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Abstract
We study the problem of nonparametric estimation of linear multiplier function θ(t)

for processes satisfying stochastic differential equations of the type

dXt = θ(t)Xtdt+ ε dW̃H
t , X0 = x0, 0 ≤ t ≤ T

where {W̃H
t , t ≥ 0} is a mixed fractional Brownian motion with known Hurst index H and

study the asymptotic behaviour of the estimator as ε→ 0.
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1. Introduction

Professor Aloke Dey and I were colleagues for several years at the Indian Statistical
Institute, Delhi Centre until I left due to my superannuation in the year 2004. Prof. Dey’s
expertise was in the area of optimal designs and my area of interest is in inference for stochas-
tic processes. Even though our areas of research are completely different, we appreciated
each others works and had a high regard for each other. I missed his association after I
moved to Hyderabad. We did meet once or twice during the last sixteen years after I left
New Delhi. I would like to thank Professor Vinod Gupta for inviting me to submit an article
for the special issue of this journal dedicated to the memory of Professor Aloke Dey and pay
my homage to a great statistician.

Statistical inference for fractional diffusion type processes satisfying stochastic differ-
ential equations driven by fractional Brownian motion have been studied earlier and a com-
prehensive survey of various methods is given in Mishura (2008) and Prakasa Rao (2010).
There has been a recent interest to study similar problems for stochastic processes driven
by a mixed fractional Brownian motion (mfBm). Existence and uniqueness for solutions of
stochastic differential equations driven by a mfBm are investigated in Mishura and Shevch-
henko (2012) and Shevchenko (2014) among others. Maximum likelihood estimation for
estimation of drift parameter in a linear stochastic differential equations driven by a mfBm
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is investigated in Prakasa Rao (2018). The method of instrumental variable estimation for
such parametric models is investigated in Prakasa Rao (2017). Some applications of such
models in finance are presented in Prakasa Rao (2015 a,b). For related work on paramet-
ric inference for processes driven by mfBm, see Marushkevych (2016), Rudomino-Dusyatska
(2003), Song and Liu (2014), Mishra and Prakasa Rao (2017), Prakasa Rao (2009) and
Miao (2010) among others. Nonparametric estimation of the trend coefficient in models
governed by stochastic differential equations driven by a mixed fractional Brownian motion
is investigated in Prakasa Rao (2019).

We now discuss the problem of estimating the function θ(t), 0 ≤ t ≤ T (linear mul-
tiplier) based on the observations of a process {Xt, 0 ≤ t ≤ T} satisfying the stochastic
differential equation

dXt = θ(t)Xtdt+ ε dW̃H
t , X0 = x0, 0 ≤ t ≤ T

where {W̃H
t , t ≥ 0} is a mixed fractional Brownian motion (mfBm) and study the properties

of the estimator as ε→ 0.

2. Mixed Fractional Brownian Motion

We will now summarize some properties of stochastic processes which are solutions of
stochastic differential equations driven by a mixed fractional Brownian motion for complete-
ness.

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions. The natural
filtration of a stochastic process is understood as the P -completion of the filtration generated
by this process. Let {Wt, t ≥ 0} be a standard Wiener process and WH = {WH

t , t ≥ 0} be
an independent normalized fractional Brownian motion with Hurst parameter H ∈ (0, 1),
that is, a Gaussian process with continuous sample paths such that WH

0 = 0, E(WH
t ) = 0

and
E(WH

s W
H
t ) = 1

2[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0. (1)

Let
W̃H
t = Wt +WH

t , t ≥ 0.
The process {W̃H

t , t ≥ 0} is called the mixed fractional Brownian motion with Hurst index
H. We assume here after that Hurst index H is known. Following the results in Cheridito
(2001), it is known that the process W̃H is a semimartingale in its own filtration if and only
if either H = 1/2 or H ∈ (3

4 , 1].

Let us consider a stochastic process X = {Xt, t ≥ 0} defined by the stochastic integral
equation

Xt =
� t

0
C(s)ds+ W̃H

t , t ≥ 0 (2)

where the process C = {C(t), t ≥ 0} is an (Ft)-adapted process. For convenience, we write
the above integral equation in the form of a stochastic differential equation

dXt = C(t)dt+ dW̃H
t , t ≥ 0 (3)
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driven by the mixed fractional Brownian motion W̃H . Following the recent works by Cai et al.
(2016) and Chigansky and Kleptsyna (2015), one can construct an integral transformation
that transforms the mixed fractional Brownian motion W̃H into a martingale MH . Let
gH(s, t) be the solution of the integro-differential equation

gH(s, t) +H
d

ds

� t

0
gH(r, t)|s− r|2H−1sign(s− r)dr = 1, 0 < s < t. (4)

Cai et al. (2016) proved that the process

MH
t =

� t

0
gH(s, t)dW̃H

s , t ≥ 0 (5)

is a Gaussian martingale with quadratic variation

< MH >t=
� t

0
gH(s, t)ds, t ≥ 0 (6)

Furthermore the natural filtration of the martingale MH coincides with that of the mixed
fractional Brownian motion W̃H . It is clear that the quadratic variation < MH >t is dif-
ferentiable with respect to t. Let β(t) denote the derivative of the function < MH >t with
respect to t. Suppose that, for the martingale MH defined by the equation (6), the sample
paths of the process {C(t), t ≥ 0} are smooth enough in the sense that the process

QH(t) = d

d < MH >t

� t

0
gH(s, t)C(s)ds, t ≥ 0 (7)

is well defined. Define the process

Zt =
� t

0
gH(s, t)dXs, t ≥ 0. (8)

As a consequence of the results in Cai et al. (2016), it follows that the process Z is a
fundamental semimartingale associated with the process X in the following sense.

Theorem 1: Let gH(s, t) be the solution of the equation (4). Define the process Z as given
in the equation (8). Then the following relations hold.

(i) The process Z is a semimartingale with the decomposition

Zt =
� t

0
QH(s)d < MH >s +MH

t , t ≥ 0 (9)

where MH is the martingale defined by the equation (5). (ii) The process X admits the
representation

Xt =
� t

0
ĝH(s, t)dZs, t ≥ 0 (10)
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where
ĝH(s, t) = 1− d

d < MH >s

� t

0
gH(r, s)dr. (11)

(iii) The natural filtrations (Xt) and (Zt) of the processes X and Z respectively coincide.

Applying the Corollary 2.9 in Cai et al. (2016), it follows that the probability measures
µX and µW̃H generated by the processes X and W̃H on an interval [0, T ] are absolutely
continuous with respect to each other and the Radon-Nikodym derivative is given by

dµX
dµW̃H

= exp[
� T

0
QH(s)dZs −

1
2

� T

0
[QH(s)]2d < MH >s] (12)

which is also the likelihood function based on the observation {Xs, 0 ≤ s ≤ T.} Since the
filtrations generated by the processes Xand Z are the same, the information contained in
the families of σ-algebras (Xt) and (Zt) is the same and hence the problem of the estimation
of the parameters involved based on the observation {Xs, 0 ≤ s ≤ T} and {Zs, 0 ≤ s ≤ T}
are equivalent.

3. Preliminaries

Let W̃H = {WH
t , t ≥ o} be a mixed fractional Brownian motion with known Hurst

parameter H ∈ (1/2, 1). Consider the problem of estimating the function θ(t), 0 ≤ t ≤ T
(linear multiplier) from the observations {Xt, 0 ≤ t ≤ T} of process satisfying the stochastic
differential equation

dXt = θ(t)Xtdt+ ε dW̃H
t , X0 = x0, 0 ≤ t ≤ T (13)

and study the properties of the estimator as ε→ 0. Consider the differential equation in the
limiting system of (13), that is , for ε = 0, given by

dxt = θ(t)xtdt, x0, 0 ≤ t ≤ T. (14)

Observe that
xt = x0 exp{

� t

0
θ(s)ds).

We assume that the following condition holds:

(A1): The trend coefficient θ(t) over the interval [0, T ] is bounded by a constant L.

The condition (A1) will ensure the existence and uniqueness of the solution of the
equation (13).

Lemma 1: Let the condition (A1) hold and {Xt, 0 ≤ t ≤ T} and {xt, 0 ≤ t ≤ T} be the
solutions of the equations (13) and (14) respectively. Then, with probability one,

(a)|Xt − xt| < eLtε sup
0≤s≤t

|W̃H
s | (15)
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and
(b) sup

0≤t≤T
E(Xt − xt)2 ≤ 4e2LT ε2(T 2H + T ). (16)

Proof of (a): Let ut = |Xt − xt|. Then by (A1); we have,

ut ≤
� t

0
|θ(v)(Xv − xv)|dv + ε|W̃H

t | (17)

≤ L

� t

0
uvdv + ε sup

0≤s≤t
|W̃H

s |.

Applying the Gronwall’s lemma (cf. Lemma 1.12, Kutoyants (1994), p.26), it follows that

ut ≤ ε sup
0≤s≤t

|W̃H
s |eLt. (18)

Proof of (b): From the equation (15), we have

E(Xt − xt)2 ≤ e2Ltε2E[(sup |W̃H
s |)2] (19)

≤ 4e2Ltε2(t2H + t)

from the fact that the mixed fractional Brownian motion WH is a sum of a Wiener process
and fractional Brownian motion and from the maximal inequalities for a Wiener process and
a fractional Brownian motion (cf. Muneya and Shieh (2009), Prakasa Rao (2014)). Hence

sup
0≤t≤T

E(Xt − xt)2 ≤ 4e2LT ε2(T 2H + T ). (20)

This completes the proof of the lemma.

Define

Q∗H,θ(t) = d

d < MH >t

� t

0
gH(t, s)θ(s)x(s)ds (21)

= d

d < MH >t

� t

0
gH(t, s)θ(s)[x0 exp(

� s

0
θ(u)du)]ds

by using the equation (14). Here after, we consider the problem of nonparametric estimation
of the function Q∗H,θ(t) instead of the function θ(t). We assume that the function θ(.) belongs
to a class of functions Θ uniformly bounded by a constant L and the following condition
holds:
(A2): Differentiation under the integral sign is valid in the equation (21) and the function
β(t)Q∗H,θ(t)is Lipschitz of order γ in the sense that

|β(t)Q∗H,θ(t)− β(s)Q∗H,θ(s)| ≤ C|t− s|γ

for some constant C > 0 and γ > 0 uniformly for θ(.) ∈ Θ.
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Instead of estimating the function θ(.), we consider the problem of estimating the
function Q∗H,θ(.) defined via the equation (21). This is justified by the observation that the
processes {Xt, 0 ≤ t ≤ T} governed by the stochastic differential equation (13) and the
corresponding related process {Zt, 0 ≤ t ≤ T} as defined by (8) have the same filtrations by
the results in Cai et al. (2016).

Consider the kernel type estimator defined by

Q̂H,θ(t) = 1
hε

� T

0
G
(
s− t
hε

)
dZs (22)

= 1
hε

� T

0
G
(
s− t
hε

) (
QH,θ(s)d < MH >s +ε dMH

s

)
= 1

hε

� T

0
G
(
s− t
hε

) (
QH,θ(s)β(s)ds+ ε dMH

s

)
by using the equation (9) where G(u) is a bounded function with finite support [A,B]
satisfying the condition

(A3):G(u) = 0 for u < A, u > B,
� B
A
|G(u)|du <∞ and

� B
A
G(u)du = 1;

Consider a normalizing function hε → 0 as ε→ 0. In addition, suppose that ε2h−3/2
ε → 0

as ε→ 0.

4. Main Results

Theorem 2 : Suppose the conditions (A1), (A2) and (A3) are satisfied. Then the estimator
Q̂H,θ(t) is uniformly consistent, that is,

lim
ε→0

sup
θ(.)∈Θ

sup
0≤t≤T

Eθ(|Q̂H,θ(t)− β(t)Q∗H,θ(t)|2) = 0. (23)

Proof: From (9), we have,
(24)

Eθ|Q̂H,θ(t)− β(t)Q∗H,θ(t)|2

= E

∣∣∣∣∣ 1
hε

� T

0
G
(
s− t
hε

)
(QH,θ(s)β(s)ds+ εdMH

s )− β(t)Q∗H,θ(t)
∣∣∣∣∣
2

= Eθ|
1
hε

� T

0
G
(
s− t
hε

)
(QH,θ(s)−Q∗H,θ(s))β(s)ds

+ 1
hε

� T

0
G
(
s− t
hε

)
(Q∗H,θ(s)β(s)−Q∗H,θ(t)β(t))ds

+ ε

hε

� T

0
G
(
s− t
hε

)
dMH

s |2
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= Eθ[I1 + I2 + I3]2 (denoting the three integrals as I1, I2 and I3 respectively)
≤ 3 E(I2

1 ) + 3 E(I2
2 ) + 3 E(I2

3 ).

Now

3 Eθ[I2
1 ] = 3 Eθ

∣∣∣∣∣ 1
hε

� T

0
G
(
s− t
hε

)
(QH,θ(t)−Q∗H,θ(s))β(s)ds

∣∣∣∣∣
2

(25)

≤ 3
h2
ε

[
� T

0
G2

(
s− t
hε

)
ds][E

� T

0
β2(s)(QH,θ(s)−Q∗H,θ(s))2ds].

Note that
Eθ

� T

0
β2(s)(QH,θ(s)−Q∗H,θ(s))2d < MH >s (26)

=
� T

0
β2(s)Eθ

[
d

d < MH >s

� s

0
gH(s, v)θ(v)(X(v)− x(v))dv

]2

d < MH >s

≤ C1

� T

0
Eθ

[� s

0

∂gH(s, v)
∂s

θ(v)(X(v)− x(v))dv
]2

ds

≤ C2

� T

0
{
� s

0

(
∂gH(s, v)

∂s

)2

θ2(v)dv
� s

0
E(X(v)− x(v))2dv}ds

for some positive constant C2 depending on T and H. Furthermore
Eθ(Xv − xv)2 ≤ 4e2Lvε2(v2H + v) (by Lemma 1).

Hence, from the equation (26) and the condition (A3), we get that

3Eθ[I2
1 ] ≤ C

1
h2
ε

{� ∞
−∞

G2(s− t
hε

)β(s)ds
}
ε2hε (27)

×
� T

0
β2(s)

{� s

0
e2Lv(v2H + v)dv

}
� s

0

(
∂gH(s, v)

∂s

)2

dv

 ds
≤ C3ε

2h−1
ε

for some positive constant C3 depending on T and H and the last term tends to zero as
ε→ 0.

In addition,

I2
2 = 3

{
1
hε

� T

0
G
(
s− t
hε

)
(Q∗H,θ(s)ds−Q∗H,θ(t))d < MH >s

}2

(28)

=
{

1
hε

� T

0
G
(
s− t
hε

)
(Q∗H,θ(s)β(s)−Q∗H,θ(t)β(t))ds

}2

= 3
{� ∞
−∞

G(u)(Q∗H,θ(t+ hεu)β(t+ hεu)−Q∗H,θ(t)β(t))du
}2

(by(A2))
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≤ C4

{� ∞
−∞

G(u)|hεu|γdu
}2

(by(A2))

≤ C4h
2γ
ε

(� ∞
−∞

G(u)|u|γdu
)2

≤ C5h
2γ
ε by(A3))

for some positive constant C5 depending on T and Hand the last term tends to zero as
ε→ 0. Furthermore

I2
3 = 3ε2

h2
ε

E

(� T

0
G
(
s− t
hε

)
dMH

s

)2

(29)

= 3ε2
h2
ε

� T

0
G2

(
s− t
hε

)
β(s)ds

≤ 3ε2
h2
ε

{� T

0
G2

(
s− t
hε

)
ds

� T

0
β2(s)ds

} 1
2

≤ C6
3ε2
h2
ε

{
hε(

� ∞
−∞

G2(u) du)
} 1

2

≤ C7ε
2h−3/2

ε .

for some positive constants C7 depending on T and H. The result follows from the equations
(27), (28) and (29).

Corollary 1: Under the conditions (A1), (A2) and (A3),
lim
ε→0

sup
θ(.)∈Θ

E
{
Q̂H,θ(t)− β(t)Q∗H,θ(t)

}2
ε

8γ
4γ+3 <∞.

Proof: From the inequalities derived in (27), (28) and (29), we get that there exist positive
constants D1, D2 and D3 depending on T and H such that

sup
θ(.)∈Θ

E
{
Q̂H,θ(t)− β(t)Q∗H,θ(t)

}2
≤ D1ε

2h−1
ε +D2h

2γ
ε +D3ε

2h
− 3

2
ε . (30)

Let hε = εβ, 0 < β < 4
3 . Then the condition h2γ

ε = ε2h−3/2
ε leads to the choice β = 4

4γ+3 and
we get an optimum bound in (30) and hence

lim
ε→0

sup
θ(.)∈Θ

E
[
Q̂H,θ(t)− β(t)Q∗H,θ(t)

]2
ε−

8γ
4γ+3 ≤ C (31)

for some positive constant C which implies the result.
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