗

1, we have
∑β

j=1

∑k
l=1 δi

jll =

(r)(k + 1)/2, i = 1, 2, ..., α − 1 and
∑β

j=1

∑k
l=1 δα

jll = (r − 1)(k + 1)/2,

since
∑β

j=1

∑k
l=1 l = βk(k +1)/2 and βk = αr−1. Similarly, in d∗

2, we

have
∑2β

j=β+1

∑k
l=1 δi

jll = (r)(k + 1)/2, i = α + 1, α + 2, ..., 2α − 1 and
∑2β

j=β+1

∑k
l=1 δ2α

jl l = (r − 1)(k + 1)/2. d∗∗ is a linear trend-free block
design, hence, all symbols in d∗∗ should satisfy equation (2.2). That
implies

∑b∗

j=2β+1

∑k
l=1 δα

jll and
∑b∗

j=2β+1

∑k
l=1 δ2α

jl l both must equal to
(k + 1)/2. i.e., the symbols α and 2α must appear in the middle spot
of the column in d∗

3. But, that is impossible, since symbols α and 2α
are in the same column of d∗

3. Hence, the d∗ can not be converted into
a linear trend-free block design.

Corollary 3.1. (i) Choose β1 = (k−2)β+1, hence α1 = (k−2)α, then
we get the Stufken-type counterexample design dS ∈ D(αk, αr, k, r).
(ii) Let l be any positive integer. Choose β1 = (k−2)β + lr+1, hence
α1 = (k − 2)α + lk, then we get the d ∈ D((α + l)k, (α + l)r, k, r)
can’t be converted into a linear trend-free block design. This indi-
cates if a Stufken-type counterexample design dS ∈ D(αk, αr, k, r)
exists, for v∗ ≥ v, b∗ ≥ b and v∗r = b∗k, there always exists a design,
d∗ ∈ D(v∗, b∗, k, r) can not be converted into a linear trend-free block
design.

Example 3.1. Let r = 2, k = 5 and dS ∈ D(40, 16, 5, 2) be-
long to Stufken’s families. By Theorem 3.1, we can construct d∗ ∈
D(16 + α1, 6 + β1, 5, 2) with α1 > 5 and 5β1 = 2α1 + 2 which do not
have a linear trend-free version. Here, with minimum α1 = 9, hence
β1 = 4, a d∗ ∈ D(25, 10, 5, 2) is given.
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d∗ =

















1 1 2 9 9 10 8 17 17 18
2 3 3 10 11 11 16 18 19 19
4 4 5 12 12 13 20 20 21 21
5 6 6 13 14 14 22 22 23 23
7 7 8 15 15 16 24 24 25 25

















.

Example 3.2. Let dS ∈ D(15, 10, 3, 2) belong to Stufken’s fami-
lies. For v∗ ≥ 15, b∗ ≥ 10 and 2v∗ = 3b∗, we can construct d∗ ∈
D(v∗, b∗, 3, 2) which does not have a linear trend-free version. Two
designs d∗

1 ∈ D(18, 12, 3, 2) and d∗

2 ∈ D(21, 14, 3, 2) are given below.

Adopting the construction method in Theorem 3.1, we can write

d∗

1 =







1 1 3 6 6 7 11 11 13 5 16 16
2 2 4 7 8 9 12 12 14 10 17 17
3 4 5 8 9 10 13 14 15 18 18 15





 ;

d∗

2 =







1 1 3 6 6 7 11 11 13 5 16 16 17 17
2 2 4 7 8 9 12 12 14 10 18 18 19 19
3 4 5 8 9 10 13 14 15 21 20 21 20 15






.

Check the 10th column of d∗

1(d
∗

2), we get the impossibilities of the
linear trend-free version of d∗

1(d
∗

2).

Using the renaming techniques and the theory of the SDRs ( sys-
tem of distinct representatives; see Hall (1935)), Theorem 3.2 and
Theorem 3.3 will show that the questions of the truth of the Yeh-
Bradley conjecture in D(v, b, αk, αr) and D( v

v1

, b, k, rv1) can be re-
duced to the class D(v, b, k, r).

Theorem 3.2. Let k, α be odd integers and (r, k) = 1. If each
design d ∈ D(v, b, k, r) has a linear trend-free version dtf , then each
design d∗ ∈ D(v, b, αk, αr) has a linear trend-free version d∗

tf .

Proof. Suppose d∗ ∈ D(v, b, αk, αr). Let us derive an array d∗

1 from
d∗ in the following fashion. Select any α cells of d∗ that have the sym-
bol i and replace i in these α cells by the ordered pair (i, 1). Choose
α other cells that have the symbol i from the α(r− 1) remaining cells
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and replace by the order pair (i, 2). Continue in this fashion until
all i′s have been replaced by (i, 1), (i, 2), ..., (i, r). Do this for each
i = 1, 2, ..., v. Clearly, d∗

1 ∈ D(rv, b, αk, α). Let Cj denote the jth col-
umn and Sj denotes the set of symbols in column j of d∗

1, j = 1, ..., b.
It is easy to see that d∗

1 satisfies | Sj1 ∪ Sj2 ∪ ... ∪ Sjt
|≥ kt, for

1 ≤ j1 < ... < jt ≤ b, 1 ≤ t ≤ b. Thus, by Theorem 2.1 of Agrawal
(1966), S1, S2, ..., Sb possesses a (k, k, ..., k) SDR, (A1, A2, ..., Ab), say.
Define Bj = Cj \ Aj, j = 1, 2, ..., b. Let d∗∗

11 = [A1|A2| · · · |Ab] and
d∗∗

12 = [B1|B2| · · · |Bb]. Permuting the symbol positions within columns
of d∗

1, we can write d∗

1 as

d∗∗

1 =











A1 A2 · · · Ab

B1 B2 · · · Bb











=











d∗∗

11

d∗∗

12











.

Now, replace each pair (i, g) by the symbol i, for i = 1, ..., v and
g = 1, 2, ..., r in d∗∗

11 and d∗∗

12 to get d11 and d12. Clearly d11 ∈
D(v, b, k, r) and d12 ∈ D(v, b, (α − 1)k, (α − 1)r). Applying Theo-
rem 2.1, it is clearly that d12 has a strongly linear trend-free version

d12tf
. Write d12tf

=

[

du
12tf

dl
12tf

]

, where du
12tf

is a ((α − 1)k/2) × b array

and so is dl
12tf

. By the assumption of the theorem, d11 has a linear

trend-free version d11tf
. Then write d∗

tf =







du
12tf

d11tf

dl
12tf






is a linear trend-

free version of d∗.

Theorem 3.3. Suppose v is multiple of v1. If each design d ∈
D(v, b, k, r) has a linear trend-free version dtf , then each design d∗ ∈
D( v

v1
, b, k, rv1) has a linear trend-free version d∗

tf .

Proof. Let d∗ ∈ D( v
v1

, b, k, rv1). Using the same renaming process in
Theorem 3.2, we can derive a d∗

1 from d∗ and d∗

1 ∈ D(v, b, k, r). By
the assumption of the theorem, d∗

1 has a linear trend-free version d∗

1tf
.

Change all the new symbols back to the original symbols in d∗

1tf
to

get a d∗

tf ∈ D( v
v1

, b, k, rv1) which is a linear trend-free version of d∗.

Theorem 3.4. Suppose k is odd, r is even, and S ′ ⊆ S. Let
d ∈ D(v, b, k, r) be a binary design such that for one symbol (say
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symbol 1), the union of all columns that contain symbol 1 contains at
least all the symbols in S ′. Furthermore, suppose that the collection
of columns not containing symbol 1 can be partitioned into two sets of
columns X1 and X2, which satisfy (a) | X1 | is even and the columns
in X1 can be divided into | X1 | /2 pairs of columns such that any
two columns that form a pair have at least one symbol in common;
and (b) the columns in X2 are all disjoint and all the symbols in X2

are contained in S ′. Then d has a strongly linear trend-free version.

Proof. Suppose C1, C2, ...., Cr, Cr+1, ...., Cr+2t, Cr+2t+1, ..., Cb are the
columns of the array d of which C1, C2, ..., Cr contain symbol 1. Let
Y = {C1, C2, ..., Cr}, X1 = {Cr+1, Cr+2, ..., Cr+2t}, ai ∈ Cr+2i−1 ∩
Cr+2i, 1 ≤ i ≤ t and X2 = {Cr+2t+1, ..., Cb}. We have | Y |= r,
| X1 |= 2t and | X2 |= b − r − 2t = q.

If S ′ = φ, then the result follows from Theorem 2.2; hence assume
S ′ 6= φ. Let A0 = φ, Ai = (Ci∩S ′)\(A0∪· · ·∪Ai−1), for i = 1, 2, ...., r.
Suppose that {Ai1 , Ai2 , ..., Ain} are all the non-empty set in the collec-
tion {A0, A1, ..., Ar}. Clearly, n > q since | Ai |≤| Cj | for 1 ≤ i ≤ n
and b − q + 1 ≤ j ≤ b. And {Ai1 , Ai2, ..., Ain} forms a partition of
S ′. It follows from Theorem 2 of Hall (1935) that there is a subset
{j1, j2, ..., jq} of {i1, i2, ..., in} with the property : Ajl

∩Cb−l+1 6= φ for
l = 1, 2, ..., q.

Hence Cjl
∩Cb−l+1 6= φ for l = 1, 2, ..., q, where {Cj1, ..., Cjq

} ⊂ Y .
Note that | Y | −
| Cj1 , ..., Cjq

|= r − q is even. Thus we can construct a (1 × b) row
vector ρ = {ρ1, ..., ρr, ρr+1, ...,
ρr+2t, ρr+2t+1, ..., ρb} with the properties:

(i) ρj ∈ Cj, j = 1, 2, ..., b;

(ii) ρb−l+1 = ρjl
, l = 1, 2, ..., q (recall {j1, j2, ..., jq} ⊂ {1, 2, ...., r});

(iii) ρj = 1, j ∈ {1, 2, ..., r} \ {j1, j2, ..., jq};

(iv) {ρr+1, ..., ρr+2t} = {a1, a1, a2, a2..., at, at}.

Clearly ρ consists of some symbols from the set {1, 2, ..., v}, repeated
an even number of times each. By Theorem 2.2, d has a strongly
linear trend-free version.

Corollary 3.2. In the Theorem 3.4, the assumption “the union of
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all columns that contain symbol 1 contains at least all the symbols
in S ′” can be replaced by the union of even number of columns that
contain symbol 1 contains at least all the symbols in S ′” and the re-
sult remains valid.

Example 3.3. Let d ∈ D(15, 12, 5, 4) and we can write

d =

















1 1 1 1 13 13 11 11 12 12 2 3
2 3 4 5 15 7 13 12 13 10 4 5
6 7 8 9 14 15 12 14 15 14 6 11
9 2 10 3 10 8 14 7 9 15 7 8
5 4 11 8 2 3 4 5 6 6 9 10

















.

Carefully observing this design d, we find
(i) S ′ = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; (ii) X1 = {C5, C6, C7, C8, C9, C10};
(iii) X2 = {C11, C12}. By Theorem 3.4, we have a
ρ = (2, 3, 1, 1, 13, 13, 11, 11, 12, 12, 2, 3) collected from each column
and each symbol in {2, 3, 1, 13, 11, 12} repeats twice. Hence a strongly
linear trend-free version of d is obtained and can be written as

dtf =

















6 2 8 5 14 8 14 12 9 15 4 11
1 7 10 9 15 3 4 7 13 10 6 5
2 3 1 1 13 13 11 11 12 12 2 3
9 1 4 3 10 7 13 5 15 6 7 10
5 4 11 8 2 15 12 14 6 14 9 8

















.

Example 3.4. Let d ∈ D(15, 18, 5, 6) and we can write

d =





1 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 4 15

6 5 2 3 3 5 1 1 8 2 3 4 10 7 2 5 2 3

7 8 7 4 11 8 9 6 10 6 9 9 11 10 9 12 5 6

11 13 9 10 13 9 12 8 11 8 11 10 12 12 10 13 7 8

15 14 12 13 14 14 15 12 15 14 14 13 15 13 14 15 13 11



 .

The first four columns, compare to r = 6, already contain all the
symbols. Hence, by Corollary 3.2, we can get a strongly linear trend-
free design dtf . Let us write

dtf =





6 5 1 4 3 8 1 8 11 2 11 13 15 7 10 5 4 15

7 8 9 10 13 14 12 6 15 14 9 9 10 12 14 12 13 11

1 1 2 3 2 2 3 3 4 4 5 5 6 6 7 7 2 3

11 13 12 13 14 9 9 12 10 6 14 10 12 13 9 15 7 8

15 14 7 1 11 5 15 1 8 8 3 4 11 10 2 13 5 6



 .

Theorem 3.5. Suppose k is odd, r is even and v ≥ 2k. Let
d ∈ D(v, b, k, r) be a binary design such that for one symbol (say
symbol 1), the union of all columns that contain symbol 1 contain at



66 Feng-Shun Chai [Vol.6, Nos.1 & 2

least v−k−1 symbols. Then d has a strongly linear trend-free version.

Proof. Suppose C1, C2, ..., Cr, Cr+1, .., C2r, C2r+1, ..., C2r+2t,
C2r+2t+1, ..., cb are the columns of the array d of which C1, C2, ..., Cr all
contain symbol 1. Let Y = {C1, C2, ..., Cr}. If Y contains all symbols
1, 2, ..., v, then by Theorem 3.3 of Chai and Majumdar (1993), d has a
strongly linear trend-free version. Let S1 = {2, 3, ..., k + 2}. Suppose
Y contains v−k−1 symbols, namely contains S \S1. Without loss of
generality, let Cr+1, .., C2r contain symbol 2, C2r+2j−1 and C2r+2j has
at least one symbol, say aj, in common, 1 ≤ j ≤ t and C2r+2t+1, ..., Cb

are all disjoint columns. Notice that we always can make no Cl =
(3, ..., k +2), 2r +2t+1 ≤ l ≤ b, since if that happens, for the sake of
the connectedness of d, we can either find a pair of columns Cr+i1 and
Cr+i2, 1 ≤ i1, i2 ≤ r, such that Cl ∩Ci1 6= φ and Ci2 6= (3, ..., k + 2) to
replace Cl or find a pair of columns C2r+2j−1 and C2r+2j, 1 ≤ j ≤ t,
such that Cl ∩ C2r+2j−1 6= φ and C2r+2j 6= (3, ..., k + 2) to replace Cl.
Let C∗

j = Cj \ {3, 4, ..., k + 2}, 2r + 2t + 1 ≤ j ≤ b and S ′ denotes a
collection of all the symbols in C∗

2r+2t+1∪ ...∪C∗

b . Let q = b−(2r+2t),
A0 = φ, Ai = (Ci ∩ S ′) \ (A0 ∪ · · · ∪ Ai−1), for i = 1, 2, ...., r. Sup-
pose that {Ai1 , Ai2 , ..., Ain} are all the non-empty set in the collec-
tion {A0, A1, ..., Ar}. Clearly, n ≥ q, otherwise q − 1 ≥ n implies
(q − 1)(k − 1) ≥ n(k − 1) ≥ (q − 1)k (minimum number of sym-
bols in C∗

2r+2t+1 ∪ ...∪C∗

b ) which is impossible. And {Ai1 , Ai2 , ..., Ain}
forms a partition of S ′. If follows from Theorem 2 of Hall (1935),
that there is a subset {j1, j2, ..., jq} of {i1, i2, ..., in} with the property
: Ajl

∩ Cb−l+1 6= φ for l = 1, 2, ..., q.
Hence Cjl

∩Cb−l+1 6= φ for l = 1, 2, ..., q, where {Cj1, ..., Cjq
} ⊂ Y .

Note that | Y | −
| Cj1 , ..., Cjq

|= r − q is even. Thus we can construct a (1 × b) row
vector ρ = {ρ1, ..., ρr, ρr+1, ...,
ρb−q, ρb−q+1, ..., ρb} with the properties:

(i) ρj ∈ Cj, j = 1, 2, ..., b;

(ii) ρb−l+1 = ρjl
, l = 1, 2, ..., q (recall {j1, j2, ..., jq} ⊂ {1, 2, ...., r});

(iii) ρj = 1, j ∈ {1, 2, ..., r} \ {j1, j2, ..., jq};

(iv) ρi = 2, r + 1 ≤ i ≤ 2r;

(v) {ρ2r+1, ..., ρ2r+2t} = {a1, a1, a2, a2..., at, at}.
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Clearly ρ consists of some symbols from the set {1, 2, ..., v}, repeated
an even number of times each. By Theorem 2.2, d has a strongly linear
trend-free version. If Y contains more than v−k−1 symbols, then the
proof is followed similarly as the above. Hence, the proof is completed.

Theorem 3.6. Suppose k is odd, r is even and v = 3k. Then each
binary design d ∈ D(v, b, k, r) has a strongly linear trend-free version.
Proof. We have two cases. Case 1. r=2. Hence, b=6. Without loss
of generality, we can write

d =

















1 1 2 2

C11 C12 C21 C22 C3 C4

















,

where (1, C11), (1, C12) are those two columns contain symbol 1, (2, C21),
(2, C22) are those two columns contain symbol 2 and C5, C6 are
the remaining two columns. If C11 ∪ C12 ∪ C21 ∪ C22 does not con-
tain symbols 3,4,..., v, say symbol 3 is missing, then C5, C6 must
contain symbol 3. Therefore, symbols 1, 1, 2, 2, 3, 3 are chosen
from the columns of the d, by Theorem 2.2, d has a linear trend-
free version. Hence, C11 ∪ C12 ∪ C21 ∪ C22 must contain symbols
3, 4,..., v and C5 and C6 are disjoint. Without loss of general-
ity, let C5 = (3, ..., k + 2) and C6 = (k + 3, ..., 2k + 2). Also, let
S ′ = S \ ({1, 2}∪C5 ∪C6) = {2k + 3, ..., 3k}. Suppose symbol x ∈ C5

and symbol y ∈ C6. We claim that x and y can ’t be in the same
column of C11 ∪C12 ∪C21 ∪C22. If that happens, say x and y in C11,
then (i) C12 can not contain any symbol from C5 and C6, otherwise,
C11 ∩C5 6= φ ( or C11 ∩C6 6= φ) and C12 ∩C6 6= φ ( or C12 ∩C5 6= φ),
the job is done; (ii) C12 contains only symbols from S ′. But, S ′ has
only k − 2 symbols and C12 has k − 1 spaces. (i) and (ii) proves that
claim. If x ∈ C11 and y ∈ C12, then C11∩C5 = x and C12∩C6 = y, the
proof is done. Hence, suppose x ∈ C11 and y ∈ C21. Then, C11 ∪ C12

must contain all symbols from C5 and some symbols from S ′ and
C21 ∪ C22 must contain all symbols from C6 and some symbols from
S ′. k symbols from C5(C6) have to distribute to both columns C11

(C21) and C12 (C22), since either column has only k − 1 spaces. The
number of the remaining open spaces is odd in C11 ∪ C12 (C21 ∪ C22)



68 Feng-Shun Chai [Vol.6, Nos.1 & 2

, after all k symbols of C5 (C6) are filled into them. That means at
least one symbol from S ′ should appear in C11 ∪ C12, say in C11 and
C21 ∪C22, say in C21. Then we can have C11 ∩C21 6= φ, C12 ∩C5 6= φ
and C22 ∩ C6 6= φ. By Theorem 2.2, the proof is completed. Case
2. r > 2. Let C1, C2, ..., Cb be the columns of d. Without loss of
generality, we can write

d =

















1 · · · 1 2 · · ·2

d1 d2 d3 Cb−1 Cb

















,

where (i) d1((k − 1) × r) represents C1, ..., Cr, but without symbol
1, (ii) d2((k − 1) × r) represents Cr+1, ..., C2r, but without symbol
2, (iii) d1 ∪ d2 covers symbols 3,...,v, (iv) d3(k × 2t) has 2t columns,
namely C2r+1, ..., C2r+2t, such that C2r+2j−1 ∩ C2r+2j 6= φ, 1 ≤ j ≤ t,
(v) Cb−1 = (3, ..., k + 2) and Cb = (k + 3, ..., 2k + 2) are disjoint. Let
symbol x ∈ Cb−1 and symbol y ∈ Cb. Based on the same arguments
in Case 1, x and y can not appear simultaneously in ( same column
or different columns of ) d1, d2 and d3. Suppose symbol x ∈ d1 and
y ∈ d2. Recall that S ′ = {2k + 3, ..., 3k}. If d1 (d2) contains no sym-
bol from S ′, then Cr+1, ..., C2r (C1, ..., Cr) contain 2k − 1 symbols, by
Theorem 3.5, the proof is done. If a symbol from S ′ appears in d1

and d2, then the finding of the pair of columns which have the com-
mon symbol between Cb−1, Cb and the columns of d1 and d2 is solved.
Hence, we can let S ′ = S ′

1 ∪ S ′

2, where S ′

1 and S ′

2 both not empty and
disjoint and S ′

1 (S ′

2) denotes the collection of symbols from S ′ appear
in d1 (d2). Suppose symbol p ∈ S ′

1 and symbol q ∈ S ′

2. Then p and
q can not appear simultaneously in both columns C2r+2j−1, C2r+2j ,
1 ≤ j ≤ t, since (i) if p ∈ C2r+2j−1 and q ∈ C2r+2j, then two columns,
say C1∗ ∋ x (C2∗ ∋ y) and C1∗∗ ∋ p (C2∗∗ ∋ q), from d1 (d2) are chosen,
such that C2r+2j−1∩C1∗∗ = {p}, C2r+2j ∩C2∗∗ = {q} C1∗∩Cb−1 = {x}
and C2∗ ∩ Cb = {y}, the job is done, (ii) (a) if {p, q} ⊂ C2r+2j−1

and x ∈ C2r+2j, then two columns, C2∗∗ ∋ q and C2∗ ∋ y, from d2

are chosen, such that C2r+2j−1 ∩ C2∗∗ = {q}, C2r+2j ∩ Cb−1 = {x}
and C2∗ ∩ Cb = {y} the job is done; (b) if {p, q} ⊂ C2r+2j−1 and
y ∈ C2r+2j, the finding for the common symbol between columns
can be done similarly as in (a). Now, we claim that t pairs columns
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C2r+2j−1 ∩ C2r+2j 6= φ, 1 ≤ j ≤ t, in d3, must have at least one of
the two types. Type I. {x, q} ⊂ C2r+2j−1 and x ∈ C2r+2j for some
j. Type II. {y, p} ⊂ C2r+2j−1 and y ∈ C2r+2j for some j. If there is
no such pairs of columns in d3, then the design d is a disconnected
design. If we have a type I pair in d3, then pick up two columns,
C2∗ ∋ y and C2∗∗ ∋ q, from d2, such that C2r+2j−1 ∩ C2∗∗ = {q},
C2r+2j ∩ Cb−1 = {x} and C2∗ ∩ Cb = {y}; if we have a type II pair in
d3, then pick up two columns, C1∗∗ ∋ p and C1∗ ∋ x, from d1, such
that C2r+2j−1 ∩ C1∗∗ = {p}, C2r+2j ∩Cb = {y} and C1∗ ∩ Cb−1 = {x}.
Hence, by Theorem 2.2, d has a linear trend-free version.

Theorem 3.7. Suppose k is odd, r is even. Let d ∈ D(v, b, k, r)
be a binary design which satisfies the following assumptions:

(a) There exists even numbers of columns A1, A2, ..., A2s such that
each Ai contains one common symbol (say symbol 1) and an-
other even numbers of columns B1, B2, ..., B2t such that each Bj

contains another common symbol (say symbol 2),

(b) {∪2s
i=1Ai} ∪ {∪2t

j=1Bj} ⊇ {1, 2, ..., v − 1, v},

(c) There exists one column Po(other than those Ai’s and Bj ’s) that
contains symbol 1 and symbol 2.

Then d has a strongly linear trend-free version.
Proof. Without loss of generality, we can write

d =

















1 1 · · ·1 2 · · · 2
2

d1 d2 d3 d4

















,

where d1((k − 1) × 2s) represents those Ai’s without symbol 1 and
d2((k−1)×2t) represents those Bj ’s without symbol 2. Furthermore,
d3(k × 2l) is an array in which (2j − 1)th column and (2j)th column
has at least one symbol in common, say symbol bj , for 1 ≤ j ≤ l
and all columns in d4(k × (b − 1 − 2s − 2t − 2l)) are disjoint. Let
b − 1 − 2s − 2t − 2l = m and P1, P2, ..., Pn, Pn+1, ..., Pm−1, Pm be the
columns in d4.
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Applying the same technique in finding the common symbols be-
tween Ci’s and X2 in Theorem 3.4 and without loss of generality we
get

(i) Let {P1, P2, ..., Pn, Pn+1, ..., Pm−1, Pm} = P ∪Q, where P contains
P1, P2,..., Pn and Q contains the remaining columns;

(ii) For each Ph in P , one can find ah ∈ {2, 3, 4, ..., v} and Aih such
that ah ∈ Ph ∩ Aih, ih’s are all distinct, 1 ≤ h ≤ n and
{i1, i2, ..., in} ⊆ {1, 2, ..., 2s};

(iii) For each Pl in Q, one can find al ∈ {1, 3, 4, ..., v} and Bil such
that al ∈ Pl∩Bil , il’s are all distinct, 1 ≤ l ≤ m and {i1, i2, ..., im} ⊆
{1, 2, ..., 2t}.

Now, we have two cases:

Case 1. n is odd. Hence m−n is even. We can get a ρ = (1, a1, a2, ..., an,
1, ..., 1, an+1, ..., am, 2, ..., 2, b1, b1, ..., bl, bl, a1, ..., an, an+1, ..., am).
Notice that all the symbols appear in ρ repeated an even number
of times.

Case 2. n is even. Hence m−n is odd. We get a ρ = (2, a1, a2, ..., an,
1, ..., 1, an+1, ..., am, 2, ..., 2, b1, b1, ..., bl, bl, a1, ..., an, an+1, ..., am).
Similar to Case 1, all the symbols appear in ρ repeated an even
number of times.

Therefore, by Theorem 2.2, d has a strongly linear trend-free version.

Corollary 3.3. In Theorem 3.7, if those 2s + 2t columns, which
contain A1, A2, ..., A2s and B1, B2, ..., B2t, contain at least v − k + 2
symbols, by the similar proof techniques in Theorem 3.5, then the
result is still valid.

Example 3.5. Let d ∈ D(12, 24, 3, 6) and we can write d as
[

1 1 1 1 1 2 2 2 2 9 9 3 3 4 4 5 5 6 6 7 7 2 7 1

2 3 4 5 6 11 12 5 6 10 12 8 6 5 6 4 7 5 8 8 9 9 11 4

3 7 8 9 10 3 4 7 8 11 3 9 11 10 11 10 12 10 12 11 12 10 12 8

]

.

Let C1, C2, ..., C24 be columns of d. We find (i) Those A′

is are C2, C3, C4

and C5; (ii) Those B′

is are C6, C7; (iii) P0 is C1; (iv) n = 2, m = 3
and P1, P2 are C22, C23; P3 is C24. Hence, by Theorem 3.7, a dtf is
obtained and we can write dtf as
[

1 3 4 1 10 11 12 5 6 11 3 8 11 5 6 10 7 10 12 8 9 2 12 8

2 7 1 9 1 2 4 2 2 9 9 3 3 4 4 5 5 6 6 7 7 9 7 4

3 1 8 5 6 3 2 7 8 10 12 9 6 10 11 4 12 5 8 11 12 10 11 1

]

.

Remark 3.1. Theorems 3.4, 3.5, 3.7 and Corollaries 3.2 and 3.3 all
state the designs with various sufficient conditions can be converted
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into linear trend-free block designs. Those results can be applied to
some optimal designs classes, especially to two-associate-class PBIB
designs with λ1 = 0 or λ2 = 0. For examples, (i) Group-divisible
designs with k odd, r even, λ1=0, v = mn and n ≤ k + 2 ; (ii)
Triangular design with k odd, r even, λ2=0, v = n(n−1)/2 and 2n ≤
k + 6, both classes of designs can be proved to have the linear trend-
free version by Theorem 3.6. I believe that a lot of two-associate-
class PBIB designs classes can have the linear trend-free version. The
interested readers can go and check designs from the tables of two-
associate-class PBIB designs by Clatworthy (1973).

4 Concluding remark

Yeh-Bradley conjecture is answered, true or false, on more classes.
But, still a few classes have no answer on it. For examples, two classes,
D(v, b, k, r) with k odd, (r, k) 6= 1 and D(v, b, k, r) with k, r both odd,
do not have the solution in general. For the class D(v, b, k, r) with k
odd, (r, k) 6= 1, my feeling is Yeh-Bradley conjecture might be true
in the class. Since, so far as I know, all the counterexamples for the
Yeh-Bradley conjecture are either the Stufken-type or its related coun-
terexamples and Stufken-type counterexamples must have (r, k)=1.
For the class D(v, b, k, r) with k, r both odd, I think it is not easy
to find a strongly linear trend-free version in the class. Other type
of linear trend-free designs, other than the strongly linear trend-free
designs (ie., sdil = sdi(k−l+1), l = 1, ..., [(k + 1)/2], i = 1, ..., v) should
be characterized and hope to succeed in this class.
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