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Abstract
The selection of priors in the presence of nuisance parameters is an important topic in

Bayesian statistics. Bernardo (1979) proposed a stepwise procedure for handling nuisance
parameters. He obtained the prior by maximizing the expected Kullback-Leibler divergence
between the prior of parameters of interest and the corresponding posterior. His procedure
turns out to be very efficient and has been applied to many examples. In this paper, we
consider selection of priors in the presence of nuisance parameters under a general divergence
criterion, originally introduced by Renyi (1961), later followed by a host of researchers, most
notably by Amari (1982) and Cressie and Read (1984). This general divergence measure
includes the Kullback-Leibler, Bhattacharyya-Hellinger and Chi-square divergence. It turns
out that Bernardo’s prior maximizes this divergence in the interior of this class of divergence
measures. On the boundary, the Chi-square divergence, the prior turns out to be different
from Bernardo’s prior for some common families of distributions. Also, outside the boundary,
Bernardo’s prior turns out to be the minimizer rather than maximizer of the divergence, and
there does not exist any prior which maximizes the divergence between the prior and the
posterior.

Key words: General divergence; Nuisance parameters; Optimal prior; Characterisation of
optimal priors.

1. Introduction

The most important component in Bayesian statistics is the prior for the unknown
parameters. The selection of prior has always been a popular topic since the birth of Bayesian
statistics.

Ideally, if one has enough historical data, it is possible to elicit an appropriate prior
which reflects one’s belief about unknown parameters. This is a subjective prior. But
the choice of subjective priors is difficult, especially when there is not enough historical
information available. In practice, it is common to use the so-called ‘objective’ priors which
are also referred to as ‘non-informative priors’ or ‘default priors’. Those priors are determined
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by some objective or structural criterion. For decades, many statisticians worked on this
topic. Consequently, numerous criteria for selecting objective priors have been proposed.

One major criterion was proposed by Bernardo (1979). There are two innovations in
his paper. First, he introduced the notion of missing information. He used the expected
Kullback-Leibler divergence as the measure of the missing information provided by the data
and then found the prior which maximizes this divergence. In the absence of nuisance param-
eters, he found that the desired prior is Jeffreys’ general rule prior (Jeffreys 1961) which is
proportional to the square root of the determinant of the Fisher information matrix. Second,
he used a stepwise procedure to find the prior in the presence of nuisance parameters. His
procedure is as follows. First, he assigns a conditional density of nuisance parameters given
parameters of interest. Then he obtains the prior for parameters of interest by maximizing
the expected Kullback-Leibler divergence between the prior for parameters of interest and
the corresponding posterior.

In many cases, Bernardo’s procedure produced priors different from Jeffreys’ general
rule prior. It turns out that his stepwise procedure often yields more reasonable priors
than Jeffreys’ general rule prior. One good example to show the advantage of Bernardo’s
stepwise procedure is the Neyman-Scott problem (1948) considered by Berger and Bernardo
(1992b), Datta and Ghosh (1995a). The data consist of n pairs of observations: Xij ∼
N(µi, σ2), i = 1, · · · , n, j = 1, 2. Consider all the parameters to be of equal importance.
Then, one gets Jeffreys’ general rule prior π(µ1, · · · , µn, σ2) ∝ (σ2)−n/2−1. So the posterior
mean is s2/(2n − 2), where s2 = ∑n

i=1
∑2
j=1(xij − x̄i)2 and x̄i = (xi1 + xi2)/2. This is an

inconsistent estimator of σ2. On the contrary, by treating σ as the parameter of interest,
using Bernardo’s procedure, one gets the prior π(µ1, · · · , µn, σ2) ∝ σ−2. This gives a posterior
mean of s2/(n− 2) which is consistent.

Bernardo’s procedure has been applied to many examples. For example, exponential
regression (Ye and Berger 1991), multinomial models (Berger and Bernardo 1992a) and
AR(1) models (Berger and Yang 1994).

In both cases, with or without nuisance parameters, Bernardo used the expected
Kullback-Leibler divergence to develop priors. One may ask questions like: What will hap-
pen if we use another divergence? Will we get the same priors as Berdardo did? If not, what
do the new priors look like?

Instead of the Kullback-Leibler divergence, Clarke and Sun (1997) considered the ex-
pected Chi-square divergence motivated by the classical Chi-square goodness-of-fit statistic.
They showed that, for the one-parameter exponential family of distributions with the canon-
ical parameter, maximization of the Chi-square divergence led to a prior different from
Jeffreys’ prior. For multi-parameter exponential family of distributions, they conjectured
that the prior should also be of the same form as they got in one-parameter case. For the
case where nuisance parameters are present, they gave brief discussion and left it as an open
question.

Recently, for regular one-parameter family of distributions, Ghosh, Mergel and Liu
(2011) considered a general divergence between prior and posterior which has been considered
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in other contexts by several authors (for example, Renyi, 1961; Amari, 1982; Cressie and
Read, 1984). It is a family of divergence measures including the Kullback-Leibler divergence,
the Bhattacharyya-Hellinger divergence (Bhattacharyya, 1943; Hellinger, 1909), and the Chi-
square divergence. They showed that Jeffreys’ general prior is the desired prior under each
divergence measure that is in the interior in this class of divergence measures. On the
boundary, namely for the Chi-square divergence, the prior turns out to be different from
Jefferys’ prior for some common families of distributions but still maintains the invariance
property. Also, outside the boundary, Jeffreys’ prior turns out to be the minimizer rather
than maximizer of the divergence, and there does not exist any prior which maximizes the
distance between the posterior and the prior. A more comprehensive set of results were later
obtained by Liu, Chakrabarty, Samanta, Ghosh and Ghosh (2014) for one parameter family
of distributions.

In this paper, we consider prior selection in the presence of nuisance parameters under
the general divergence used by Ghosh, Mergel and Liu (2011). This is a generalization of
previous work of Bernardo (1979). We characterize optimal priors for every member in
this family of divergence measures by using the two-step procedure proposed by Bernardo
(1979). Explicit expressions for the optimal priors under every divergence measure (except
for the Chi-square divergence) are given. Specifically, for the Kullback-Leibler divergence, we
get the same prior as found by Bernardo (1979). Under the Chi-square divergence, we have
shown that the objective prior should be the solution to a set of partial differential equations.
We also consider a special case when the parameter of interest is one dimensional. In this
case, a closed form expression for the optimal prior is provided also under the Chi-square
divergence.

The outline of the remaining sections is as follows. In Section 2 of this paper, we have
provided a general scheme of deriving the asymptotic expansion of the expected general
divergence. Section 3 is devoted to the derivation of optimal prior in the interior of the
divergence class and non-existence of optimal priors outside the boundary of this class.
Section 4 provides a characterization of optimal priors under the Chi-square divergence class
followed by some examples. Some remarks are made in Section 5. The proof of the main
result in Section 4 is deferred to the Appendix.

2. Derivation of Priors

Let Xn = (X1, . . . , Xn), where the Xi are independent and identically distributed with
common pdf f(x |θ). Parameter vector θ can be partitioned as,

θT = (θ1, · · · , θd1 , θd1+1, · · · , θd) = (θT1 ,θT2 ) ∈ Rd,

where θ1 are d1−dimensional nuisance parameters and θ2 are d2−dimensional parameters of
interest. Here, we assume the parameter space is a compact set in Rd and consider a prior
p(θ2) which puts all its mass on a compact set in Rd2 . One passes on to the limit eventually
in many of the actual examples considered in the literature.

We apply the following two step procedure proposed by Bernardo (1979) to find the
divergence priors for the parameters of interest.
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First, for fixed θ2, one assigns a conditional density π(θ1|θ2) to the nuisance parameters
θ1.

Second, let p(θ2) denote the marginal density function of θ2. Then the divergence
prior p(θ2) for the parameter of interest θ2 is chosen by maximizing the asymptotic expected
general divergence Rβ(p(θ2)) between the prior p(θ2) and the corresponding posterior, that
is

Rβ(p(θ2)) =
1−

∫ [∫
pβ(θ2)p1−β(θ2|xn) dθ2

]
m(xn)µ(dxn)

β(1− β) ,

where µ(dxn) is a dominating measure and m(xn) is the marginal density of xn

Note 1. The expected general divergence criterion as introduced by Renyi (1961), Amari
(1982) and Cressie and Read (1984) is a family of divergences with index parameter β.
When β = 1/2, this is the Bhattacharyya-Hellinger distance, and β = −1 amounts to the
Chi-square distance. For β = 0 or 1, we need to interpret Rβ(p(θ)) as its limiting value
(when it exists). In particular,

R0(p(θ)) =
∫∫ {

log p(θ |xn)
p(θ)

}
p(θ |xn)m(xn) dθµ(dxn), (1)

which is the KL divergence between the prior and the posterior considered in Bernardo
(1979).

Note 2. In Step 1, for π(θ1|θ2), Bernardo recommends using the conditional Jeffreys’ general
rule prior which is proportional to

√
|I11(θ)|, where I11(θ) is the part of Fisher information

matrix I(θ) corresponding to the nuisance parametes.

Note 3. In Step 2, with the choice of π(θ1|θ2), we first find an asymptotic expansion of
Rβ(p(θ2)) and then obtain the priors by maximizing that expansion.

Derivation of divergence priors in the presence of nuisance parameters is complicated.
First, we give a general scheme of deriving the asymptotic expansion of the expected general
divergence. Then, in Sections (3) and (4), by using the asymptotic expansion with different
order of the remainder terms, we consider the prior selection for two cases when β 6= −1 and
β = −1 separately.

By the relation fn(xn|θ2)p(θ2) = p(θ2|xn)m(xn), one can rewrite Rβ(p(θ2)) as

Rβ(p(θ2)) = 1−
∫∫
pβ+1(θ2)p−β(θ2 |xn)fn(xn|θ2)µ(dxn) dθ2

β(1− β)

=
1−

∫
pβ+1(θ2)E

[
p−β(θ2 |Xn)

∣∣∣θ2
]
dθ2

β(1− β) , (2)

where fn(xn|θ2) is the joint density function of xn = (x1, · · · , xn) given θ2.

By using the shrinkage argument proposed by Ghosh (1994), one can find the asymp-
totic expansion to E

[
p−β(θ2 |Xn)

∣∣∣θ2
]

and then find the asymptotic expansion to Rβ(p(θ2)).
The shrinkage argument is discussed in details in Datta and Mukerjee (2004).



2020] SELECTION OF DIVERGENCE PRIORS 49

Here is the general scheme of deriving the asymptotic expansion:

• Step 0: Given the choice of π(θ1|θ2), for prior p(θ2), find posterior density p(θ2|xn) of
θ2 given xn:

p(θ2|xn) =
∫
θ1
π(θ|xn)dθ1,

where π(θ|xn) ∝ p(θ2)π(θ1|θ2)∏n
i=1 f(xi|θ).

• Step 1: Consider a proper prior density p̄(θ2), such that the support of p̄(θ2) is a compact
rectangle in the parameter space and p̄(θ2) vanishes on the boundary of the support while
remaining positive in the interior. Consider the posterior density of θ2 under p̄(θ2), and
obtain

G(xn) =
∫
p−β(θ2|xn)p̄(θ2|xn)dθ2.

• Step 2: For θ2 in the interior of the support of p̄(θ2), compute λ(θ2) defined as

λ(θ2) =
∫
G(xn)fn(xn|θ2)dxn

=
∫
G(xn)

[∫ n∏
i=1

f(xi|θ)π(θ1|θ2)dθ1

]
dxn

=
∫
λ0(θ)π(θ1|θ2)dθ1,

where λ0(θ) =
∫
G(xn)∏n

i=1 f(xi|θ)dxn.

• Step 3: Integrate λ(θ2) with respect to p̄(θ2) and then allow p̄(θ2) to converge weakly
to the degenerate prior at the true θ2, supposing that the true θ2 is an interior point of the
support of p̄(θ2). This yields E

[
p−β(θ2 |Xn)

∣∣∣θ2
]
.

By using the above procedure and equation (2), one can get an asymptotic approxi-
mation to Rβ(p(θ2)). Furthermore, the divergence priors are obtained by maximizing the
approximation.

In the next two sections, according to different values of β, we derive two approx-
imations to Rβ(p(θ2)) and call them the first order approximation and the second order
approximation respectively. For most of values of β, the derivation of divergence prior only
requires the first order approximation and it will be addressed in section (3). In section (4),
we will discuss the derivation of divergence prior when β = −1; that is the only case which
needs the second order approximation.

3. Divergence Priors for β 6= −1

In this section, we consider the prior selection for general expected divergence with
β 6= −1. To begin with, we derive the first order approximation to E

[
p−β(θ2 |Xn)

∣∣∣θ2
]
.

Then, in view of (2), we get the first order approximation to Rβ(p(θ2)). Finally, we discuss
the divergence priors according to different values of β such that β 6= −1.
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First, by assuming the same regularity conditions as in Johnson (1970) and Bhat-
tacharya and Ghosh (1978), one gets the following theorem which gives the first order ex-
pansion E

[
p−β(θ2 |Xn)

∣∣∣θ2
]
.

Theorem 1: For β < 1 and β 6= −1, E
[
p−β(θ2 |Xn)|θ2

]
can be expressed as:

E
[
p−β(θ2 |Xn)

∣∣∣θ2
]

= n−
d2β

2

 ∫ K(θ)π(θ1|θ2)dθ1 + o(n−1)
, (3)

where
K(θ) =

∣∣∣I22
∣∣∣β/2

(2π)d2β/2(1− β)−d2/2,

I−1(θ) =
(
I11 I12

I21 I22

)
.

Proof of Theorem 1:
The proof uses the shrinkage argument as mentioned before.

Let hT = (h1, · · · , hd1 , hd1+1, · · ·hd) = (hT1 ,hT2 ) =
√
n(θT1 − θ̂

T

1 ,θ
T
2 − θ̂

T

2 ), where
θ̂
T = (θ̂T1 , θ̂

T

2 ) is MLE of θ. For prior p(θ), from Datta and Mukerjee (1994), one gets
the corresponding posterior density

p(h|xn) =φd(h, C−1)
[
1 + n−

1
2

{
R1(h) + 1

6R3(h)
}]

+ o(n−1), (4)

where C is the observed Fisher information matrix, φd(h, C−1) is the d−variate normal
density with the null mean vector and dispersion matrix C−1,

R1(h) =
d∑
j=1

p̂jhj/p̂, R3(h) =
d∑
j=1

d∑
r=1

d∑
s=1

ajrshjhrhs,

ajrs = 1
n

d∑
u=1

∂ log f(Xu|θ)
∂θjθrθs

and p̂ = p(θ̂), p̂j = ∂p(θ)
∂θj

∣∣∣∣∣
θ=θ̂

.

Let Nd2(h2|µ,Σ) denote the density function of multivariate normal distribution with mean
vector µ and dispersion matrix Σ. Also, corresponding to the partition of the parameter
vector θT = (θT1 ,θT2 ), we partition the matrix C−1 as:

C−1 =
(
C11 C12

C21 C22

)
.

It is easy to establish the relation

φd(h, C−1) = Nd2(h2|0, C22)× fd1(θ1|θ2),

where fd1(θ1|θ2) = Nd1(h1|C12[C22]−1h2, C
11 − C12[C22]−1C21).
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In Step 0, for prior p(θ2), one gets

p(h2|xn) =Nd2(h2|0, C22)
[
1 + n−

1
2

{
L1(h2) + 1

6L3(h2)
}]

+ o(n−1), (5)

where
L1(h2) =

∫
R1(h)fd1(θ1|θ2)dθ1, L3(h2) =

∫
R3(h)fd1(θ1|θ2)dθ1.

Step 1. We find an asymptotic expansion for

G(xn) =
∫
p−β(θ2|xn)p̄(θ2|xn)dθ2.

With the general expansion
 1
b1 + b2√

n
+ b3

n
+ o(n−1)

β = b−β1

(
1− β b2

b1
√
n

+ β

n

(
β + 1

2
b2

2
b2

1
− b3

b1

))
+ o(n−1),

one gets

p−β(h|xn) = N−βd2 (h2|0, C22)
[
1− βn− 1

2

{
L1(h2) + 1

6L3(h2)
}]

+ o(n−1). (6)

Using (5) and (6), for any arbitrary thrice differentiable prior p̄(θ2) vanishing outside a
compact set, one gets

p−β(h2|xn)p̄(h2|xn) = N1−β
d2 (h2|0, C22)

[
1 + n−

1
2

{
L̄1(h2) + 1

6L3(h2)

− βL1(h2)− β

6L3(h2)
}]

+ o(n−1),
(7)

where
L̄1(h2) =

∫
R̄1(h)fd1(θ1|θ2)dθ1.

Here are some observations: (i) N1−β
d2 (h2|0, C22) = K(θ̂)×Nd2(h2|0, C

22

1−β ),
(ii) fd1(h1|h2)×Nd2(h2|0, C

22

1−β ) = Nd(h|0, Q), where

K(θ̂) = (2π)
d2β

2 |C22|
β
2 (1− β)−

d2
2 ,

Q = (qjr)d×d =
(
C11 + β

1−βC
12[C22]−1C21 C12/(1− β)

C21/(1− β) C22/(1− β)

)
.

With the above observations and the relation θ = h/
√
n+ θ̂, and noting that∫

L̄1(h2)dh2 =
∫
L1(h2)dh2 =

∫
L3(h2)dh2 = 0,
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one gets

G(xn) =
∫
p−β(θ2|xn)p̄(θ2|xn)dθ2

= n−
d2β

2

∫
p−β(h2|xn)p̄(h2|xn)dh2 = n−

d2β
2

[
K(θ̂) + oP (n−1)

] (8)

As shown above, G(xn) can be written as a function of θ̂. Also θ̂n − θ = op(n−1) (Pθ).
Therefore, by using Taylor expansion, one gets

λ0(θ) =
∫
G(xn)

n∏
i=1

f(xi|θ)dxn = n−
d2β

2

[
K(θ) + o(n−1)

]
, (9)

where K(θ) = (2π)
d2β

2 |I22|β2 (1− β)−
d2
2 . Moreover, at the end of Step 2, one gets

λ(θ2) =
∫
λ0(θ)π(θ1|θ2)dθ1

= n−
d2β

2

[ ∫
K(θ)π(θ1|θ2)dθ1 + o(n−1)

]
.

(10)

In Step 3, integrating λ(θ2) with respect to p̄(θ2) and allowing p̄(θ2) weakly converge to the
degenerate density of true θ2, we obtain the final asymptotic expansion for E

[
p−β(θ2 |Xn)

∣∣∣θ2
]

as

Eθ2

[
p−β(θ2 |Xn)

]
= n−

d2β
2

[ ∫
K(θ)π(θ1|θ2)dθ1 + o(n−1)

]

= n−
d2β

2

[
(2π)

d2β
2 (1− β)−

d2
2

∫
|I22|

β
2 π(θ1|θ2)dθ1 + o(n−1)

]
.

(11)

This proves the theorem.

When β < −1 and β 6= −1, we can obtain the divergence priors by maximizing the
first order approximation to the general expected divergence Rβ(p(θ2)). The approximation
is derived by neglecting the o(n−1) term in Theorem 1. That is:

Rβ(p(θ2)) ≈ 1
β(1− β)

1−
(2π
n

) d2β
2

(1− β)−
d2
2

∫ [
φ(θ2)
p(θ2)

]−β
p(θ2)dθ2

 , (12)

where

φ(θ2) =
[∫ ∣∣∣I22(θ)

∣∣∣β2 π(θ1|θ2)dθ1

]− 1
β

.

One may think that the divergence priors should be different as β takes on different
values. Amazingly, it turns out that, in most cases, one gets the same prior. Here are the
results for different values of β (β 6= −1).
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CASE I. First consider the case 0 < β < 1. Since then β(1− β) > 0, the problem of prior
selection reduces to minimization of

∫ [
φ(θ2)
p(θ2)

]−β
p(θ2)dθ2.

Noting that u−β is a convex function of u(> 0) when β(1 − β) > 0, by Jensen’s inequality,
one gets

∫ [
φ(θ2)
p(θ2)

]−β
p(θ2)dθ2

≥
{∫ [

φ(θ2)
p(θ2)

]
p(θ2)dθ2

}−β
=
{∫

φ(θ2)dθ2

}−β

with equality if and only if p(θ2) ∝ φ(θ2).

CASE II. Similarly, when −1 < β < 0, β(1 − β) < 0 and now the problem reduces to
maximization of ∫ [

φ(θ2)
p(θ2)

]−β
p(θ2)dθ2.

Noting that u−β is a concave function of u(> 0) when −1 < β < 0, again by Jensen’s
inequality, one gets

∫ [
φ(θ2)
p(θ2)

]−β
p(θ2)dθ2

≤
{∫ [

φ(θ2)
p(θ2)

]
p(θ2)dθ2

}−β
=
{∫

φ(θ2)dθ2

}−β

with equality if and only if p(θ2) ∝ φ(θ2) which is the same prior developed in the previous
case.

CASE III. When β −→ 0, using either Theorem 1 or alternatively from Bernardo, one gets
the first order approximation of the general expected divergence R0(p(θ2)) :

R0(p(θ2)) ≈ Kn +
∫
p(θ2) log φ(θ2)

p(θ2)dθ2,

where Kn is a constant depending on n. Then, from the property of the Kullback-Leibler
distance, R0(p(θ2)) is maximized up to first order of approximation by p(θ2) ∝ φ(θ2).

From the above three cases, we can easily draw the conclusion that when |β| < 1, the desired
divergence prior is proportional to φ(θ2).

CASE IV. Next for β < −1, writing β = −λ, one can rewrite the first order approximation
of the general divergence Rβ(p(θ2)) as :
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Rβ(p(θ2)) =

(
2π
n

)−d2λ/2
(1 + λ)−

d2
2
∫ (φ(θ2)

p(θ2)

)λ
p(θ2) dθ2 − 1

λ(1 + λ) , λ > 1. (13)

Hence it suffices to maximize

∫
{φ(θ2)/p(θ2)}λ p(θ2) dθ2

subject to
∫
p(θ2) dθ2 = 1. Again, by Jensen’s inequality,

∫
{φ(θ2)/p(θ2)}λ p(θ2) dθ2 ≥

[∫
{φ(θ2)/p(θ2)} p(θ2) dθ2

]λ
=
(∫

φ(θ2) dθ2

)−β

since λ > 1, equality holding if and only if

p(θ2) ∝ φ(θ2).

Thus in this case the prior p(θ2) ∝ φ(θ2) is the minimizer rather then the maximizer of
Rβ(p(θ2)). Also there is no maximizing prior in this case. In fact, one can use similar
argument in the previous section to show that

sup
p

∫
φ(θ2)λp1−λ(θ2)dθ2 = +∞

3. Divergence Priors for β = −1

It remains to consider the case β = −1, the Chi-square distance as considered in
Clarke and Sun (1997) for the one parameter exponential family and in Ghosh, Mergel and
Liu (2011) for the general one-parameter family of distributions. Here pβ+1(θ2) = 1 so that
the first order term appearing in Theorem 1 will not suffice in finding the prior p(θ2). We
can mimic Theorem 1 to get the second order expansion to E [p(θ2 |Xn)|θ2]. Here is the
new Theorem:
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Theorem 2: For β = −1, E [p(θ2 |Xn)|θ2] can be expressed as:

E [p(θ2 |Xn)|θ2] = n
d2
2

 ∫ K(θ)π(θ1|θ2)dθ1+

1
n

{
d∑

j=d1+1

d∑
r=1

[ ∫ (
qojr − 1

2I
jr
)
K(θ)πr(θ1|θ2)dθ1

]
pj(θ2)
p(θ2)

− 1
2

d∑
j=d1+1

d∑
r=1

∂

∂θr

( ∫
IjrK(θ)π(θ1|θ2)dθ1

)
pj(θ2)
p(θ2)

+ 1
6

∑
1≤j,r,s≤d

d∑
u=d1+1

[ ∫
Ajrs(qojrqosu + qojuqors + qojsqoru)K(θ)π(θ1|θ2)dθ1

]
pu(θ2)
p(θ2)

− 1
6

∑
1≤j,r,s≤d

d∑
u=d1+1

[ ∫
Ajrs(IjrIsu + IjuIrs + IjsIru)K(θ)π(θ1|θ2)dθ1

]
pu(θ2)
p(θ2)

+ 1
6

∑
1≤j,r,s≤d

d∑
u=d1+1

[ ∫
Ajrskjrsu(θ)K(θ)π(θ1|θ2)dθ1

]
pu(θ2)
p(θ2)

−
d∑

j=d1+1

d∑
r=d1+1

[ ∫ {
Ijr − qojr

2

}
K(θ)π(θ1|θ2)dθ1

]
pjr(θ2)
p(θ2)

+ 1
2

d∑
j=d1+1

d∑
r=d1+1

[ ∫
IjrK(θ)π(θ1|θ2)dθ1

]
pj(θ2)pr(θ2)

p2(θ2)

+ S(θ2)
}

+ o(n−1)
,

(14)

where

K(θ) =
∣∣∣I22

∣∣∣−1/2
(2π)−d2/22−d2/2, Ajrs = E

[
∂3 log f(X|θ)
∂θj∂θr∂θs

]

(qojr)d×d =
(
I11 − 1

2I
12[I22]−1I21 I12/2
I21/2 I22/2

)
,

Ijr is the jrth element of the Fisher information matrix, kjrsu(θ) involves p(θ2) and its
derivatives, but S(θ2) is only a function of θ2.

The proof of Theorem 2 is long and involved, and is omitted. The details are available
from the authors.

Since β = −1 so that β(1 − β) = −2, neglecting all terms which do not involve p(θ2)
or its derivatives and using the relation pjr(θ2)

p(θ2)
= ∂

∂θr

(
pj(θ2)
p(θ2)

)
+ pj(θ2)pr(θ2)

p2(θ2)
, it suffices to
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maximize up to the second order approximation,

R(−1)(p(θ2)) ≈ 1
2n

d2
2

∫  ∫ K(θ)π(θ1|θ2)dθ1+

1
n

{
d∑

j=d1+1

d∑
r=1

[ ∫ (
qojr − Ijr

2

)
K(θ)πr(θ1|θ2)dθ1

]
pj(θ2)
p(θ2)

− 1
2

d∑
j=d1+1

d∑
r=1

∂

∂θr

( ∫
IjrK(θ)π(θ1|θ2)dθ1

)
pj(θ2)
p(θ2)

+ 1
6

∑
1≤j,r,s≤d

d∑
u=d1+1

[ ∫
Ajrs(qojrqosu + qojuqors + qojsqoru)K(θ)π(θ1|θ2)dθ1

]
pu(θ2)
p(θ2)

− 1
6

∑
1≤j,r,s≤d

d∑
u=d1+1

[ ∫
Ajrs(IjrIsu + IjuIrs + IjsIru)K(θ)π(θ1|θ2)dθ1

]
pu(θ2)
p(θ2)

+ 1
6

∑
1≤j,r,s≤d

d∑
u=d1+1

[ ∫
Ajrskjrsu(θ)K(θ)π(θ1|θ2)dθ1

]
pu(θ2)
p(θ2)

+
d∑

j=d1+1

d∑
r=d1+1

[ ∫ {(qojr − Ijr)
2 − Ijr

2

}
K(θ)π(θ1|θ2)dθ1

]
∂pj(θ2)/p(θ2)

∂θr

+
d∑

j=d1+1

d∑
r=d1+1

[ ∫ {1
2(qojr − Ijr)

}
K(θ)π(θ1|θ2)dθ1

]
pj(θ2)pr(θ2)

p2(θ2)

}dθ2.

(15)

Let

y(θ2) = (yd1+1(θ2), · · · ,yd(θ2)) =
(
pd1+1(θ)
p(θ2) , · · · , pd(θ2)

p(θ2)

)

∇y(θ2) =
(
∂yd1+1(θ2)
∂θd1+1

, · · · ,
∂yd1+1(θ2)

∂θd
, · · · , ∂yd(θ2)

∂θd1+1
, · · · , ∂yd(θ2)

∂θd

)
.

Note that (15) can be expressed as

∫
F (θ2,y(θ2),∇y(θ2))dθ2, (16)

so we need find y(θ2) to maximize the above integral. From Giaquinta (1983), the maximizer
should satisfy the Euler-Lagrange equations:

∂F

∂yi(θ2) −
d∑

j=d1+1

∂

∂θj

(
∂F

∂(∂yi/∂θj)

)
= 0 i = d1 + 1, · · · , d. (17)
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Equivalently, the Euler-Lagrange equations are:
d∑

r=d1+1

[∫
I irK(θ)π(θ1|θ2)dθ1

]
pr(θ2)
p(θ2)

=− 1
2

∑
1≤j,r,s≤d

∫
Ajrsm

ojrIsiK(θ)π(θ1|θ2)dθ1

+ 1
2

d∑
r=d1+1

∂

∂θr

∫
I irK(θ)π(θ1|θ2)dθ1, i = d1 + 1, · · · , d.

(18)

Here
mojr =

{
nojr when j, r ∈ H1
Ijr other ,

where nojr is the jrth element of I12(I22)−1I21. H1 is the set of indexes of nuisance parameters.

By solving these partial differential equations, one gets the divergence priors. Usually, with
multi-dimensional parameters of interest, these equations are so complicated that it is im-
possible to give a general solution and sometimes, there is no solution to these equations.

In the following, we focus on a special case when the parameter of interest is one-dimensional.
In this case, instead of several partial differential equations, we only need to solve one
differential equation and easily get a general form of the divergence priors.

When the parameter of interest θ2 is one dimensional, that is θ2 = θd, then the Euler-
Lagrange equation becomes:[∫

(Idd) 1
2π(θ1|θd)dθ1

]
p′(θd)
p(θd)

=− 1
2

∑
1≤j,r,s≤d

∫
Ajrsm

ojrIsd(Idd)− 1
2π(θ1|θd)dθ1

+ 1
2
∂

∂θd

∫
(Idd) 1

2π(θ1|θd)dθ1.

(19)

By solving (19), one gets the divergence prior p(θd) which is proportional to

Q(θd)
1
2 × exp

[∫
−T (θd)dθd

]
, (20)

where

Q(θd) =
∫

(Idd) 1
2π(θ1|θd)dθ1, T (θd) =

1
2
∑

1≤j,r,s≤d
∫
Ajrsm

ojrIsd(Idd)− 1
2π(θ1|θd)dθ1∫

(Idd) 1
2π(θ1|θd)dθ1

. (21)

Here are several examples to illustrate how to find divergence priors for one dimensional
parameter of interest.
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Example 1: Consider general symmetric location-scale family of distributions with prob-
ability density function f(x|µ, σ) = 1

σ
p(x−µ

σ
) where p(x) = p(−x). Writing h(x) = log p(x)

and noting that h′(x) = −h′(−x), h′′(x) = h′′(−x) and h′′′(x) = −h′′′(−x), one gets

E

[
∂2 log f
∂µ2

∣∣∣∣∣µ, σ
]

= −σ−2
∫
h′′(x)p(x)dx, E

[
∂2 log f
∂µ∂σ

∣∣∣∣∣µ, σ
]

= 0,

E

[
∂2 log f
∂σ2

∣∣∣∣∣µ, σ
]

= −σ−2
[
1 + 2

∫
xh′(x)p(x)dx+

∫
x2h′′(x)p(x)dx

]
,

E

[
∂3 log f
∂µ3

∣∣∣∣∣µ, σ
]

= E

[
∂3 log f
∂µ∂σ2

∣∣∣∣∣µ, σ
]

= 0,

E

[
∂3 log f
∂µ2∂σ

∣∣∣∣∣µ, σ
]

= −σ−3
[
2
∫
h′′(x)p(x)dx+

∫
xh′′′(x)p(x)dx

]
and

E

[
∂3 log f
∂σ3

∣∣∣∣∣µ, σ
]

= −σ−3
[
2 + 6

∫
xh′(x)p(x)dx+ 6

∫
x2h′′(x)p(x)dx+

∫
x3h′′′(x)p(x)dx

]
.

• If µ is parameter of interest, from (20), the prior should have the following form:

p(µ) ∝
[∫

σπ(σ|µ)dσ
] 1

2
.

• If σ is parameter of interest, from (20), the prior should have the following form:

p(σ) ∝ σ
1
2 +

1+3
∫
xh′(x)p(x)dx+3

∫
x2h′′(x)p(x)dx+ 1

2
∫
x3h′′′(x)p(x)dx

1+2
∫
xh′(x)p(x)dx+

∫
x2h′′(x)p(x)dx .

As special case, recall that for the N(µ, σ2) distribution, h′(x) = −x, h′′(x) = −1 and
h′′′(x) = 0. Hence p(σ) ∝ σ3.

Example 2: Consider the proper dispersion model introduced by Jorgensen (1997). The
probability density function of this model is given by

f(x|µ, λ) = a(λ)c(x) exp[λt(x, µ)],

where µ and λ are two parameters. Now observe that

∂ log f
∂µ

= λ
∂t

∂µ
,

∂ log f
∂λ

= u(λ) + t(x, µ),

where u(λ) = a′(λ)/a(λ). Accordingly,

∂2 log f
∂µ2 = λ

∂2t

∂µ2 ,
∂2 log f
∂µ∂λ

= ∂t

∂µ
,
∂2 log f
∂λ2 = u′(λ).
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Since E
(
∂t
∂µ
|µ, λ

)
= 0, the Fisher information matrix is

I(µ, λ) = Diag [Iµµ(µ, λ),−u′(λ)],

where Iµµ(µ, λ) = −λE
[
∂2t
∂µ2 |µ, λ

]
. Thus µ and λ are orthogonal in the sense of Cox and

Reid (1987). Further, ∂3 log f
∂µ3 = λ ∂3t

∂µ3 ,
∂3 log f
∂µ2∂λ

= ∂2t
∂µ2 ,

∂3 log f
∂µ∂λ2 = 0, ∂3 log f

∂λ3 = u′′(λ).

• When µ is the parameter of interest, it is easy to get that Idd = I−1
µµ (µ, λ), Addd =

E
[
∂3 log f
∂µ3 |µ, λ

]
= λE

[
∂3t
∂µ3 |µ, λ

]
and all the mjr = 0 except mdd = Idd. Hence, by using (21),

one gets

Q(µ) =
∫
I−1/2
µµ (µ, λ)π(λ|µ)dλ, T (µ) =

∫
λE

[
∂3t
∂µ3 |µ, λ

]
I−3/2
µµ (µ, λ)

2Q(µ) (22)

Then, by using (20), we can get the prior for µ.

• When λ is the parameter of interest, one gets that Idd = − 1
u′(λ) , Addd = E

[
∂3 log f
∂λ3 |µ, λ

]
=

u′′(λ) and all the mjr = 0 except mdd = Idd. By using (21), it is easy to check that

Q(λ) =
(
− 1
u′(λ)

)1/2

, T (λ) = − u
′′(λ)

2u′(λ) . (23)

Therefore, the prior for λ is proportional to(
− 1
u′(λ)

)1/4

× exp
[∫ u′′(λ)

2u′(λ)dλ
]

= (−u′(λ))1/4 (24)

Now, we consider several special cases of the above general result.

Example 3: Consider the two-parameter Gamma probability density function

f(x|µ, λ) = exp
(
−λ
µ
x

)
λλxλ−1

µλ
1

Γ(λ) .

Here,

a(λ) = λλ

Γ(λ) , t(x, µ) = −x
µ

+ log x
µ
.

• When µ is the parameter of interest, it is easy to get that

Iµµ = −λE
[
∂2t

∂µ2 |µ, λ
]

= − 1
µ2 , E

[
∂3t

∂µ3 |µ, λ
]

= 4
µ3 .

Then, by using (22), one gets

Q(µ) = µ
∫
λ−

1
2π(λ|µ)dλ, T (µ) = 2

µ
.
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Therefore, from (20), the prior should have the following form:

p(µ) ∝ µ−
3
2

[∫
λ−

1
2π(λ|µ)dλ

]1/2
.

When π(λ|µ) is independent of µ (for example, conditional Jeffreys’ general rule prior sug-
gested by Bernardo), the divergence prior for µ is proportional to µ− 3

2 .

• When λ is the parameter of interest, one gets that u(λ) = 1 + log λ− d
dλ

log Γ(λ). Then,
from (24), the prior should have the following form:

p(λ) ∝ [−u′(λ)] 1
4 .

Example 4: Consider the Inverse Gaussian distribution with probability density function

f(x|µ, λ) =
(

λ

2πx3

) 1
2

exp
[
−λ(x− µ)2

2µ2x

]
.

Here,

a(λ) = λ1/2, t(x, µ) = −(x− µ)2

2µ2x
.

• When µ is the parameter of interest, it is easy to get that

Iµµ = −λE
[
∂2t

∂µ2 |µ, λ
]

= λ

µ3 , E

[
∂3t

∂µ3 |µ, λ
]

= 6
µ4 .

Then, by using (22), one gets

Q(µ) = µ3/2
∫
λ−

1
2π(λ|µ)dλ, T (µ) = 3

µ
.

Therefore, from (20), the prior should have the following form:

p(µ) ∝ µ−
9
4

[∫
λ−

1
2π(λ|µ)dλ

]1/2
.

Similar to Example 3, when π(λ|µ) is independent of µ, the divergence prior is proportional
to µ− 21

4 .

• When λ is the parameter of interest, one gets that u(λ) = 1
2λ . Then, from (24), the prior

should have the following form:
p(λ) ∝ λ−

1
2 .

Example 5: (Fisher von-Mises) The probability density function

f(x|µ, λ) = exp[λ cos(x− µ)]
2πI0(λ) , where I0(λ) = 1

2π

∫
exp(λ cosx)dx.
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Then t(x, µ) = cos(x − µ), a(λ) = I−1
0 (λ). Hence, ∂t

∂µ
= sin(x − µ), ∂2t

∂µ2 = − cos(x − µ),
∂3t
∂µ3 = sin(x − µ), so that E

(
∂3t
∂µ3 |µ, λ

)
= E

(
∂t
∂µ
|µ, λ

)
= 0. Further u(λ) = − I′

0(λ)
I0(λ) and

u′(λ) = − d
dλ

[
I′

0(λ)
I0(λ)

]
. • When µ is the parameter of interest, it is easy to get that

Iµµ = −λE
[
∂2t

∂µ2 |µ, λ
]

= λ
I1(λ)
I0(λ) , E

[
∂3t

∂µ3 |µ, λ
]

= 0.

Then, by using (22), one gets

Q(µ) =
∫
λ−

1
2

[
I0(λ)
I1(λ)

]1/2

π(λ|µ)dλ (which is a constant), T (µ) = 0.

Therefore, from (20), the prior for µ is uniform distribution.

• When λ is the parameter of interest, one gets that u(λ) = − I′
0(λ)
I0(λ) . Then, from (24), the

prior should have the following form:

p(λ) ∝
[
d

dλ

(
I0(λ)
I0(λ)

)]1/4

.

Example 6: Let’s consider the selection of priors for the famous Neyman-Scott problem
(Berger and Bernardo 1992a, 1992b). This problem can be formalized as a fixed effects
one-way balanced ANOVA model.

Let Xi1, · · · , Xik|µi be mutually independent N(µi, σ2), i = 1, · · · , n, k ≥ 2. Here, k, the
number of observations within each treatment i is fixed, while the number of treatments, n,
can grow to infinity. The Fisher Information matrix is

I(µ1, · · · , µn, σ2) = k Diag(σ−2, · · · , σ−2,
nσ−4

n
).

If we consider all the parameters of equal importance, then one gets Jeffreys’ general rule
prior

πJ(µ1, · · · , µn, σ2) ∝ (σ2)−n/2−1.

The corresponding marginal posterior distribution of σ2 is an Inverse Gamma distribution
with two parameters equaling to nk

2 ,
n(k−1)S

2 respectively. Here S = 1
n(k−1)

∑n
i=1

∑k
j=1(Xij −

X̄i)2. Then the posterior mean of σ2 is given by n(k−1)S/(nk−2), while the posterior mode
is n(k − 1)S/(nk + 2). Both are inconsistent estimators of σ2.

Now we use the expression (20) to construct prior for this problem and show that the cor-
responding Bayes estimators of σ2 are consistent.

Here, σ2 is the parameter of interest, while µ1, · · · , µn are nuisance parameters. By (21),
one gets

Q(σ2) =
√

2
nk
σ2, T (σ2) = 2

σ2 .
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Therefore, the desired prior for σ2 obtained by (20) is proportional to (σ2)−3/2.

Letting the conditional prior for (µ1, · · · , µn) given σ2 equal to the conditional Jeffreys’
general rule prior suggested by Bernardo (1979) (in this case, it is the uniform distribution),
one gets the two-stage reference prior πR(µ1, · · · , µn, σ2) ∝ (σ2)−3/2.

The corresponding marginal posterior of σ2 is an Inverse Gamma distribution with two
parameters equaling to n(k−1)+1

2 , n(k−1)S
2 respectively. Then the posterior mean of σ2 is given

by n(k − 1)S/(nk − n − 1), while the posterior mode is n(k − 1)S/(nk − n + 3). Both are
consistent estimators of σ2.

Note. Datta and Ghosh (1995a) studied the same problem and developed their two-stage
reference prior based on the Kullback-Leibler divergence. Their prior is proportional to
(σ2)−1 which is slightly different from ours and also leads to consistent Bayes estimators of
σ2.

Example 7: One-way random effects model has been studied by many people through
Bayesian approach. Now, we revisit this model and only consider the balanced model.

Let Yij = µ + αi + eij, i = 1, . . . , k, j = 1, . . . , n. Here the common mean µ is an
unknown parameter, while αi’s and eij are mutually independent with αi’s i.i.d N(0, σ2

α) and
eij i.i.d N(0, σ2).

Berger and Bernardo (1992c) first found two-stage reference priors for variance components
in this problem. Later Ye (1994) and Datta and Ghosh (1995a, 1995b) found reference priors
under different parametrizations. Here, we follow the parametrization used in Ye (1994). Let
φ = nσ2

α

σ2 . So parameters are µ, σ2 and φ. The likelihood function L(µ, σ2, φ) can be written
as

L(µ, σ2, φ) ∝ σ−kn(1 + φ)−k/2 exp
{
− 1

2σ2

[
S2 + S1 + kn(Ȳ − µ)2

1 + φ

]}
,

where
Ȳi = 1

n

n∑
j=1

Yij, Ȳ = 1
kn

k∑
i=1

n∑
j=1

Yij,

S1 = n
k∑
i=1

(Ȳi − Ȳ )2, S2 =
k∑
i=1

n∑
j=1

(Yij − Ȳi)2.

Then the Fisher information matrix simplifies to

I(µ, σ2, φ) =


kn

(1+φ)σ2 0 0
0 kn

2σ4
k

2(1+φ)σ2

0 k
2(1+φ)σ2

k
2(1+φ)2

 .
The inverse matrix is

I−1(µ, σ2, φ) =


σ2(1+φ)
kn

0 0
0 2σ4

k(n−1) −2(1+φ)σ2

k(n−1)

0 −2(1+φ)σ2

k(n−1)
2n(1+φ)2

k(n−1)

 .
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To illustrate our method, we consider the following two cases.

1. µ is the parameter of interest. The common mean µ is of great relevance in meta analysis
(Morris and Normand 1992).

By (21), one gets

Q(µ) =
∫ (

(1 + φ)σ2

kn

)1/2

π(σ2, φ|µ)dσ2dφ (which is just a constant), T (µ) = 0.

Therefore, by using (20), the prior for µ is uniform distribution. If we take π(σ2, φ|µ) as the
conditional Jeffreys’ general prior which is proportional to (1 + φ)−1σ−2 in this case, then
the two-stage reference prior is

π(µ, σ2, φ) ∝ (1 + φ)−1σ−2.

2. φ is the parameter of interest. As pointed out by Ye (1994), the variance ratio σ2
α/σ

2 is
of great interest in genetic studies.

By (21), one gets

Q(φ) =
∫ (

2n(1 + φ)2

k(n− 1)

)1/2

π(µ, σ2|φ)dσ2dφ =
√

2n
k(n− 1)(1 + φ), T (φ) = 2− 1/n

1 + φ
.

Therefore, by using (20), the prior for φ is proportional to (1+φ)− 3
2 + 1

n . If we take π(µ, σ2|φ)
as the conditional Jeffreys’ general prior which is proportional to (1 +φ)−1/2σ−3 in this case,
then the two-stage reference prior is

π(µ, σ2, φ) ∝ (1 + φ)−2+1/nσ−3.

4. Summary

In this paper, We generalize the idea from Bernardo (1979) to handle the problem of
selection of priors in the presence of nuisance parameters. Instead of using Kullback-Leibler
divergence which is studied by Bernardo (1979), we use a general divergence criterion to
develop objective priors. This general divergence criterion is a family of divergence measures
between prior and corresponding posterior including the Kullback-Leibler, Bhattacharyya-
Hellinger and the Chi-square divergence. An interesting finding is that with one exception
(the Chi-square divergence), for every divergence measure in the general divergence family,
the desired divergence prior is the same prior as Bernardo found. Under the Chi-square
divergence, we have shown that the objective prior should be the solution to a set of partial
differential equations. We also consider a special case when the parameter of interest is one
dimensional. In this case, the closed forms of the optimal priors are provided and also several
examples are given.
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