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Abstract 
 

Outlier detection and robust estimation are the integral part of data mining and has 
attracted much attention recently. Generally, the data contain abnormal or extreme values 
either due to the characteristics of the individual or due to the errors in tabulation, data entry 
etc. The presence of outliers may badly affect the data modeling and analysis.  Analysis of 
semi-parametric regression with design matrix as the parameter component and covariate as 
the nonparametric component is considered in this paper. The regression estimate and the 
cross validation technique can behave very badly in the presence of outliers in the data or 
when the errors are heavy-tailed. The cross-validation technique to estimate the optimum 
smoothing parameter will also be affected badly by the presence of outliers. A robust method, 
which is not influenced by the presence of outliers in the data, is proposed to fit the semi-
parametric regression with design matrix as the parameter component and covariate as the 
nonparametric component. Robust M- kernel weighted local linear regression smoother is 
used to fit the regression function. The cross-validation technique to estimate the optimum 
smoothing parameter will also be affected badly by the presence of outliers. A robust cross-
validation technique is proposed to estimate the smoothing parameter. The proposed method 
is useful to compare the treatments after eliminating the covariate effect. The method is 
illustrated through simulated and field data.  
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___________________________________________________________________________ 
 
1. Introduction 

 
The fundamental objective of statistical data analysis is to obtain data systematically 

and to make inferences or appropriate decisions based on the data. Presence of outliers or 
extreme values in the experimental data is a major concern for data analysis. Outlier is an 
observation that appears to be inconsistent with the remainder of the observations in the data 
set. Agricultural field experimental data may contain abnormal or extreme values due to 
various reasons such as genetical variations (super trees/very low yielders), loss of yield due 
to pest/ disease infestation, errors in tabulation, data entry etc. These extreme values or 
outliers, generally increase the experimental error in data analysis. Detection of outliers and 
the possible remedies are very important in data analysis.  These outliers are nuisance for the 
data analysts.  A robust method is proposed for the analysis of semi-parametric regression 
model in the presence of outliers.   
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2. Model Settings and Estimators 
 

The semi-parametric or the non-parametric covariance model considered for the study 
is of the form 

Y=	Xb+	ϕ(U)+e																																																																		(1) 
 

where, Y is the observation vector, m=Xb	+	ϕ(U), is the regression function, X is the design 
matrix, b is the vector of treatment effect, ϕ(U) is the non-parametric function representing 
the relationship between	Y–Xb and the covariate U which is assumed to be a smooth function 
and e is the error term assumed to be iid with mean vector 0 and covariance matrix I. 
Backfitting algorithm (Buja et al., 1989) is used to estimate the treatment vector and 
covariate effect in the regression model and estimates are given by 
 

𝛃5 = [𝐗8(𝐈 − 𝐒)𝐗]=>𝐗8	(𝐈 − 𝐒)𝐘,   𝛟5 = 𝐒A𝐘 − 𝐗𝛃5B  and   𝐦D = 𝐗𝛃5 +𝛟5  
 

where, S is the smoothing matrix derived using local linear regression (Ruppert and Wand, 
1994).  Let Si be the ith row of the smoother matrix, then  
 

𝐒 = [𝐒> … 	𝐒G]8 
𝐒H8 = 𝐞>8A𝐙KL

8 𝐖KL𝐙KLB
=>
𝐙KL
8 𝐖KL 

 where,                                     
 

𝐙KL = N
1 (𝑢> − 𝑢H)
⋮ ⋮
1 (𝑢Q − 𝑢H)

R,   e1T	=[1	0	0] 

 
and		𝐖KL = 𝑑𝑖𝑎𝑔 X𝐾 ZK[=KL

\
] , . . . , 𝐾 ZK`=KL

\
]afor some kernel functions K and bandwidth h. 

The properties of the estimates are provided by Jose and Ismail (2001) and Rupert and Wand 
(1994). Cross validation (leave-one-out) technique is generally used to estimate the optimum 
bandwidth h. The cross validation score is given by  
 

𝐶𝑉(ℎ) =
1
𝑛f

g𝑦H −𝑚D(=H)\j
k

Q

Hl>

 

 
where, yi, i=1,…,n are the observations and  𝑚D(=H)\ is the leave-one-out estimate (estimated 
value of mi without using the ith observation) with h as bandwidth. The optimum bandwidth is 
the value of h which minimizes the cross validation score CV(h).  The estimate, 𝛃5	is 
asymptotically unbiased and its asymptotic variance is s	2(XT	X)-1 which is same as the fully 
parametric model (Opsomer and Ruppert, 1999).  Cleveland and Devlin (1988) and Hastie 
and Tibshirani (1990) discussed the estimation of error variance in linear regression 
smoothers.  An approximate estimate of the error variance is given by  
 

𝜎pk =
1

[𝑛 − 𝑝 − 2𝑡𝑟𝑎𝑐𝑒(𝐒) + 𝑡𝑟𝑎𝑐𝑒(𝐒8𝐒)]
g𝐘 − 𝐗𝛃5 − 𝛟5j

8g𝐘 − 𝐗𝛃5 −𝛟5j 

 
 
 
 

2s
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The variance of 𝛃5 is estimated by 
 

𝑉	5 A𝛃5B = 𝑑𝑖𝑎𝑔(𝐏𝐏8)𝜎pk 
 
where, P=	 (XT	(I-S)	 X)-1XT	(I-S). The significance of the covariate effect ϕ can be tested 
using the lack of fit statistic or by comparing the mean residual sum of squares (Hart, 1997; 
Jose, et al., 2009). Under the null hypothesis that the covariate effect ϕ(U)= 0,  the mean 
residual sum of squares obtained by fitting the model (1) is given by 
 

𝜎pxk = 𝐘8[𝐈 − 𝐗(𝐗8𝐗)=>𝐗]8[𝐈 − 𝐗(𝐗𝐓𝐗)=>𝐗]𝐘/(𝑛 − 𝑝 − 1) 
 
The lack of fit statistic is given by  

𝑅 =
𝜎pxk

𝜎pk 
 
The statistic R asymptotically follows an F distribution with (n-p-1), [n-p-2trace(S)+ 
trace(STS)] degrees of freedom and it can be used for testing the significance of the covariate 
effect. 
 
3. Analysis of Data in the Presence of Outliers 

 
The regression estimate and the cross validation technique can behave very badly in 

the presence of outliers in the data or when the errors are heavy-tailed (Leung, D., 2005). One 
remedy is to remove the influential observations from the data. Another approach is to use 
robust smoother, which is not as vulnerable as the usual smoothing technique. A robust M-
type estimate 𝑚D  of the regression function can be obtained by minimizing the objective 
function 

 

f𝜌}
𝑦H − 𝑚DH

𝑠 �
Q

Hl>

																																																															(2) 

 
where,  is an even function with bounded first derivative  and a unique minimum at 

zero. The derivative  is called the influence function and  is the 

corresponding weight function. Several M-type estimators have been discussed in literature 
using different types of influence functions (Huber, 1981; Rey, 1983; Hampel et al., 1986; 
Tukey, 1977). Tuckey’s biweight robust function is very popular and it is considered in this 
paper. The r, y and w functions corresponding to the Tuckey’s robust estimator is given by 
 

r(𝑥) 						=

⎩
⎨

⎧𝑐
k

6 }1 − �1 − Z
𝑥
𝑐]

k
��
�

|𝑥| ≤ 𝑐

𝑐k

6
|𝑥| > 𝑐

 

  

y(𝑥) = �		𝑥 }�1 − Z
𝑥
𝑐]

k
��
k

|𝑥| ≤ 𝑐

0 |𝑥| > 𝑐
 

 

(.)r (.)y

dx
xdx )()( ry =

x
xxw )()( y

=
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𝑤(𝑥) = �}�1 − Z
𝑥
𝑐]

k
��
k

|𝑥| ≤ 𝑐

0 |𝑥| > 𝑐
 

 
The turning constant c is picked to give reasonably high efficiency. When the errors 

are normal and x is the standardized residual, then c=4.685 produce 95% efficiency. 
 

 

 

  
Figure 1: r, y and w functions of Tuckey’s biweight robust estimate 

 
Iterated reweighted least squares technique is used to solve the minimization problem 

in eq. (2) to obtain the robust estimate of the regression function.  The estimate of the 
regression function in the kth iteration is given by  

 
𝐦D(�) = 𝐗𝛃5(�) + 𝛟5(�) 

 
𝛃5(�) = g𝐗8A𝐈 − 𝐒(�)B𝐗j

=>
𝐗8A𝐈 − 𝐒(�)B𝒀 

 
𝛟5(𝐤) = 𝐒(�)A𝐘 − 𝐗𝛃5(�)B 

 
where, S(k) is the smoothing matrix in the kth iteration derived using robust local linear 
regression. Let Si(k)be the ith row of the smoothing matrix in the kth iteration, then 
 

𝐒(�) = g𝐒>(�) … 	𝐒Q(�)j
8

 
 

𝐒H(�)8 = 𝒆>8A𝐙KL
8 𝐖KL(�)

∗ 𝐙KLB
=>
𝒁KL
8 𝑾KL(�)

∗  
 

𝐖KL(�)
∗ = 𝑑𝑖𝑎𝑔�𝑤H∗A𝑟>(�=>)B,… ,𝑤H∗A𝑟Q(�=>)B� 

 

𝑤H∗A𝑟�(�=>)B =
𝐾 ZKL=K�

\
]𝑤A𝑟�(�=>)B

∑ 𝐾 ZKL=K�
\
]𝑤A𝑟�(�=>)BQ

�l>

	 , 𝑗 = 1, … , 𝑛 

 
where 𝑤A𝑟�(�=>)Bis the value of the robustness weight function corresponding to yj in the kth 

iteration and 𝑟(�=>)� =
g��=�D�(� [)j

¡(� [)
  is the  standardized residual of the jth datum in the (k-1)th 

iteration with 𝑚D�(�=>) as the estimated value and r(0)i=0 for i=1,…,n. The Median of Absolute 
Deviation from median (MAD) is used for computing a robust estimate for the scale factor s  
and 
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where		𝑒(�=>)H = 𝑦H − 𝑚DH(�=>) 
 
The estimate of the regression function in the kth iteration is written as  
 

𝐦D(�) = 𝐗𝛃5(�) + 𝐒(�)A𝐘 − 𝐗𝛃5(�)B 
 

Iteration is continued till there is no significant improvement in the estimated values 
and the final estimate of the regression function is written as 
 

𝐦D∗ = 𝐗𝛃5∗ + 𝐒∗(𝐘 − 𝐗𝛃5∗) 
𝛃5∗ = [𝐗8(𝐈 − 𝐒∗)𝐗]=>𝐗8	(𝐈 − 𝐒∗)𝐘 

𝑉(𝛃5∗) = 𝑑𝑖𝑎𝑔(𝐏∗𝐏∗8)𝜎p∗¢ 
 
Where S* is the smoothing matrix of the final iteration, 𝐦D∗, 𝛃5∗ and 𝜎p∗ are the final estimates 
of the regression function, treatment vector and scale factor respectively and 

P*=	(XT	(I-S*)	X)-1XT	(I-S*) 
Optimum bandwidth: Let  be the final robustness weight assigned to yi and 𝑚DH(\)#  be the 
estimated value of mi with bandwidth h.  The Mean Squared Error (MSE) of the estimated 
value corresponding to the bandwidth h is given by 
 

𝑀𝑆𝐸(ℎ) =
1
𝑛f

A𝑦H − 𝑚DH(\)# Bk
Q

Hl>

 

 
The cross validation score CV (h) does not work well for the robust smoothers 

because the CV function itself is strongly influenced by the outliers (Wang and Scott, 1994). 
The cross validation score is the sum of squares of the prediction errors of the smoother at 
each of the design points. When there are outliers, the prediction errors corresponding to the 
outliers will be uncharacteristically extreme and these extreme prediction errors will inflate 
the CV(h). Therefore, similar to robust smoothing technique, the influence of extreme 
prediction errors should be minimized.  A robust cross validation score RCV (h) is defined as  
 

𝑅𝐶𝑉(ℎ) =
∑ 𝑤H#A𝑦H − 𝑚D(=H)(\)# BkQ
Hl>

∑ 𝑤H#Q
Hl>

 

 
where, 𝑤H# is the final robustness weight defined earlier, 𝑚D(=H)(\)# is the robust estimate of yi 

with h as bandwidth and without using the ith observation yi. The value of h which minimizes 
the robust cross validation score RCV (h) will be the optimum bandwidth. In the computation 
of RCV(h), the effect of outliers is controlled by taking weighted sum of squares of the 
prediction errors of the smoother at each of the design points with the robustness weight 𝑤H#.  
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4. Simulation Study 
 
A simulation study was conducted to evaluate the performance of the proposed 

method. The semi-parametric regression model considered for the simulation study is given 
by 

Y=	Xb+	ϕ(U)+e																																																																						(3) 
 

where Y is the n x 1 observation vector, m= Xb+	ϕ(U), is the regression function,  X is the 
nxk design matrix, b is the k x 1 treatment effect vector which is taken as bT =[-2 -2 0 4],  
ϕ(u)=1+2sin(πu) and the random error vector e follows N(0,	 I) and uϵ[0,1]. Based on the 
above, 100 sets of data are simulated for different values of n (100, 200, 400) and (1.0, 2.0) 
with 0%, 4% and 8% outliers. To generate data with specific percentage of outliers, the 
required number of random numbers between 0 to n are generated and the value of the 
regression function m corresponding to the data points are replaced with m+6σ. The 
Epanechnikov kernel function K(u)=0.75(1-u2) is employed in  the study. The treatment 
effect vector	𝛃8 = [𝛽>		𝛽k			𝛽�		𝛽ª], the nonparametric function ϕ and the error variance s2 are 
estimated using the method given in Section 2. Tuckey’s biweight function with the turning 
point c=4.685 is used as the robustness function. The Average Mean Squared Errors (AMSE) 
of the estimated values of , b, ϕ and m with the true values of 100 sets of simulated data for 
different values of n (100, 200, 400) and (1.0, 2.0) are given in Table 2.  The AMSE of the 
estimated parameters are calculated as follows: 
 

AMSE of  𝜎p = >
>xx

∑ A𝜎 − 𝜎p(H)B
k>xx

Hl> , 
 

AMSE of  𝛃5 = ∑ >
>xx

∑ A𝛽� − 𝛽«�(H)B
k>xx

Hl>
ª
�l>  

 
AMSE of 𝛟5 = >

>xx
∑ >

Q
∑ g𝜙A𝑢�B − 𝜙­(H)A𝑢�Bj

kQ
�l>

>xx
Hl> , 

 
AMSE of 𝐦D = >

>xx
∑ >

Q
∑ g𝑚 −𝑚D(H)A𝑢�Bj

kQ
�l>

>xx
Hl>  

 
where, 𝜎p(H) , 𝛽«�(H)  ,  𝜙­(H)and 𝑚D(H)are the estimated values of 𝜎	, 𝛽� , ϕ and the regression 
function m corresponding to the ith simulated data set.  The bias of the point estimates of 
𝜎p, 𝛽«�, j=1,…,4 are calculated as follows 
 

Bias of 𝜎p = >
>xx

∑ A𝜎 − 𝜎p(H)B>xx
Hl>  

 
Bias of 𝛽«� =

>
>xx

∑ A𝛽� − 𝛽«�(H)B>xx
Hl>  ,  j = 1,…,4 

 
The AMSE of the estimates are converging to zero as n increases or in other words, 

the estimated values are converging to the true values as n increases. Note that the bias of the 
point estimates 𝜎p, 𝛽«�, j = 1,…,4 are also negligible as n increases (Table 2). This indicates the 
consistency of the estimates. The MSE varies with change in the choice of bandwidths. The 
optimum bandwidth (bandwidth corresponds to the minimum MSE) depends on the curvature 
of the function. The optimum bandwidth for estimating the parameters of the model was 
obtained based on the robust cross validation technique given in Section 2. 
 

2s
s

s
s
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The comparison of Average Mean Squared Errors (AMSE) of the estimated values of 
, b, ϕ and m with the true values of 100 sets of simulated data for different values of n 

(100, 200, 400) and (1.0, 2.0) showed that in the presence of outliers (4% and 8%) the 
robust method performs much better than the non-robust method. In the absence of outliers 
the performance of both the robust and non-robust methods is almost the same. The value of 
AMSE decreases as n increases or in other words the estimates converges to the true value.  

 
5. Application 

 
The proposed method is used to analyze the yield data (both weight of nuts and 

number of nuts) of arecanut recorded in an experiment to evaluate the effects of organic and 
inorganic fertigation in arecanut + cocoa systems conducted at Central Plantation Crops 
Research Institute, Vittal, India. The experiment consists of 6 levels of nutrition (denoted as 
β1, … ,β6) applied randomly to 12 year old arecanut palms to evaluate their effect on the yield 
of arecanut. Treatments were applied to a total of 253 arecanut palms. Pre-treatment yield 
was taken as the covariate to control the error due to palm to palm variation. The yield 
obtained after a gap of two year from the start of the experiment was taken as the response 
variable.  The estimated treatment effects and its standard errors using the linear covariance 
technique, nonparametric covariance technique as well as the robust nonparametric 
covariance technique with pre-treatment yield as covariate for both weight of nuts and 
number of nuts are given in Table 3 and 4 respectively.  Even though, there is not much 
difference in the estimated value of the treatment effects employing different methods, the 
standard error of the estimates are comparatively lower in the case of the proposed robust 
technique.  Since the outliers are present in both the extremes (high and low) and the number 
of observations is also high, the difference in treatment effects estimated using robust and 
other methods are very less. The estimated value of corresponding to the linear, 
nonparametric and robust nonparametric covariance technique for weight of nuts and number 
of nuts are also given in Table 3 and 4 respectively. The standard errors of the estimates and 
the estimated value of are less in the proposed robust method than that of the linear and 
nonparametric covariance technique.  
 
6. Conclusion 

 
Linear covariance technique is generally used for analysing the designed experiments 

having covariates, assuming a linear relationship between response and covariate.   A more 
flexible semi-parametric model is used when the relationship is not linear or unknown. The 
experimental data particularly, those from field experiments generally contains some extreme 
values or outliers due to large plant to plant variations and their presence very badly affect the 
analysis and generate distorted results. In the present study, a robust method is proposed to 
analyse the semi-parametric regression model in the presence of outliers. The proposed 
method is useful when the data contains extreme values or outliers and there is no advance 
information about the relationship between the response variable and covariate.   
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Appendix 
 

Table 1:  Optimum bandwidth ad AMSE of the estimates in the simulation study 
 Outliers 

(%) 
n h AMSE	(	𝛃5)	 AMSE	(	𝛟5)	 AMSE	(𝐦D)	 AMSE	(	𝜎p)	

SP Robust 
SP 

SP Robust 
SP 

SP Robust 
SP 

SP Robust 
SP 

1 0 100 0.30 0.1486 0.1471 0.0796 0.0541 0.0731 0.0664 0.0064 0.0182 
200 0.20 0.0720 0.0740 0.0309 0.0256 0.0398 0.0389 0.0030 0.0078 
400 0.15 0.0315 0.0341 0.0167 0.0148 0.0215 0.0218 0.0011 0.0033 

4 100 0.30 0.3712 0.1741 0.0946 0.0608 0.1835 0.0810 0.3194 0.0143 
200 0.25 0.1656 0.0849 0.0522 0.0308 0.1041 0.0408 0.3089 0.0080 
400 0.15 0.0774 0.0384 0.0459 0.0162 0.0944 0.0241 0.2948 0.0038 

8 100 0.25 0.5138 0.1793 0.2440 0.0594 0.4018 0.0846 0.8825 0.0180 
200 0.25 0.2285 0.0985 0.1704 0.0285 0.2723 0.0439 0.8511 0.0133 
400 0.25 0.1250 0.0548 0.1440 0.0179 0.2222 0.0231 0.8331 0.0121 

2 0 100 0.30 0.5399 0.5672 0.1913 0.1591 0.2631 0.2588 0.0188 0.0644 
200 0.30 0.3009 0.3142 0.1144 0.0887 0.1451 0.1452 0.0101 0.0415 
400 0.25 0.1463 0.1530 0.0543 0.0401 0.0689 0.0674 0.0043 0.0125 

4 100 0.30 1.4690 0.6348 0.3745 0.1797 0.7428 0.2981 1.2803 0.0432 
200 0.30 0.5670 0.2865 0.2134 0.0931 0.3958 0.1386 1.2292 0.0281 
400 0.20 0.3239 0.1418 0.2455 0.0509 0.3576 0.0810 1.1912 0.0224 

8 100 0.30 1.7699 0.6486 1.0668 0.1936 1.6062 0.3138 3.3692 0.0716 
200 0.30 0.9476 0.3266 0.6910 0.0900 1.0818 0.1394 3.3647 0.0584 
400 0.25 0.4338 0.1461 0.7617 0.0442 0.9799 0.0709 3.3693 0.0576 

SP: Semi- parametric 
 

 
 
 

s
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Table 2: Bias of the robust point estimates in the simulation study 
 Outliers 

(%) 
n h Bias of   

𝛽«> 𝛽«k 𝛽«� 𝛽«ª 𝜎p 

1 0 100 0.30 –0.0184 –0.0187 0.0201 0.0169 –0.0610 
200 0.20 –0.0182 –0.0157 0.0155 0.0185 –0.0282 
400 0.15 0.0026 –0.0053 0.0127 –0.0100 –0.0187 

4 100 0.30 –0.0232 0.0100 –0.0010 0.0143 0.0440 
200 0.25 –0.0161 0.0112 –0.0002 0.0051 0.0346 
400 0.15 0.0033 0.0019 –0.0004 –0.0048 0.0294 

8 100 0.30 –0.0002 0.0166 –0.0077 –0.0088 0.0851 
200 0.25 –0.0008 0.0093 –0.0084 0.0000 0.0789 
400 0.20 0.0010 0.0039 –0.0058 0.0010 0.0745 

2 0 100 0.30 –0.0060 –0.0079 0.0055 0.0085 –0.1037 
200 0.25 –0.0090 0.0234 –0.0156 0.0013 –0.0586 
400 0.20 –0.0030 0.0040 –0.0060 0.0051 –0.0398 

4 100 0.30 0.0222 –0.0271 –0.0120 0.0168 –0.0558 
200 0.25 0.0131 –0.0135 –0.0110 0.0114 0.0490 
400 0.20 –0.0060 0.0184 –0.0088 –0.0037 0.0445 

8 100 0.30 –0.0132 0.0294 –0.0131 –0.0031 0.1248 
200 0.30 –0.0143 0.0292 –0.0061 –0.0089 0.1160 
400 0.25 –0.0117 0.0202 –0.0106 0.0020 0.1119 

 
Table 3: Estimated values with standard errors (weight of nuts) of the field data 

Parameter Linear  Semi-parametric Robust Semi-parametric 
Estimate SE Estimate SE Estimate SE 

µ + β1 9.969 0.683 9.924 0.622 9.925 0.548 
µ + β2 9.414 0.683 9.570 0.626 9.573 0.552 
µ + β3 10.029 0.638 9.949 0.594 9.950 0.524 
µ + β4 9.883 0.675 9.994 0.617 9.991 0.543 
µ + β5 9.922 0.691 9.918 0.636 9.916 0.560 
µ + β6 10.767 0.630 10.758 0.587 10.758 0.517 

 4.317  4.312 - 3.803 - 
µ: Overall mean 
 
 
Table 4:  Estimated values with standard errors (number of nuts) of the field data 

Parameter Linear Semi-parametric Robust Semi-parametric 
Estimate SE Estimate SE Estimate SE 

µ + β1 328.80 22.71 331.96 20.71 330.80 16.83 
µ + β2 307.84 22. 70 308.87 20.70 308.85 16.83 
µ + β3 331.13 21.12 334.87 19.62 336.45 15.95 
µ + β4 332.86 22.40 336.57 20.45 337.32 16.63 
µ + β5 324.32 22.91 315.21 21.27 313.69 17.29 
µ + β6 370.57 20.87 374.34 19.35 374.71 15.72 

 143.06  142.96  116.16  
µ: Overall mean 
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