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Abstract 

In this paper we investigate the prediction problem for the monthly rainfall of 
Hillsborough County at United States of Florida by Markov chain model. We have used the 
monthly rainfall data from January 1915 to June 2016. Then the data is divided in 11 states 
and hence, 11 x 11 transition probability matrix (TPM) is prepared. The truncated Frechet 
distribution is used for the data in each state. To estimate the parameter of the distribution, 
method of moment and Bayes estimation are used. Using the estimate of the parameter in 11 
states prediction method is developed based on Markov chain approach. To validate the 
proposed method, we have simulated the monthly rainfall for the same period of the original 
data and the results are compared. The simulated results come out almost similar to the 
original data. To predict monthly rainfall for future 5000 and 10,000 months a simulation 
study is also carried out and the results are shown. 
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1. Introduction 
 

There will be a high impact of advancement in human necessity on natural events such 
as rainfall, temperature, precipitation, wind flow et cetera. Since decades there was a very 
complex pattern observed in climate change which was difficult to predict the parameters by 
the meteorologists or the hydrologists. There is still an intense scope of research is available 
in hydrology and meteorology. The hydrological data mainly consists of water and its 
application such as precipitation, rainfall, humidity level and water storage level of the dam. 
A rainfall is the one of the natural sources for getting water for drinking, agriculture and 
industrial use purpose. 

The analyses of hydrological and meteorological data have a great importance amongst 
the scientists and researchers. Researchers must ensure the collection of hydrological data 
should be efficient and effective which meet the requirements (Stewart, 2015). A data from 
hydrological networks is used by public and private sectors for variety of applications like 
designing, operating and maintaining the multipurpose water management systems (USGS, 
2006). Three essential elements of life are fresh water, food and house. The data related to 
rainfall, precipitation, temperature, humidity, wind speed is essential for the planning of any 
hydrological event. Analysis of rainfall data found useful in cropping pattern, providing 
drinking water and construction of roads, dams, bridges and culverts. Such analysis will 
provide useful information to farmers, water resources planner and engineers to assess the 
availability and requirement of storage of water.  
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There are multiple research studies have been done on rainfall data and its analysis. The 
analysis of dry and wet spells received a special attention of many scientists, which is another 
aspect of the rainfall analysis. Singh and Ranade (2009) analyzed wet and dry spells and their 
extremes across India. Harsha (2017) describes the analysis of rainfall data in Mangalore. 
The classical procedure is being used for the analysis of rainfall data. To test the random 
fluctuations and the presence of climate changes in the yearly rainfall data run test and 
Kolmogorov-Smirnov two sample tests are used. G. Di Baldassarre et al. (2006) have used 
the generalized extreme value distribution to analyze rainfall extremes of northern central 
Italy based on L-moments and investigate its statistical properties. Nyatuame et al. (2014) 
have performed the statistical analysis for the monthly and yearly rainfall data of Volta 
region, Ghana using Latin squared design and analysis of variance. For trend analysis of 
rainfall data the linear regression model is used. Arvind et al. (2017) has performed statistical 
analysis for a rain gauge station in Trichy district. They studied various statistical 
distributions to analyze the rainfall data.  

Not significant work has been done for the statistical analysis using stochastic process 
Markov chain modeling under various types of distribution, which motivate us to consider 
this kind of research. 

We have used monthly rainfall data of Hillsborough County (latitude 27°54'36.00" N 
and longitude -82°20'60.00" W) at United States of Florida is considered for the period of 
January 1915 to June 2016. The data is taken from the pertinent website: 
https://www.swfwmd.state.fl.us/resources/data-maps/rainfall-summary-data-region.  A 
separate spread sheet is available for the monthly rainfall data. Then the monthly rainfall data 
of Hillsborough County was concatenated for the period of January 1915 to June 2016 from 
that web page. 

In hydrological research studies multiple statistical approaches have been applied for 
the estimation. The objective of this study is to develop a statistical model based on Markov 
chain to estimate and predict the month wise rainfall of the mentioned time period. The span 
of the rainfall data used is 0.00 to 19.06 mm. To consider the analysis based on the Markov 
chain we have bifurcated the data into some small numbers of intervals which we called the 
states of the Markov chain. 11 states are prepared from the data and which are shown in 
Table A.1. 

In Section 3, a transition probability matrix for a Markov chain model is prepared. The 
truncated Frechet distribution is considered for the rainfall of each states and the estimate of 
the parameter of the distribution is obtained using the method of moments in Section 4. In 
Section 5 we have used a Bayesian approach to estimate the parameter of the distribution. A 
simulation study is considered in Section 6. A detailed algorithm is prepared for estimation 
and prediction of present and future rainfall data. Discussion about the estimated results is 
provided in Section 7. The conclusion is presented in the Section 8. 

2. Model Creation 
 

The rainfall of the Hillsborough lies between 0.00 mm to 19.06 mm from the period of 
January 1915 to June 2016 is taken. For the Markov chain model the determination of states 
is the first aspect. The states should non-overlapping subsets of entire data. Based on the 
range of our data we have constructed 11 subsets such that each subset possesses sufficient 
numbers of observations. Looking at the data we have considered the subsets having different 
length. These subsets we considered as states of our Markov chain model, which are 
displayed in Table A.1. 
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3. Markov Chain Model 
 

A discrete parameter Markov process is known as a Markov chain. Here time space is 
considered as discrete. The Markov chain models are much valuable mechanism in stochastic 
process, which also indicates that when present value is known then the historical and future 
values are independent. Sericola (2013) mentioned that the present state of the procedure is 
known then the best future prediction can be made using very less parameters of Markov 
chain model. 

 
Mahanta et al. (2019) applied Markov chain model for the daily temperature data of 

Dhaka and Chittagong stations of Bangladesh. The Markov chain model have been used as a 
process to search its reliability and obtain failure free operational process for long term period 
can be established specifically for sugar mills by Sharma and Vishwakarma (2014). Zakaria 
et al. (2019) have used the Markov chain model based on the initial state as well as transition 
from one state to another state for the forecasting pattern of the air pollution index of Miri, 
Sarawak. 
 

Jain (1986) have also implemented the Markov model for the seasonal variation in 
patients who are suffering from asthma. Zhou et al. (2018) proposed a Markov chain model 
which provides prediction of daily bike production and attraction of stations with better 
predictive accuracy based on the daily data collected from Zhongshan city. Al-Anzi and 
AbuZeina (2016) have provided the hidden Markov Models (HMM) can be used for the 
natural language processing (NLP) applications. Patel and Patel (2020a, 2020b, 2021) have 
considered a first order Markov chain model for the prediction of daily high temperature and 
daily low temperature. 

 
In this study, the 101 years of monthly rainfall of the Hillsborough County is being 

considered in millimeter (mm). A data of 1218 (=N) observations is taken for the creation of 
Markov chain model.  

 
Let Zt, t = 1, 2, ..., N be the rainfall for the month t, and the states are U1, U2, U3 ... U11.  

 
If P[Zt+1 = Uj | Z1 = U1, ..., Zt-1 = Ut-1, Zt = Ui] = P[Zt+1 = Uj | Zt = Ui], then such model 

is called first order Markov chain model with 11 states. Here, P[Zt+1 = Uj | Zt = Ui] is 
independent of time t. This transition probability is denoted by pij, i,j = 1, 2, ... ,11, which 
denotes the probability that the monthly rainfall is on any month will belong to state Uj, given 
that it was in the state Ui a month before. Thus, 11 × 11 TPM, M = [mij] is prepared.  

 
The transition frequency from state Ui to Uj denotes the total number of months having 

rainfall in state Uj from the rainfall of earlier month in state Ui. Such transition frequencies 
are calculated for each state and hence, transition frequency matrix is prepared which is 
shown in Table A.2. 

 
Using the transition frequency matrix a transitional probability matrix (TPM) is 

obtained, dividing by row total of each row to its cell values. Then the value of (i, j)th cell is 
called transition probability of jth state from ith state. The TPM is given in Table A.3. The 
cumulative TPM is provided in Table A.4. 
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4. Truncated Frechet Distribution for Monthly Rainfall  
 

Very limited research work has been done about the analysis of the hydrological data 
using Markov chain approach along with statistical distribution. Various types of statistical 
distributions like exponential distribution, Weibull distribution, Gamma distribution, extreme 
value distribution, Frechet distribution are used to analyze the data related to meteorological 
data like temperature, as well as hydrological data like rainfall, wind flow, water storage 
capacity and precipitation. Patel and Patel (2020 a, 2020 b, 2021) have considered the 
truncated exponential distribution and generalized exponential distribution for the analysis of 
the data related to daily low and high temperature of the Ahmedabad, Gujarat, India. 

 
In this paper we have considered Truncated Frechet distribution to analyze the monthly 

rainfall data the Hillsborough County. Frechet distribution is named after a French 
mathematician Maurice Rene Frechet, who developed it in 1920 as a maximum value 
distribution. Frechet distribution is a special case of generalized extreme value distribution 
which is also named as extreme value type II distribution. This distribution is also referred as 
inverse Weibull distribution. Kotz and Nadarajah (2000) describe this distribution and 
discussed its various application in different fields such as rainfall, wind speeds, track race 
records, natural calamities and so on. Ramos et al. (2017) have presented the parameter 
estimation for the Frechet distribution in the presence of cure fraction.  

 
Recently Ramos et al. (2020) have considered various methods of classical and 

Bayesian estimation of the parameters of the Frechet distribution. They have described the 
application of this distribution for five real data sets related to the minimum flow of water on 
Piracicaba river in Brazil. 
 
The probability density function (pdf) of Frechet distribution: 

g (x, ∝) =	∝
"
(#
$
)%&%∝𝑒%(

!
")
#∝

; ∝> 0; 𝜎> 0; x > 0.     (1) 
 

We have used truncated Frechet distribution to analyze the monthly rainfall data considering 
𝜎=1 in equation (1). 

g (x, ∝) =∝ 𝑥%&%∝𝑒%##∝; ∝> 0; 𝜎> 0; x > 0.               (2) 
 

From equation (1) the pdf of truncated Frechet distribution whose range lies between a and b 
is obtained by:  
   g	(x,	∝)	= )	(+,			∝)

-(.,			∝)%	-	(/,			∝)
	,	0	<a	<	x	<	b, x > 0; ∝> 0.             (3) 

 
where 𝐹	(𝑥, ∝) = 𝑒%##∝ can be represented as and the equation (3) can be re-written as 
 

   g	(x	|a	<	x	<	b)	=∝	##%#∝0#!
#∝

0#&#∝%	0#'#∝
	,a	<	x	<	b, x > 0.   (4) 

 
The cumulative distribution function for Frechet distribution is represented as follows: 
 

   G	(x	|a	<	x	<	b)	=0#!
#∝
%	1	(/)

1	(.)	%	1	(/)
	,	a	<	x	<	b    (5) 
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Mean of the truncated Frechet distribution is given by  

    E(X)	=	
2(&%	%∝)

0#&#∝%	0#'#∝
      (6) 

 
The value of ∝j is estimated by using the method of moment by equating the observed 

mean with the mean of the truncated Frechet distribution of the jth state, for j = 1, 2, ... , 11. 
The moment estimates of the parameters of 11 states are shown in Table A.5.  For fitting of 
the truncated Frechet distribution in each state, the chi-square test of goodness of fit is 
performed and found that the p-values for each state appeared as > 0.05.  The graph of state 
wise observed and expected frequencies is given below. Based on the Figure B.1 we also 
confirm that the Frechet distribution works well for the monthly rainfall data of each state. 

 
5. Bayes Estimation 
 

The Bayesian method has been applied to assess the parameters of a hydrological 
model. The Bayesian method also provides an estimate of uncertainty of model parameters by 
using prior probability distribution of the parameters. Rainfall data contains significant 
uncertainty, the Bayesian method has been used by several researchers to consolidate rainfall 
uncertainty in model calibration (Sun et al. (2017)). Engeland and Gottschalk (2002) have 
used Bayesian approach for estimation of parameters in a regional hydrological model for 
NOPEX area in southern Sweden. Badjana et al. (2017) have used Bayesian approach to 
investigate the long term trend in annual rainfall, annual rainfall duration and annual 
maximum rainfall for seven stations at Kara river basin, West Africa. The trend analysis was 
performed by fitting the Log normal, Normal and Generalised extreme value distribution to 
the annual rainfall data. 

 
The similar type of research work around Bayesian analysis and statistical modeling 

can be found in, for example, Fortin et al. (1997), P.H.A.J.M Van Gelder (1996) and 
Noortwijk et al. (1998).  Morita (1993) has applied the Bayesian estimates as the 
symptomatic tool for the clinical practice. Various priors of the Bayes estimators based on the 
power law distribution, of the double Gamma-Exponential distribution has the minimum 
posterior standard error as well as minimum Akaike's Information Criteria (AIC) and 
Bayesian Information Criteria (BIC) by Sultan et al. (2014). 
 

Verma et al. (2019) has proved that Bayesian technique is quite helpful if any prior data 
information is available, which reduces the variability for making the effective clinically 
meaningful decisions.  
 

In this section Bayes estimates of the parameters of truncated Frechet distribution under 
squared error loss function are derived for 11 states. The prior distribution for the jth state is 
considered as exponential distribution with mean 𝜃j having pdf  
 

𝜋3(∝j)=	
&
4(
𝑒	
#	∝(
*( ;	αj>	0,	θj>	0, j = 1,2, … ,12.     (7) 

 
That is ∝j ~ Exp (mean 𝜃3), j = 1,2, … ,12.                (8) 
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The likelihood function based on the observations 𝑥&3, 𝑥53, … 𝑥6(	( of the jth state is given by 
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Using likelihood function and prior distribution, the posterior distribution of θj for jth state is 
obtained as: 
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Under squared error loss function the Bayes estimator of θj is nothing but mean of its 
posterior distribution.  
 
That is, ∝:@;/<0=
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is a function of 𝑥, independent of ∝j.  
 

Here Bayes estimate cannot be simplified and obtained in a closed form. So, we use the 
important sampling method, proposed by Kundu et al. (2009).  
We rewrite the posterior distribution of ∝j as  
 

h	(∝:@;/<0=
|	𝑥)	=	Gamma	(nj	+	2,	∑ 𝑙𝑜𝑔 𝑥37 +	
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#∝(
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                                                              (15) 

 
Using important sampling the Bayes estimates of the ∝j can be obtained by following 
algorithm: 
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Step 1: Generate ∝j from Gamma (nj + 2, ∑ 𝑙𝑜𝑔 𝑥37 +	
&
A(

6(
78& ) distribution. 

Step 2: Repeat the above steps S=1000 times to generate (∝j1, ∝j2, … ∝jS). 
Step 3: Compute the S values of 𝜔S𝛼3T using the values of ∝j in Step 2. 
Step 4: The Bayes estimate of parameter ∝j is given by 
 

                                 ∝:@;/<0=
 = 

∑ ∝(+
5
+-% ∗	DEF(+G
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The values of the Bayes estimates of the parameters obtained for all the states are given in 
Table A.6. 
 
6. Simulation and Prediction 
 

In this section we check the performance of the proposed methods of prediction. We 
consider a simulation to check whether the simulated results are approximately accurate to 
the original data or not. To estimate the monthly rainfall, the moment estimates and Bayes 
estimates of the parameters of the 11 states are used. 
 
6.1. Simulation algorithm 
 

The simulations algorithm steps are mentioned below: 
1. Let us consider the initial state as the state observed for the first value of the rainfall data. 

say j (j = 1, 2, 3, … 11). Generate the uniform random number from uniform distribution 
U (0, 1), say rnx. 

2. To decide the next state, say l, the random value (rnx) is compared with the cumulative 
transition probabilities of the state j, till the random value (rnx) outstrip the cumulative 
transition probability of the state. 

3. Let us consider the relevant values of a parameter for l-th state from Table A.6. 
4. Insert the value of a parameter in the cumulative distribution function of truncated 

Frechet distribution. 

F(x	|	aj<	x	<bj)	=	
∝(#

#%#∝(0#!
#∝(

0#&
#∝(%	0#'

#∝( ,	j	=	1,2,	…	,	11.                         (16) 

Here (aj, bj) are the lower and upper limits of the jth state respectively. Replace F(x	|	aj<	x	
<bj)	by	the random number between 0 to 1 in Equation (16). 
5. Solving the Equation (16) we get the estimate of rainfall for next month.  
6. Continue the step 1 to step 6 by considering initial state j=l till we have 1218 estimated 

rainfall values.  
 

In similar manner,  prediction for future monthly rainfall is being done using the above 
steps considering the initial state j as the state of the last rainfall value of the data. The 
simulation is continuing for next 5000 and 10,000 months.  The estimation is carried out for 
the monthly rainfall of the Hillsborough County of the same period from January 1915 to 
June 2016 under the proposed methods. The average rainfall obtained from both the methods 
reflect almost close to each other. 
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The simulated results obtained from moment estimates and Bayes estimates, the 
descriptive statistics (minimum, maximum, average and standard deviation) are presented in 
Table A.7.  A comparison of state wise frequencies obtained through the proposed methods is 
made with frequencies obtained based on the actual data. The results are shown in the Table 
A.8 and Table A.9. The prediction is being carried out for the future months. Using 101 years 
of monthly rainfall data of Hillsborough County the next 5000 and 10,000 months of rainfall 
can be predicted through method of moments and Bayes estimation. 
 

A prediction is being made for number of months and percentage for the rainfall, higher 
than 0.50mm, 2.00mm, 4.00mm, 7.00mm,  9.00mm and 11.00mm as well as the numbers of 
months having rainfall below 0.50mm, 2.00mm, 4.00mm, 7.00mm,  9.00mm and 11.00mm of 
Hillsborough County (refer Table A.10 and Table A.11). 
 
7. Results and Discussion 
 

The state wise frequency obtain from the method of moments (MOM) and Bayes 
estimation are almost near to the actual data. Prediction made by method of moments is 
almost similar to the results obtained under the Bayes estimation. The prediction done under 
the proposed methods are near to actual value which reveals that the prediction based on 
truncated Frechet distribution under the Markov model is appropriate. 
 

Based on Table A.8, The state wise frequency and percentage results achieved thorough 
both these methods are completely identical to each other. The outcome obtained through 
method of moments and Bayes estimation for most of the states are very much similar in 
frequency and percentage values of the observed data.  

The Table A.10 and Table A.11 exhibits that there are approximately 95% chances of 
having < 11.00mm rainfall during the next 5,000 and 10,000 months. In a similar way there 
are only around 5% probability of having > 11.00mm rainfall during the next 5,000 and 
10,000 days. 
 
8. Conclusion 
 

In this paper we have analysed monthly rainfall data of Hillsborough County at United 
states of Florida. The overall data is divided into 11 states. We have applied the truncated 
Frechet distribution for the monthly rainfall data for each state. Two types of approaches 
have been jointly used viz: 1. Markov chain model and 2. Distribution theory approach. To 
estimate the parameters of the distribution we have used method of moments and method of 
Bayes estimation. In case of the Bayes estimation important sampling is used to estimate the 
parameters. Simulation study is considered to judge the performance of the proposed methods 
and for prediction of future monthly rainfall. The models work good for estimation and 
prediction of the monthly rainfall. This work may be useful to water resource management to 
take precautionary steps in advance on the basis of future predictions. 
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Appendix A 

Table A.1: States for rainfall of Hillsborough 
 

States Rainfall 
1  0.00--0.50 
2 0.51--1.00 
3 1.01--1.50 
4 1.51--2.00 
5 2.01--3.00 
6 3.01--4.00 
7 4.01--5.50 
8 5.51--7.00 
9 7.01--9.00 
10 9.01--11.00 
11 11.01--19.06 

 
Table A.2: Transition frequency matrix for rainfall of Hillsborough 
 

i       j 
Transition frequency Row 

Total 1 2 3 4 5 6 7 8 9 10 11 
1 10 9 13 5 14 13 6 5 4 0 0 79 
2 11 9 14 6 12 14 7 9 7 2 2 93 
3 8 16 12 19 14 13 10 5 3 0 1 101 
4 8 13 7 15 19 12 14 7 6 2 0 103 
5 15 17 14 13 30 23 19 11 9 6 5 162 
6 8 12 11 13 18 16 18 19 6 7 5 133 
7 7 9 10 17 16 13 17 17 21 8 8 143 
8 7 4 6 4 16 13 23 21 21 13 10 138 
9 2 2 9 7 12 9 12 22 32 21 7 135 
10 0 0 1 1 8 8 10 10 18 18 9 83 
11 3 9 4 2 3 2 6 5 8 5 6 53 

 

Table A.3: Transition probability matrix (TPM) for rainfall of Hillsborough 

i × j 
Transition probability 

1 2 3 4 5 6 7 8 9 10 11 
1 0.1266 0.1139 0.1646 0.0633 0.1772 0.1646 0.0759 0.0633 0.0506 0.0000 0.0000 
2     0.1183 0.0968 0.1505 0.0645 0.1290 0.1505 0.0753 0.0968 0.0753 0.0215 0.0215 
3 0.0792 0.1584 0.1188 0.1881 0.1386 0.1287 0.0990 0.0495 0.0297 0.0000 0.0099 
4 0.0777 0.1262 0.0680 0.1456 0.1845 0.1165 0.1359 0.0680 0.0583 0.0194 0.0000 
5 0.0926 0.1049 0.0864 0.0802 0.1852 0.1420 0.1173 0.0679 0.0556 0.0370 0.0309 
6 0.0602 0.0902 0.0827 0.0977 0.1353 0.1203 0.1353 0.1429 0.0451 0.0526 0.0376 
7 0.0490 0.0629 0.0699 0.1189 0.1119 0.0909 0.1189 0.1189 0.1469 0.0559 0.0559 
8 0.0507 0.0290 0.0435 0.0290 0.1159 0.0942 0.1667 0.1522 0.1522 0.0942 0.0725 
9 0.0148 0.0148 0.0667 0.0519 0.0889 0.0667 0.0889 0.1630 0.2370 0.1556 0.0519 

10 0.0000 0.0000 0.0120 0.0120 0.0964 0.0964 0.1205 0.1205 0.2169 0.2169 0.1084 
11 0.0566 0.1698 0.0755 0.0377 0.0566 0.0377 0.1132 0.0943 0.1509 0.0943 0.1132 
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Table A.4: Transition cumulative probability matrix for rainfall of Hillsborough 
 

i × j 
Transition cumulative probability 

1 2 3 4 5 6 7 8 9 10 11 
1 0.1266 0.2405 0.4051 0.4684 0.6456 0.8101 0.8861 0.9494 1.0000 1.0000 1.0000 
2 0.1183 0.2151 0.3656 0.4301 0.5591 0.7097 0.7849 0.8817 0.9570 0.9785 1.0000 
3 0.0792 0.2376 0.3564 0.5446 0.6832 0.8119 0.9109 0.9604 0.9901 0.9901 1.0000 
4 0.0777 0.2039 0.2718 0.4175 0.6019 0.7184 0.8544 0.9223 0.9806 1.0000 1.0000 
5 0.0926 0.1975 0.2840 0.3642 0.5494 0.6914 0.8086 0.8765 0.9321 0.9691 1.0000 
6 0.0602 0.1504 0.2331 0.3308 0.4662 0.5865 0.7218 0.8647 0.9098 0.9624 1.0000 
7 0.0490 0.1119 0.1818 0.3007 0.4126 0.5035 0.6224 0.7413 0.8881 0.9441 1.0000 
8 0.0507 0.0797 0.1232 0.1522 0.2681 0.3623 0.5290 0.6812 0.8333 0.9275 1.0000 
9 0.0148 0.0296 0.0963 0.1481 0.2370 0.3037 0.3926 0.5556 0.7926 0.9481 1.0000 

10 0.0000 0.0000 0.0120 0.0241 0.1205 0.2169 0.3373 0.4578 0.6747 0.8916 1.0000 
11 0.0566 0.2264 0.3019 0.3396 0.3962 0.4340 0.5472 0.6415 0.7925 0.8868 1.0000 

 

Table A.5: Moment estimates of ∝j for each state 

State 
Moment 

Estimates (∝W) 
1 1.00024008 
2 1.00486095 
3 1.00532035 
4 1.00425636 
5 1.01327133 
6 1.00793604 
7 1.01226263 
8 1.00726517 
9 1.00860501 
10 1.00545760 
11 1.04569409 

 

Table A.6: Bayes estimates of ∝j for each state 

State Bayes Estimates (∝W) 
1 1.001338 
2 1.005927 
3 1.006125 
4 1.002706 
5 1.053751 
6 1.009213 
7 1.049640 
8 1.008237 
9 1.010347 
10 1.006579 
11 1.073141 
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Table A.7: Descriptive statistics for observed and simulated results 

Statistics 
Observed Simulations using Moment 

estimates 
Simulations using Bayes 

estimates 

N=1218 N=121
8 N=5000 N=10,000 N=1218 N=5000 N=10,000 

Minimum 
rainfall (mm) 0.00 0.11 0.09 0.09 0.11 0.09 0.09 

Maximum 
rainfall (mm) 19.06 19.05 19.06 19.06 19.05 19.06 19.06 

Average 
rainfall (mm) 4.38 4.60 4.70 4.63 4.60 4.70 4.63 

Standard 
deviation of 
rainfall (mm) 

3.39 4.27 4.40 4.27 4.27 4.40 4.27 

 

Table A.8: Observed and estimated frequencies based on method of moments and Bayes 
estimates 

Sr. No. State Actual data Method of Moments 
N=1218 N=1218 N=5000 N=10,000 

1  0.0-0.5 79 (6.49%) 81 (6.65%) 355 (7.10%) 676 (6.76%) 
2 0.51-1.0 93 (7.64%) 102 (8.37%) 405 (8.10%) 824 (8.24%) 
3 1.01-1.50 101 (8.29%) 94 (7.72%) 414 (8.28%) 815 (8.15%) 
4 1.51-2.0 103 (8.46%) 105 (8.62%) 418 (8.36%) 840 (8.40%) 
5 2.01-3.00 162 (13.30%) 168 (13.79%) 662 (13.24%) 1350 (13.50%) 
6 3.01-4.00 133 (10.92%) 155 (12.73%) 563 (11.26%) 1172 (11.72%) 
7 4.01-5.50 143 (11.74%) 141 (11.58%) 593 (11.86%) 1164 (11.64%) 
8 5.51-7.00 138 (11.33%) 117 (9.61%) 509 (10.18%) 1041 (10.41%) 
9 7.01-9.00 135 (11.08%) 123 (10.10%) 526 (10.52%) 1052 (10.52%) 
10 9.01-11.00 78 (6.40%) 78 (6.40%) 302 (6.04%) 619 (6.19%) 
11 11.01-19.06 53 (4.35%) 54 (4.43%) 253 (5.06%) 447 (4.47%) 

 

Table A.9: Observed and estimated frequencies based on Bayes estimates 

Sr. No. State Actual data Bayes 
N=1218 N=1218 N=5000 N=10,000 

1  0.00-0.50 79 (6.49%) 81 (6.65%) 355 (7.10%) 676 (6.76%) 
2 0.51-1.00 93 (7.64%) 102 (8.37%) 405 (8.10%) 824 (8.24%) 
3 1.01-1.50 101 (8.29%) 94 (7.72%) 414 (8.28%) 815 (8.15%) 
4 1.51-2.00 103 (8.46%) 105 (8.62%) 418 (8.36%) 840 (8.40%) 
5 2.01-3.00 162 (13.30%) 168 (13.79%) 662 (13.24%) 1350 (13.50%) 
6 3.01-4.00 133 (10.92%) 155 (12.73%) 563 (11.26%) 1172 (11.72%) 
7 4.01-5.50 143 (11.74%) 141 (11.58%) 593 (11.86%) 1164 (11.64%) 
8 5.51-7.00 138 (11.33%) 117 (9.61%) 509 (10.18%) 1041 (10.41%) 
9 7.01-9.00 135 (11.08%) 123 (10.10%) 526 (10.52%) 1052 (10.52%) 
10 9.01-11.00 78 (6.40%) 78 (6.40%) 302 (6.04%) 619 (6.19%) 
11 11.01-19.06 53 (4.35%) 54 (4.43%) 253 (5.06%) 447 (4.47%) 
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Table A.10: Frequency of simulated observations with different ranges based on method 
of moments 

Sr. No. Rainfall (mm) Method of Moments 
N=1218 N=5000 N=10,000 

1 <0.50 81 (6.65%) 355 (7.10%) 676 (6.76%) 
2 <2.00 382 (31.36%) 1592 (31.84%) 3155 (31.55%) 
3 <4.00 705 (57.88%) 2817 (56.34%) 5677 (56.77%) 
4 <7.00 963 (79.06%) 3919 (78.38%) 7882 (78.82%) 
5 <9.00 1086 (89.16%) 4445 (88.90%) 8934 (89.34%) 
6 <11.00 1164 (95.57%) 4747 (94.94%) 9553 (95.53%) 
7 >0.50 1137 (93.35%) 4645 (92.90%) 9324 (93.24%) 
8 >2.00 836 (68.64%) 3408 (68.16%) 6845 (68.45%) 
9 >4.00 513 (42.12%) 2183 (43.66%) 4323 (43.23%) 
10 >7.00 255 (20.94%) 1081 (21.62%) 2118 (21.18%) 
11 >9.00 132 (10.84%) 555 (11.10%) 1066 (10.66%) 
12 >11.00 54 (4.43%) 253 (5.06%) 447 (4.47%) 

 

Table A.11: Frequency of simulated observations with different ranges based on Bayes 
estimates 

Sr. No. Rainfall (mm) Bayes estimates 
N=1218 N=5000 N=10,000 

1 <0.50 81 (6.65%) 355 (7.10%) 676 (6.76%) 
2 <2.00 382 (31.36%) 1592 (31.84%) 3155 (31.55%) 
3 <4.00 705 (57.88%) 2817 (56.34%) 5677 (56.77%) 
4 <7.00 963 (79.06%) 3919 (78.38%) 7882 (78.82%) 
5 <9.00 1086 (89.16%) 4445 (88.90%) 8934 (89.34%) 
6 <11.00 1164 (95.57%) 4747 (94.94%) 9553 (95.53%) 
7 >0.50 1137 (93.35%) 4645 (92.90%) 9324 (93.24%) 
8 >2.00 836 (68.64%) 3408 (68.16%) 6845 (68.45%) 
9 >4.00 513 (42.12%) 2183 (43.66%) 4323 (43.23%) 
10 >7.00 255 (20.94%) 1081 (21.62%) 2118 (21.18%) 
11 >9.00 132 (10.84%) 555 (11.10%) 1066 (10.66%) 
12 >11.00 54 (4.43%) 253 (5.06%) 447 (4.47%) 
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Appendix B 

Table B.1: State wise observed and expected frequency of monthly rainfall data of 
Hillsborough County 
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