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Abstract 

 

Among various classical estimations procedures, a relatively better estimation is 

provided by Consistent Asymptotic Estimators (CAN) method. The method of CAN provides 

estimators for parametric functions of regular and non-regular or degenerate families of 

distributions. In this article, we present CAN estimators for parametric functions of inlier-

prone (a case of degenerate) distribution models. The estimates are also compared 

numerically. 
 

Key words: Consistency; Degenerate family of distributions; Inlier-prone models; Minimum 

variance unbiased estimators.   
 

1.  Introduction 

In statistical estimation theory, one starts with the data (𝑥1, 𝑥2, … , 𝑥𝑛) of a random 

variable X, which are assumed to be independent and identically distributed with a common 

probability distribution f(x, θ) characterized by an unknown population parameter θ ∈ Ω, 
where θ can be real-valued scalar or vector. The objective is to propose a best inference for θ 

or ψ(θ) which satisfies good statistical properties. If the probability model is uniquely 

defined, one can suggest suitable estimators for the parameter or parametric functions 

explicitly. Let T = T(𝑥1, 𝑥2, … , 𝑥𝑛) be an estimator of θ based on the observed sample values 

(𝑥1, 𝑥2, … , 𝑥𝑛). By using the techniques of transformation or form the basic principles of 

distribution theory, one could, at least theoretically, obtain the sampling distribution of the 

estimator T and thus begin the inference of the population parameter θ.  

 

 There are many criteria and procedures available for deciding the best estimator for θ 

or ψ(θ) in Statistics literature. The best estimator in a statistical sense is decided based on a 

comparison of the variance or mean square error (MSE) of the estimator of one method over 

the other. For this we assume that T, a real-valued statistic, is to be used as an estimator of 

real parameter θ based on a random sample of size n from {f(x, θ), θ ∈ Ω}, Ω ⊂ 𝑅1. One of 

the criteria based on a large sample size is the consistency of an estimator. 

 

Definition 1: An estimator 𝑇𝑛 is said to be consistent for θ if 𝑇𝑛 → 𝜃 for each θ ∈ Ω in 

probability and the convergence in probability is taken under the distribution indexed by 𝜃.  
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 A very important property of a consistent estimator is the invariance under continuous 

transformation, a property not enjoyed by an unbiased estimator. Thus, if ψ(θ) is a continuous 

function and if T is consistent for θ, then the invariance property says that ψ(T) is consistent 

for ψ(θ). Because of the invariance property of consistent estimators, for all practical 

purposes one need to consider consistent estimators of θ only for further study of the 

estimators. The invariance property can be extended to the case of vector valued T and θ as 

follows: 

 

Definition 2: Let T be jointly consistent for θ and let ψ be k-dimensional continuous 

functions from Ω to 𝑅𝑘 , then ψ(T) is jointly consistent for ψ(𝜃)  (Kale and Muralidharan, 

2015). 

 

 To choose between consistent estimators one can compare the MSE’s of the 

estimators, where MSE is defined as 𝑀𝑆𝐸(𝜃) =  𝐸𝜃(𝜃 − 𝜃)
2
 = 𝑉𝑎𝑟(𝜃) + 𝐵𝑖𝑎𝑠(𝜃, 𝜃)2, 

where 𝜃=T(x)  is the unbiased estimate of 𝜃. For instance, if 𝑇1 and 𝑇2 are both consistent for 

θ then we would prefer 𝑇1 to 𝑇2 if MSE(𝑇1) ≤ 𝑀𝑆𝐸(𝑇2), ∀𝜃𝜖Ω. This comparison generally 

results into the comparison of the sample sizes of the two estimators. Thus, if 𝑇1 is preferred 

over 𝑇2 then by Tchebychev inequality it follows that 𝑃[|𝑇1 − 𝜃| < 𝜖] converges to unity 

faster than 𝑃[|𝑇2 − 𝜃| < 𝜀] → 1 as 𝑛 → ∞,∀𝜃𝜖Ω and 𝜀 > 0. For large n, it is easy to show 

that 𝑎𝑛(𝑇 −  𝜃) → 𝑁(0, 𝜎𝑇
2(𝜃) or 𝑇~𝐴𝑁 (0,

𝜎𝑇
2(𝜃)

𝑎𝑛
2 ), where 𝑎𝑛 is the blow-up factor (Kale and 

Muralidharnan, 2015). Such an estimator is called Consistent Asymptotic Normal or CAN 

estimator. As discussed above, if ψ(θ) is a continues differentiable function then according to 

invariance property of consistent estimators the CAN estimator for ψ(θ) is defined as follows: 

 

Definition 3:  Let T be CAN  for θ so that 𝑇~𝐴𝑁 (𝜃,
𝜎𝑇
2(𝜃)

𝑎𝑛
2 ) and let ψ be differentiable  

functions such that 
𝑑𝜓

𝑑𝜃
 is continuous and nonvanishing then ψ(T) is CAN for ψ(𝜃) and ψ(T)~ 

AN(𝜓(𝜃), 𝜎𝑇
2(𝜃) (

𝑑𝜓

𝑑𝜃
)
2

/𝑎𝑛
2)  (Kale and Muralidharan, 2015). 

 

  We now propose CAN estimators for parametric functions by considering a family of 

distributions which are degenerated at some random point. This degeneracy may be due to 

the occurrence of instantaneous or early failures together known as inliers are usually seen in 

life testing experiments. In the instantaneous failure cases, the random variable will have 

discrete probability mass at the origin (that is lifetime will be zero) and some positive 

lifetimes, and in the early failure case the failure times may be small in relation to other 

lifetimes. For modeling positive lifetimes, we have used exponential distribution, as it has 

been widely used as a model in areas ranging from studies on the lifetimes of manufactured 

items to research involving survival or remission times in chronic diseases. The exponential 

distribution has the pdf 

 

   𝑓(𝑥; 𝜃) =
1

𝜃
𝑒−

𝑥

𝜃, 𝑥 ≥ 0      (1) 
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The maximum likelihood estimator of 𝜃 is 𝜃 =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 . The desirable properties of 𝜃 are 

numerous. In particular 𝜃 is exactly distributed as (
𝜃

2𝑛
)𝜒(2𝑛)

2  and it is a sufficient, efficient, 

and minimum variance estimator of 𝜃. 

 

The article is organized as follows: The model presentations along with some 

distributional results are given in Section 2. Along with the CAN estimation, we also propose 

uniformly minimum variance unbiased estimate (UMVUE) for various parametric functions 

in Section 3. The numerical illustration is presented in the last section.  

  

2.  Inliers-prone model 

 

If the underlying distribution is exponential as given in (1.1), then the inliers-prone 

model with instantaneous failures is shown as   

 

 𝑔(𝑥; 𝑝, 𝜃) = {
1 − 𝑝,      𝑥 = 0
𝑝

𝜃
𝑒−

𝑥

𝜃,       𝑥 > 0
      (2) 

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from (2) then the pdf of 𝑋𝑖 is  

 

𝑔(𝑥𝑖; 𝑝, 𝜃) = {
(1 − 𝑝)𝐼(𝑥𝑖) (

𝑝

𝜃
𝑒−

𝑥
𝜃)

1−𝐼(𝑥𝑖)

𝑥𝑖 ≥ 0,0 < 𝑝 ≤ 1, 𝜃 > 0, 𝑖 = 1, 2, … , 𝑛

0,                                              𝑜. 𝑤.

 

 

where, 

 𝐼(𝑥) = {
1,    if 𝑥 = 0   
0,    o. w.

       (3) 

 

Aitchison (1955) had proposed various unbiased functions for parametric function in 

(3). Kale and Muralidharan (2000) were the first authors to introduce the term inliers in 

connection with the estimation of (𝑝, 𝜃) of early failure model with modified failure time 

distribution (FTD) being (1) with mean 𝜃. A similar problem was attempted by Lai et al. 

(2007), wherein they have defined nearly instantaneous through the sample configurations, 

considering Weibull as the underlying FTD. For a detailed review of inliers prone models and 

their inferences, refer to Muralidharan (2010).  

 

If 𝑝 = 𝑃(𝑥 > 0) and further, if we denote ∑ 𝐼(𝑥𝑖) = 𝑛 − 𝑟
𝑛
𝑖=1 , where 𝑟 is number of 

positive observations, then the joint pdf is given by  

 

𝑔(𝑥; 𝑝, 𝜃) = {
(1 − 𝑝)𝑛−𝑟 (

𝑝

𝜃
)
𝑟

𝑒−
1

𝜃
∑ (1−𝐼(𝑥𝑖))𝑥𝑖
𝑛
𝑖=1 , 𝑥𝑖 ≥ 0, 𝑟 = 0,1, … , 𝑛

0,                                                           𝑜. 𝑤.
   (4) 
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The following results are now obvious: 

Result 1: The joint density function given in (4) is a two-parameter exponential family of 

distribution. 

 

Result 2: (∑ 𝐼(𝑥𝑖),∑(1 − 𝐼(𝑥𝑖))𝑥𝑖) are jointly sufficient for 𝑝 and 𝜃.  

Result 3: The MLE of  𝑝 and 𝜃 are respectively given by 𝑝̂𝑀𝐿𝐸 =
𝑟

𝑛
 and 𝜃𝑀𝐿𝐸 =

1

𝑟
∑ 𝑥𝑖𝑥𝑖>0

. 

Result 4: (𝑝̂𝑀𝐿𝐸 , 𝜃𝑀𝐿𝐸)
′
 ~ 𝐴𝑁(2) [(𝑝, 𝜃)′, 𝑑𝑖𝑎𝑔 (

𝑝(1−𝑝)

𝑛
,
𝜃2

𝑛𝑝
)]. 

Result 5: The parameters 𝑝 and 𝜃 are orthogonal. 

Result 6: The true reliability or survival function for the model at time 𝑡 is given by 

                   𝑆(𝑡) = 𝑝𝑒−
𝑡

𝜃, 𝑡 > 0, 𝜃 > 0  

Result 7: 𝑔𝑍|𝑅(𝑧; 𝜃|𝑟) = {
𝑒
−
𝑧
𝜃 𝑧𝑟−1

𝛤𝑟 𝜃𝑟
, 𝑧 > 0, 𝑟 > 0 

1,              𝑧 = 0, 𝑟 = 0 
,  

where 𝑧 = ∑ [1 − 𝐼(𝑥𝑖)]𝑥𝑖
𝑛
𝑖=1 (= ∑ 𝑥𝑖𝑥𝑖>0

). 

3.  UMVUE and CAN estimators 

It is observed that, obtaining conditional distribution given the sufficient statistics is 

bit difficult in the above model. Therefore, we use exponential family approach to study the 

distributional properties.  

 

The equation (4) is written as 

 

𝑔(𝑥; 𝑝, 𝜃) =
[𝑒−

1
𝜃]
(1−𝐼(𝑥))𝑑(𝑥)

[
𝜃(1 − 𝑝)

𝑝 ]
𝐼(𝑥)

(
𝜃
𝑝)

 

       =[𝑎(𝑥)](1−𝐼(𝑥))[ℎ(𝜃)](1−𝐼(𝑥))𝑑(𝑥) [
𝑔(𝜃)(1−𝑝)

𝑝
]
𝐼(𝑥)

(
𝑔(𝜃)

𝑝
)
−1

   (5) 

where 𝑎(𝑥) = 1, ℎ(𝜃) = 𝑒−
1

𝜃, 𝑑(𝑥) = 𝑥, 𝑔(𝜃) = 𝜃. The density in (5) is so obtained is 

defined with respect to measure 𝜇(𝑥) which is the sum of Lebesgue measure over (0,∞) and 

a singular measure at {0}, is a well-known form of two parameter exponential family with 

natural parameters (𝜂1, 𝜂2) = (𝑙𝑜𝑔 (
𝜃(1−𝑝)

𝑝
) , 𝑙𝑜𝑔 (𝑒−

1

𝜃)) generated by the underlying 

indexing parameters (𝑝, 𝜃). Here (𝐼(𝑥), (1 −  𝐼(𝑥))𝑥) is jointly minimal sufficient for (𝑝, 𝜃) 
as 𝐼(𝑥) and  (1 − 𝐼(𝑥))𝑥 do not satisfy any linear restriction. Hence the natural parameter 

space is convex set in 𝐸2 containing a two-dimensional rectangle making (5) a full rank 

family. The statistic (𝐼(𝑥), (1 −  I(x))𝑥) is thus complete (Lehmann and Casella, 1998, p 

42). Kale and Muralidharan (2000) considered the above mixture and obtained optimal 

estimating equation for 𝜃 ignoring 𝑝 in the case of exponential failure time distribution. 
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Further, if we denote 𝑧 = ∑ [1 − 𝐼(𝑥𝑖)]𝑥𝑖
𝑛
𝑖=1 (= ∑ 𝑥𝑖𝑥𝑖>0

), then the joint density function can 

be expressed as 

 

  𝑔(𝑥; 𝑝, 𝜃) = (
𝑛
𝑟
) (1 − 𝑝)𝑛−𝑟 (

𝑝

𝜃
)
𝑟

𝑒−
𝑧

𝜃     (6) 

Hence (𝑛 − 𝑅, 𝑍) are jointly complete sufficient for (𝑝, 𝜃). Also, the variable 
(𝑍|𝑅 = 𝑟, 𝑟 > 0) is distributed as a Gamma random variable with parameter (𝑟, 𝜃 ). Since, 

𝑛 − 𝑅 is binomial which is same as that of 𝑅 with parameter (𝑛, 𝑝), the joint distribution of 
(𝑛 − 𝑅, 𝑍) is 

𝑔(𝑧, 𝑛 − 𝑟; 𝑝, 𝜃) = 𝑃(𝑛 − 𝑅 = 𝑛 − 𝑟) 𝑔(𝑧; 𝜃|𝑛 − 𝑟) 

     = 𝑃(𝑅 = 𝑟) 𝑔(𝑧; 𝜃|𝑟) 

     =(
𝑛
𝑟
) (1 − 𝑝)𝑛−𝑟𝑝𝑟

1

𝛤𝑟 𝜃𝑟
𝑧𝑟−1𝑒−

𝑧

𝜃 

 

                        = {

(1 − 𝑝)𝑛,                                               𝑧 = 0;  𝑟 = 0

(
𝑛
𝑟
)
𝑧𝑟

𝛤𝑟
𝑒−

𝑧
𝜃 (
𝜃(1 − 𝑝)

𝑝
)

𝑛−𝑟

(
𝜃

𝑝
)
−𝑛

, 𝑧 > 0;  𝑟 > 0
 

 

= {
(1 − 𝑝)𝑛,                                                             𝑧 = 0;  𝑟 = 0

𝐵(𝑧, 𝑟, 𝑛)[ℎ(𝜃)]𝑧 [
𝑔(𝜃)(1−𝑝)

𝑝
]
𝑛−𝑟

(
𝑔(𝜃)

𝑝
)
−𝑛

, 𝑧 > 0;  𝑟 > 0
 (7) 

where 

 

𝐵(𝑧, 𝑟, 𝑛) = {
1,                    𝑧 = 0; 𝑟 = 0

(
𝑛
𝑟
)𝐵(𝑧|𝑟), 𝑧 > 0; 𝑟 > 0

     (8) 

is such that (1 − 𝑝)𝑛 + ∑ ∫ (
𝑛
𝑟
)

𝑧>0
𝑛
𝑟=1 𝐵(𝑧|𝑟) [𝑒−

1

𝜃]
𝑧

(
𝜃(1−𝑝)

𝑝
)
𝑛−𝑟

(
𝜃

𝑝
)
−𝑛

𝑑𝑧 = 1 and 

𝐵(𝑧|𝑟) =
𝑧𝑟−1

𝛤𝑟
. Following Roy and Mitra (1957) and Jani and Singh (1995), it is possible to 

obtain the uniformly minimum variance unbiased estimates (UMVUE) for some parametric 

functions. Note that, the UMVUE’s of parametric function 𝜙(𝑝, 𝜃)exits if and only if 𝜙(𝑝, 𝜃) 
can be expressed in the form 

𝜙(𝑝, 𝜃) = 𝛼(0,0, 𝑛)(1 − 𝑝)𝑛 + ∑ ∫
𝛼(𝑧,𝑟,𝑛)𝑒

−
𝑧
𝜃(
𝜃(1−𝑝)

𝑝
)
𝑛−𝑟

[
𝜃

𝑝
]
𝑛𝑧>0

𝑛
𝑟=1 𝑑𝑧. 

Below we consider some estimates for the parametric functions: 

Result 8: For 𝑚 ≤ 𝑛, the UMVUE of (1 − 𝑝)𝑚 is 𝐺𝑚(𝑍, 𝑅, 𝑛) as given by  

𝐺𝑚(𝑧, 𝑟, 𝑛) =

{
 

 (
𝑛 −𝑚
𝑟

)

(
𝑛
𝑟
)

, 𝑟 = 0,1, … , 𝑛 − 𝑚

0,          𝑜. 𝑤.

 

Result 9: For 𝑚 = 1, Result 8 reduces to the UMVUE of (1 − 𝑝) as  
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𝐺1(𝑧, 𝑟, 𝑛) = {

𝑛 − 𝑟

𝑛
, 𝑟 > 0; 𝑧 > 0

1,                  𝑟 = 0, 𝑧 = 0
 

 

Result 10: 𝜓(𝑇1) = (1 −
𝑟

𝑛
)𝑚 is CAN estimator of 𝜓(𝑝) = (1 − 𝑝)𝑚 with asymptotic 

variance  

                  
𝑚2

𝑛
𝑝(1 − 𝑝)2𝑚−1. 

Result 11: For  𝑚 ≤
𝑛

2
,  the UMVUE of the variance of 𝐺𝑚(𝑍, 𝑅, 𝑛) is computed as 

𝑣𝑎𝑟 ̂[𝐺𝑚(𝑧, 𝑟, 𝑛)] = {
𝐺𝑚
2 (𝑧, 𝑟, 𝑛) − 𝐺2𝑚(𝑧, 𝑟, 𝑛), 𝑟 = 1,2, … , (𝑛 − 2𝑚)

𝐺𝑚
2 (𝑧, 𝑟, 𝑛),                             𝑟 = (𝑛 − 2𝑚 + 1),… , (𝑛 − 𝑚)

0,                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

=

{
 
 
 

 
 
 
[
(
𝑛 − 𝑚
𝑟

)

(
𝑛
𝑟
)

]

2

−
(
𝑛 − 2𝑚
𝑟

)

(
𝑛
𝑟
)

, 𝑟 = 1,2, … , (𝑛 − 2𝑚)

[
(
𝑛 − 𝑚
𝑟

)

(
𝑛
𝑟
)

]

2

,                         𝑟 = (𝑛 − 2𝑚 + 1),… , (𝑛 − 𝑚)

0,                                              𝑜. 𝑤.

 

Result 12: For 𝑚 = 1, the UMVUE of the variance of UMVUE of (1 − 𝑝) is given by 

𝑣𝑎𝑟 ̂[𝐺1(𝑧, 𝑟, 𝑛)] = {

𝑟(𝑛 − 𝑟)

𝑛2(𝑛 − 1)
, 𝑟 = 1, 2, … , (𝑛 − 1)

0,                          𝑜. 𝑤.

 

Result 13: For  𝑘 > 0 the UMVUE of parametric function (1 − 𝑝)𝑛 + (
𝑝 

𝜃
)
𝑘
[1 −

(1 − 𝑝)𝑛−𝑘] is given by 

                     𝐻𝑘(𝑧, 𝑟, 𝑛) = {

(𝑟)𝑘(𝑟 − 1)𝑘
(𝑛)𝑘𝑧𝑘

, 𝑟 = 1, 2, … , 𝑛;  𝑧 > 0

1,                                𝑟 = 0;  𝑧 = 0

 

where (𝑎)𝑘 = 𝑎(𝑎 − 1)… (𝑎 − 𝑘 + 1), and 𝑧 = ∑ 𝑥𝑖𝑥𝑖>0
.  

For various values of 𝑘 ≥ 1, one can obtain the UMVUE of the parametric function. 

Unfortunately, it is impossible to find a unbiased estimate for the parameter 𝜃 alone. 

Aitchison (1955) through the usual classical approach obtain the UMVUE of the parametric 

function (1 − 𝑝)2𝜃2 as 

        𝜑(𝑧, 𝑟, 𝑛) = {
(2𝑛−𝑟−1)𝑧2

𝑛(𝑛−1)(𝑟+1)
, 𝑟 > 0;  𝑧 > 0

0,                                      𝑟 = 0;  𝑧 = 0
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Result 15: 𝜓(𝑇2) = (∑ 𝑥𝑖𝑥𝑖>0
)𝑚 is CAN estimator of 𝜓(𝜃) = 𝜃𝑚 with asymptotic variance                   

𝑚2𝜃2𝑚

𝑛𝑝
. 

 

Result 16: For fixed 𝑥, the UMVUE of pdf 𝑔(𝑥; 𝑝, 𝜃) is shown as 

𝜙𝑥(𝑧, 𝑟, 𝑛) =

{
 
 

 
 
𝑟(𝑟 − 1)

𝑛𝑧
(1 +

𝑥

𝑧
)
𝑟−2

,     0 < 𝑥 < 𝑧;  𝑟 = 1,2, … , 𝑛

𝑛 − 𝑟

𝑛
,                                 𝑥 = 0;  𝑟 = 0,1, … , 𝑛 − 1

0,                                          𝑜. 𝑤.

 

Result 17: For 𝑟 = 𝑛, that is when all the observations are coming from the density, then the 

UMVUE of the density 𝑓(𝑥; 𝜃) is simplified as 

 

𝜙𝑥(𝑧, 𝑟, 𝑛) = {
𝑛 − 1

𝑧
(1 +

𝑥

𝑧
)
𝑛−2

,   0 < 𝑥 < 𝑧;  𝑛 > 1

0,                                  𝑜. 𝑤.
 

Result 18: For fixed 𝑥, the UMVUE of variance of pdf 𝑔(𝑥; 𝑝, 𝜃) is obtained as 

𝑣𝑎𝑟̂[𝜙𝑥(𝑧, 𝑟, 𝑛)] 

=

{
 
 
 
 

 
 
 
 [
𝑟(𝑟 − 1)

𝑛𝑧
(1 −

𝑥

𝑧
)
𝑟−2

]
2

−
𝑟(𝑟 − 1)2(𝑟 − 2)

𝑛(𝑛 − 1)𝑧(𝑧 − 𝑥)
(1 −

𝑥

𝑧
)
𝑟−2

(1 −
𝑥

𝑧 − 𝑥
)
𝑟−3

,   0 < 𝑥 < 𝑧;  𝑟 = 2… , 𝑛

[
𝑟(𝑟 − 1)

𝑛𝑧
(1 −

𝑥

𝑧
)
𝑟−2

]

2

,                                                0 < 𝑥 < 𝑧;  𝑟 = 2,… , 𝑛

𝑟(𝑛 − 𝑟)

𝑛2(𝑛 − 1)
,                                                                         𝑥 = 0;  𝑟 = 0,1, … , 𝑛 − 1

0,                                                                                           𝑜. 𝑤.

 

For 𝑟 = 𝑛, all the results will reduces to that of the estimates of an exponential distribution, 

without inliers.  

 

Result 19: For fixed 𝑧 and 𝑟, the UMVUE of the survival function 𝑆(𝑡) = 𝑃(𝑋 > 𝑡), 𝑡 ≥ 0 is 

obtained as 
 

𝑆̂(𝑡) = {
𝑟

𝑛
(1 −

𝑡

 𝑧
)
𝑟−1

,      𝑡 < 𝑧      

0,                              𝑜. 𝑤.

 

 

Result 20: For fixed 𝑧 and 𝑟, the UMVUE of the variance of 𝑆̂(𝑡) is obtained as   

𝑣𝑎𝑟 ̂[𝑆̂(𝑡) ] =  

{
 
 

 
 [
𝑟

𝑛
(1 −

𝑡

 𝑧
)
𝑟−1

]

2

− 
𝑟(𝑟 − 1)

𝑛(𝑛 − 1)
(1 −

2 𝑡

 𝑧
)
𝑟−1

, 𝑧 > 2𝑡

[
𝑟

𝑛
(1 −

𝑡

𝑧
)
𝑟−1

]

2

,                                                  𝑡 < 𝑧 <  2𝑡

0,                                                                              𝑜. 𝑤.
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For 𝑟 = 𝑛, both the above results reduce to the case of an exponential distribution.  

Result 21: 𝜓(𝑇3) = (𝑟/𝑛)𝑒−𝑡/∑ 𝑥𝑖𝑥𝑖>0  is CAN for the survival function 𝑆(𝑡) = 𝑃(𝑋 > 𝑡) = 

𝑝𝑒−𝑡/𝜃 with asymptotic variance  
𝑝𝑒−2𝑡/𝜃

𝑛𝜃2
. 

 

 Definition 3 can be extended to multiparameter case so that CAN estimator for linear 

combination of parameters can be made possible. Let 𝑇 = (𝑇1, 𝑇2,…,𝑇𝑚)′ be a vector valued 

estimator which is consistent for a vector parameter 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑚)′ then 𝑇𝑖 is CAN for 

𝜃𝑖 with asymptotic variance 
λ𝑖𝑖(𝜃)

𝑛
  and any linear combination 𝑇′ = ∑ 𝑙𝑖𝑇𝑖

𝑚
𝑖=1  is CAN for 

∑ 𝑙𝑖𝜃𝑖
𝑚
𝑖=1  with asymptotic variance 

1

𝑛
𝑙′⋀(𝜃)𝑙, where ⋀(𝜃) is the variance-covariance matrix 

of vector of parameters 𝜃 (Kale and Muralidharan, 2015).  
 

Result 22: Let 𝜓(𝑝, 𝜃) = 𝑙1𝑝 + 𝑙2𝜃, then the estimator 𝑇′ = 𝑙1 (
𝑟

𝑛
) + 𝑙2∑ 𝑥𝑖𝑥𝑖>0

 is CAN for 

𝜓(𝑝, 𝜃) with asymptotic variance  
1

𝑛
(𝑙1
2𝑝(1 − 𝑝)/𝑛 + 𝑙2

2𝜃2/(𝑛𝑝)). 

 We now investigate the MVU estimation of 𝜃 𝑜𝑟 𝜓(𝜃) based on Cramer-Rao Lower 

Bound (CRLB) to the variance of an unbiased estimator. Let {f(x, θ), θ ∈ Ω}, Ω𝑐𝑅1 be a class 

of  distributions 𝐼𝑋(𝜃)  is the Fisher Information, then under some regularity conditions (refer 

to Kale and Muralidharan, 2015) the CRLB for  𝑉(𝑇) ≥ (
𝑑𝜓(𝜃)

𝑑𝜃
)
2

/𝐼𝑋(𝜃). For instance, if 

𝜓(𝜃) = 𝜃2 then the CRLB for 𝑉(𝑇) is 
4𝜃4

𝑛𝑝
. Similarly, the CRLB for 𝑉(𝑇) for estimating 

𝜓(𝑝) = (1 − 𝑝)𝑚 is obtained as 
𝑚𝑝(1−𝑝)2𝑚−1

𝑛
.  
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