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Abstract

This paper provides an overview of the estimators of finite population mean in the presence
of unit non-response. A special emphasis is placed on estimating the response probabilities us-
ing non-parametric methods. These estimated probabilities may then be used for the adjustment
of Horvitz-Thompson estimator or other estimators considered in the literature. Nonparametric
predicted values based on some auxiliary information are used to find the estimate of the finite
population mean, while adjusting it by a non-parametric estimate of the response probability.

Key words: Generalized regression estimator; Local polynomial regression; Nonresponse; Su-
perpopulation.

1. Introduction

In many sample surveys some of the units contacted do not respond to some or all the
items on a questionnaire. Such non-response, is common in practice whenever the population
consists of units such as individuals, households, or businesses. Non-response is treated as one
of the potential sources of missing data that may occur as unit non-response, item non-response
or as partial non-response where the sampled unit may not respond to all the survey items, the
sampled unit fails to provide responses to a small number of items and the sampled unit fails to
provide a large number of survey items, respectively. Hansen and Hurwitz (1946) brought the
problem of non-response in surveys to forefront by highlighting the bias incurred by using the
naive estimator of mean of the subsample of respondents. A large number of techniques to han-
dle missing data comes under the rubric of weighting adjustments and imputation techniques
(see Brick and Kalton (1996) for an extensive review in this category). Weighting adjustments
inflate the weights for the responding units with an aim of obtaining (approximately) unbiased
estimators whereas the goal of the imputation methods, as put forward in Brick and Kalton
(1996), is to “compensate for the missing data in such a manner that the analysis file may be
subjected to any form of analysis without the need for further consideration of the missing
data.” The subject matter treated in this article is the estimation of the population mean under
unit non-response; the focus is on the estimators based on estimators of response probabilities.

In order to put things in perspective, we consider a finite population U = {1, 2, ..., N}
consisting of N units, with N being known. The characteristic of interest is denoted by y and
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the corresponding population mean that we are interested in estimating is given by

Ȳ =
1

N

∑
i∈U

yi. (1.1)

We will also assume the availability of an auxiliary variable x (or a set of κ auxiliary variables
x1, ..., xκ) whose values are known for all the units of the population. We will denote by vector
x,y the values of x and y for all the units of the population.

Let s be a sample of fixed size n drawn from U according to a known sampling design p(.)
that is independent of the characteristic of interest, but may depend on the auxiliary character-
istic, such that

p(s) ≥ 0 for all s ∈ L (1.2)

and ∑
s∈L

p(s) = 1 (1.3)

where L is the set of all s of fixed size n. The inclusion probability of unit i is defined as

πi =
∑
s∈Li

p(s) such that πi > 0 for all i ∈ U (1.4)

where Li = {s : i ∈ s} .

With these notations on hand the well known Horvitz-Thompson (abbreviated as H-T) es-
timator of Ȳ is given by

ȳπ =
1

N

∑
i∈s

ωiyi (1.5)

where ωi = π−1i . Defining the random variable Ii as the indicator of the inclusion of the ith unit
in the sample, I = {I1, ..., IN} is used to denote the vector of sample inclusion indicators.

In order to model the non-response, it is common to use a probabilistic approach, where
every unit in the population is assumed to be a (potential) respondent or non-respondent. Let
Ri denote the indicator variable of ith unit responding in the survey, i ∈ U, the sample of
respondents will be denoted by sR, i.e. sR = {i ∈ s : Ri = 1}. The number of respondents
will be denoted by nR. The distribution of the vector (Ri : i ∈ s) is called the response
mechanism, that will be denoted by q(.). In this article we consider the response mechanism
generated by Poisson sampling where for the random variable Ri for each i ∈ U,

P (Ri = 1|I, y, x) = P (Ri = 1|x) ≡ φi ≡ φ(xi) (1.6)

for all i ∈ U, where φ(.) is a smooth function, but otherwise unspecified.

As an alternative to the H-T estimator, it is also customary to consider the ratio estimator
(see Cassel, Särndal and Wretman (1977), §15.6) that is just based on the responding units, i.e.

ȳrat,π =

∑
i∈s ωiyi∑
i∈s ωi

. (1.7)

(The reference to ‘Cassel, Särndal and Wretman’, henceforth will be shortened as ‘CSW’.)
In what follows we provide a selective review of the modifications of these estimators under
the probabilistic set-up of non-response. The main focus of this review article is the case of
unknown φi, however, first we expose the case of known φi.
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2. Adjustment for Unit Non-response with Known Response Probabilities

2.1 Nargundkar-Joshi adjustment

Assuming the knowledge of the response probabilities Nargundkar and Joshi (1975)
modified the Horvitz-Thompson estimator as

ȳπφ =
1

N

∑
i∈sR

ωiyi
φi

. (2.1)

An estimator M is said to be design unbiased or p− unbiased for the population mean Ȳ if

Ep(M) = Ȳ .

The Horvitz-Thompson estimator is p− unbiased, however, since a non-response distribution
is introduced into the estimation procedure, unbiasedness must now be defined with respect to
the design p and the response mechanism q.

It can be easily shown that the Nargundkar-Joshi estimator is pq unbiased if the true distri-
bution of the respondents is q(.). In practice assumptions must be made about the responding
distribution which may be mis-specified and in turn cause pq bias. Nargundkar and Joshi (1975)
also derived an unbiased estimator of the variance of their estimator.

The ratio estimator given in (1.7) may be adjusted using the above strategy resulting into
the ratio estimator

ȳrat,πφ =

∑
i∈sR ωiφ

−1
i yi∑

i∈sR ωiφ
−1
i

. (2.2)

It may be noted that the above estimator is not affected by the non-response mechanism in case
φi ≡ φ, ∀i, as it conveniently cancels out from the numerator and denominator. This is the
case of ignorable non-response, a case that is not a common occurrence as the non-response
probability differs from unit to unit in a practical setting.

2.2 CSW - generalised regression estimator

The basic idea behind the GRE is to write the population total ty as

ty =
∑
i∈U

mi +
∑
i∈U

ei (2.3)

where ei = yi − mi, for a given set of {m1, ...,mN}. Now the second term can be estimated
by t̂eπ =

∑
i∈sR ωiei for a sample with complete response. And it can be adjusted taking into

account the non-response by considering the estimator t̂eπφ =
∑

i∈sR ωiei/φi. When mi are
obtained by predicted values from a multiple linear regression of y on a set of p regressors, we
get the celebrated generalised regression estimator due to Cassel, Särndal and Wretman (1979).

Here we outline the details of this estimator by considering only one auxiliary variable x.
The motivation for this approach is to consider the finite population as a realization from an
infinite super population ξ, in which

yi = m(xi) + εi, i ∈ U (2.4)
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where εi are independent random variables with mean 0 and variance υ(xi), µ(x) is a smooth
function of x and v(x) is smooth and strictly positive. The function m(x) may be called the
mean function and υ(x) the variance function, as given xi, the super population model ξ ensures
that

Eξ[yi] = m(xi) and Vξ(yi) = υ(xi). (2.5)

The multiple linear model is the usual model that is used to define mi = ŷi. (Its form is
expressed later in this section). This estimator may be preferred in practice as it is shown to be
design consistent and model unbiased. As a result it may provide large gains in efficiency over
the usual H-T estimator when the model is correct other wise it could provide an estimator that
may not lose much efficiency over the usual H-T estimator. Thus the generalized regression
estimator in the presence of non-response is given by

ȳGREπφ =
1

N

∑
i∈U

ŷi +
1

N

∑
i∈sR

ωiφ
−1
i (yi − ŷi). (2.6)

Another variant of the above estimator, that naturally arises based on the methodology of
the ratio estimator, namely

ȳGRE,ratπφ =
1

N

∑
i∈U

ŷi +

∑
i∈sR ωiφ

−1
i (yi − ŷi)∑

i∈sR ωiφ
−1
i

. (2.7)

In the general case of ν predictors, the predicted values used in the so called GRE are
motivated by model assisted approach (see Särndal, Swensson and Wretman (1992)), where
the population U as a random sample from a multiple linear regression model given by

Eξ[yi] = x′iβ and Vξ(yi) = υ(xi) = υi, (2.8)

where xi represents the vector of explanatory variables corresponding to the unit i ∈ U. The
variance function υ(xi) is assumed to be known except for a multiplicative constant. In this
set-up ŷi is given by

ŷi = [1 x1i ... xνi]β̂

with β̂ given by
β̂=
(
X′sRV

−1
sR

Π−1sR
Φ−1sR

XsR

)−1
X′sRV

−1
sR

Π−1sR
Φ−1sR

ysR , (2.9)

where VsR ,ΠsR , and ΦsR are (nR × nR) diagonal matrices with diagonal elements respectively
of vi, πi and φi, (i ∈ sR) , and XsR is a ((ν + 1)× nR) matrix with first column of 1’s and the
next columns being populated by the values of ν predictors corresponding to the respondents,
and ysR is the vector of y− observations for the sample of respondents.

2.3 Breidt-Opsomer - local polynomial regression (LPR) estimator

Breidt and Opsomer (2000) considered non-parametric prediction of m(x) by local
polynomial (of degree ν) kernel-regression, that is outlined below. For a symmetric kernel
K and band-width h define n× (ν + 1) matrix

Xsi = [1 xj − xi, ..., (xj − xi)ν ]j∈sR (2.10)
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and define n× n matrix

Wsi = diag

{
1

hπjφj
K

(
xj − xi
h

)}
j∈sR

. (2.11)

Then the local polynomial regression estimator of m(xi) is given by

m̂iπφ = e′1(X′siWsiXsi)
−1X′siWsiys, (2.12)

where e1 is a column vector of appropriate dimension with first element 1 and rest of the
elements being zero.

Thus the LPR estimator under non-response is given by

ȳLPR,πφ =
1

N

∑
i∈U

m̂iπφ +
1

N

∑
i∈sR

ωi(yi − m̂iπφ)

φi
. (2.13)

This may be again modified with ratio estimator in the background as

ȳLPRrat,πφ =
1

N

∑
i∈U

m̂iπφ +

∑
i∈sR ωiφ

−1
i (yi − m̂iπφ)∑

i∈sR ωiφ
−1
i

. (2.14)

2.4 Chaubey-Crisalli - generalised smoothing estimator

Chaubey and Crisalli (2002) proposed the generalized smoothing estimator (GSE) of
ȳN by replacing ŷi in GRE by adapting non-parametric Nadaraya-Watson regression estimator
(Nadaraya (1964), Watson (1964)) ofm(xi).As is well-known the Nadaraya-Watson regression
estimator is a special case of the local polynomial kernel regression with ν = 0, Chaubey
and Crisalli estimator may be considered as a special case of the estimator considered above.
However, there is a shuttle difference between the two estimators. Noting that for the matrices
involved in finding m̂πφ, their elements represent estimation of various population totals, which
are known for the auxiliary variable. Chaubey and Crisalli estimator uses their population
values instead of their estimators. We can explicitly write the corresponding expression as

m̃πφ(xi) =

∑
j∈sR ωjKh (xi − xj)φ−1j yj∑

j∈UKb (xi − xj)
≡ m̃iπφ, (2.15)

where Kh(.) = h−1K(./h). The motivation of the above estimator comes from the population
based nonparametric kernel estimator of m(x) given by

mo (x) =
∑

j∈U
wj(x)yj (2.16)

where

wj(x) =
Kh (x− xj)∑

i∈U
Kh (x− xi)

.

The difference between the nonparametric smoothing based estimators proposed in Chaubey
and Crisalli (2002) and Breidt and Opsomer (2002), now becomes clear. Where as Breidt and
Opsomer (2002) consider the sample based estimator of the denominator in (2.15), Chaubey
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and Crisalli (2000) use the population based value. The estimator parallel to (2.13) and (2.14)
using the sample estimate of the numerator of the Nadaraya-Watson estimator are

ȳGSE,πφ =
1

N

∑
i∈U

m̃iπφ +
1

N

∑
i∈sR

ωi(yi − m̃iπφ)

φi
. (2.17)

and

ȳGSErat,πφ =
1

N

∑
i∈U

m̃iπφ +

∑
i∈sR ωiφ

−1
i (yi − m̃iπφ)∑

i∈sR ωiφ
−1
i

. (2.18)

respectively.

Our emphasis in the present paper is centered around the non-parametric regression based
predicted values in considering the so called generalized difference estimator (see Särndal,
Swensson and Wretman 1992, p.22), however, other modern estimators as discussed in a recent
review article by Breidt and Opsomer (2017) may also be used.

Remark 2.1: The ratio estimator ȳrat,π is to be preferred over the H-T in a variety of
situations, even though, it may not be design unbiased. The reader is referred to Särndal,
Swensson and Wretman (1992) §5.7 for a variety of examples in favor of the ratio estimator.
One may extrapolate these advantages in favor of the estimator (2.2) over (2.1) or that of the
estimator (2.14) over (2.13) and that of (2.14) over (2.13).

Remark 2.2: One may be tempted to derive a similar conclusion while contrasting the
nonparametric regression estimators (2.12) and (2.15) also. In this situation, however, the ad-
vantage of m̂ over m̃ is not clear. As for as I am aware of, there is no definitive answer in the
literature, especially in the context of non-response problem.

3. Adjustment for Unit Non-response with Unknown Response Probabilities

In practice the response probabilities are not known and they must be estimated. All the
estimators presented in the previous section may be adapted by plug-in method. For example,
for a given set of estimated response probabilities φ̂i, i ∈ sR, the estimator ȳπφ becomes

ȳπφ̂ =
1

N

∑
i∈sR

ωiyi

φ̂i
. (3.1)

Särndal and Hui (1981) reformulated Nargundkar and Joshi (1975) procedure by embed-
ding the response probabilities in their model assisted approach. In doing this, they assumed
that the individual response probabilities φk are dependent on the known vector of auxiliary
variables xi, i = 1, 2, ..., q, i.e.,

φk = f(x′k; θ) (3.2)

where θ is an unknown vector of coefficients that can be estimated from the available data. The
function f may be thought of as coming from a link function through generalized linear model
set up. For example, using the logistic regression

f(x′k; θ) =
exp(x′kθ)

1 + exp(x′kθ)
.
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The unknown θ is estimated by minimizing the likelihood function

L (θ) =
∏
i∈sR

φi
∏
i∈scR

(1− φi) . (3.3)

The resulting estimated parameter θ̂ is used to estimate the individual response probabilities

φ̂i = f(x′i; θ̂). (3.4)

Särndal and Hui (1981) investigated the properties of this method by means of Monte Carlo
experiments. They concluded that if the regression model is representative of the population
point scatter, then the estimator ȳGRE,πφ̂ is design unbiased even if the response probabilities
are wrongly estimated using the response model. On the other hand if regression model is not
representative of the population point scatter then m̂GRE,πφ̂ can be response unbiased if the
response mechanism is correctly modeled but then the variance of ȳGRE,πφ̂ increases.

In order not to be over influenced by the mis-specification of the response modeling, non-
parametric approach of estimation of the response probabilities have been advocated by several
authors in recent years, some of which are featured next.

3.1 Nonparametric estimators of response probabilities

Giommi (1985, 1987) considered non-parametric kernel regression based estimator of
response probabilities using uniform kernel and Gaussian kernels respectively. This approach
was further investigated further investigated by Niyosenga (1994). However, these authors
did not consider the inclusion probabilities in their nonparametric estimators. Crisalli (1999)
proposed estimation of response probabilities, in his doctoral thesis, by using a general kernel
K∗ while incorporating the inclusion probabilities

φ̂i =

∑
j∈s ωjK

∗
h(xj − xi)Rj∑

j∈s ωjK
∗
h(xj − xi)

. (3.5)

The notationK∗ here indicates that the kernel chosen here may be different from that employed
in estimating m(x).

Da Silva and Opsomer (2006) investigated the asymptotic properties of ȳπφ̂ and those of
ȳrat,πφ̂ estimator parallel to Hajék’s set-up under a super-population model under non-response.
Further, Da Silva and Opsomer (2009) extended the results in the above paper using local
polynomial kernel regression

Remark 3.1: Da Silva and Opsomer (2006) pointed out one possible difficulty in using
the kernel estimator of the response probabilities when there are no respondents for x ∈ (xi −
h, xi + h) in which case φ̂i will be zero and baryφ̂ is not well defined. For this reason this
estimator was modified as

φ̂i =
max(

∑
j∈s ωjKh(xj − xi)Rj, δ(Nn)−1)∑

j∈s ωjKh(xj − xk)
(3.6)

that is bounded away from zero. Hence forth, φ̂k will refer to these modified values.



64 YOGENDRA P. CHAUBEY [Vol. 16, No. 1

Remark 3.2: Through a number of simulation studies, Crisalli (1999, Chap. 5) affirmed
that the generalised smoothing estimator

ȳGSE =
1

N

∑
i∈U

m̃iπφ̂ +
1

N

∑
i∈sR

ωiei. (3.7)

that does not incorporate the estimated response probabilities, may still be viable alternative
to ȳπφ̂. Consequently, it affirms the dictum pronounced in Särndal and Hui (1981) that if the
population values are estimated accurately, prescription of the response mechanism may not be
as important (see Crisalli (1999), Chapter 5).

Under a series of technical assumptions, Da Silva and Opsomer (2006) [see their Theorem
1, Eqs. (10) and (11)]

Epq

[
1

N

∑
i∈s

ωkykRk

φ̂k
− 1

N

∑
k∈U

yk

]
= O(h3/2n ) +O

(
1

nhn

)
, a.s. PX . (3.8)

Using this result and applying it to yjKb(xi − xj) in place of yj we claim that

E

[
m̂φ̂(xi)−

1
N

∑
j∈U yjK

∗
b (xi − xj)

1
N

∑
j∈UK

∗
b (xi − xj)

]
= O(h3/2n ) +O

(
1

nhn

)
, a.s. PX .

(3.9)

Similarly the second term of ȳGSEφ̂ can be roughly approximated by

1

N

∑
i∈s

ωi(yi − m̂φ̂(xi))Ri

φ̂i
≈ 1

N

∑
i∈s

ωi(yi − m̂o(xi))Ri

φ̂i
. (3.10)

Now, using Theorem 1 of da Silva and Opsomer (2006) again on the right hand side of the
above equation we get

E
[
ȳGSEφ̂ − ȳN

]
→ 0, a.s. Pξ. (3.11)

This provides a rough sketch of the asymptotic unbiasedness and model consistency of the
model assisted estimator ȲGSEφ̂ .

In the interest of the readability of the material, we have avoided discussions of technical
materials. For these and other related discussion, the reader may be interested in the recent
article by Breidt and Opsomer (2017). In order to gauge the performance of the estimators
discussed here we report on a simulation study in the following section. In this study, we use
the predicted values yk for executing the GSE based on the Nadaraya-Watson estimator as well
as the spline regression. We have also considered a modification of the estimator of φ̂k using
the kernel regression and spline regression that are summarized in the next subsection.

3.2 Binary kernel regression for non-response probabilities

Note that the kernel based non-parametric regression estimator, such as that of φk pro-
posed in Eq. (3.5), generally assumes homoscedasticity of the response variables. However, in
the present case the response variables R1..., Rn are heteroscedastic, since

Var{Rj} = φj(1− φj). (3.12)
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Thus, a weighted nonparametric regression model will be better in providing more efficient
estimates. Using weights

υk =
1

φk(1− φk)
,

will be the proper way to execute the nonparametric regression, however, since these values are
unknown, we propose an iterative procedure.

Step 1. Fit the regression model by nonparametric regression

φ̂
[t]
k =

∑
i∈s

wkiRi, t = 0

where

wki =
ωiKb(xk − xi)∑
i∈s ωiKb(xk − xi)

.

Step 2. Estimate the weights υk using the results of Step 1,

υk =
1

φ̂
[t]
k (1− φ[t]

k )
.

Step 3. The estimated weights are then used to transform the variables xk, Rk as

x∗k = xk/
√
υk, R

∗
k = Rk/

√
υk.

Step 4. The new estimate of φk is now given by

φ̂
[t+1]
k =

∑
k∈s

wkiR
∗
i

with

w∗ki =
ωiKb(x

∗
k − x∗i )∑

i∈s ωiKb(x∗k − x∗i )
.

Step 5. Steps 2-4 are repeated until

‖Φ̂[t+1]‖ − ‖Φ̂[t]‖ ≤ ε

for some prescribed threshold ε; Φ̂[t] denotes the vector of the estimated response proba-
bilities at the tth iteration.

3.3 Binary spline regression for non-response probabilities

Using the same setup as before we shall now describe the binary spline smoother. The
goal of this procedure is to minimize the penalized residual sum of squares which is∑

k∈s

(Rk − φ(xk))
2 + η

∫
(φ

′′
(x))2dx (3.13)

over all functions φ(.) with continuous first and integrable second derivatives. As before the
parameter η represents the rate of exchange between the residual error and the roughness of
the curve φ(.) and therefore is a smoothing parameter which has the same function as the
bandwidth, in kernel regression. It was shown in Schoenberg (1964) (see also Wahba (1990))
that the unique solution for the problem is a cubic spline, that has the following properties:
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a. A cubic polynomial fits the data between two successive sampled values.

b. At the sampled values xk of x, φ̂(x) and its two first derivatives are continuous.

c. At the boundary points x(1) and x(n) of x, the second derivatives of φ̂(x) exists. inte-
grable.

Therefore we estimate the response probability under this setup as

φk = φ̂(xk), for all k ∈ . (3.14)

The parameter η is chosen by minimizing the cross-validating the sum of squares criterion

CV (η) =
1

n

∑
k∈s

(Rk − φ̂−k(xk))2 (3.15)

where φ̂−k(xk) is obtained using the spline smoothing leaving out the xk observation. We again
deal with the heteroscedasticity of Rk, k = 1, ..., n in the same manner as in the case of binary
kernel regression.

Step 1. Fit the regression model by spline smoothing on the data {x1, ..., xn}. Denote the
spline smoother by φ̃(.). Set

φ̃
[t]
k = φ̃(xk), t = 0.

Step 2. Estimate the weights υk using the results of Step 1,

υk =
1

φ̂
[t]
k (1− φ[t]

k )
.

Step 3. The estimated weights are then used to transform the variables xk, Rk as

x∗k = xk/
√
υk, R

∗
k = Rk/

√
υk.

Step 4. The new estimate of φk is now given by

φ̂
[t+1]
k = φ̂(x∗k)

where Rk is replaced by R∗k.

Step 5. Steps 2-4 are repeated until

‖Φ̂[t+1]‖ − ‖Φ̂[t]‖ ≤ ε

for some prescribed threshold ε; Φ̂[t] denotes the vector of the estimated response proba-
bilities at the tth iteration.
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3.4 Locally weighted likelihood estimation for response probabilities

An alternative for estimating response probabilities to the above methods may be sought
in locally weighted likelihood procedure (Crisally, 1999, Chap. 7). In this approach a paramet-
ric form such as logit for the response probabilities is assumed. Thus for the logit model with
one predictor variable,

φk =
exp(θ0 + θ1xk)

1 + exp(θ0 + θ1xk)
, (3.16)

θ0 and θ1 are estimated by maximizing the local log-likelihood

`(θ0, θ1) =
∑
j∈sR

`j(θ0, θ1)K
∗
h(xj − xk) (3.17)

where
`j(θ0, θ1) = Rj log(

φj
1− φj

) + log(1− φj) (3.18)

is the contribution to the likelihood for the jth observation. Maximizing `(θ0, θ1) provides
locally weighted likelihood estimates θ̂0, θ̂1 that are then used in finding the locally weighted
likelihood estimate of φk given by

φ̂k =
exp(θ̂0 + θ̂1xk)

1 + exp(θ̂0 + θ̂1xk)
. (3.19)

4. Estimation of Variances of the Estimators

The variance of the estimator ȳπφ has been derived in Nargundkar and Joshi (1975) that
consists of two parts, one due to the design p and the other due to the response mechanism q.
This results in an unbiased estimator of V(ȳπφ) (see Nargundkar and Joshi (1975)). However,
for our discussions this expression is not of much use, since as shown by Kim and Kim (2007),
the variance of ȳπφ overestimates the variance of ȳπφ̂. Da Salva and Opsomer (2006, 2009) out-
lined the adaptation of numerical method of variance estimation of a linear estimator proposed
in Fay (1991) (and used by Shao and Steel (1999) and Fuller and Kim (2005)) in the context of
non-response variance estimation. They start with a linear estimator of the form in the absence
of non-response

θ̂ =
1

N

∑
i∈s

wiyi, (4.1)

and consider the replication based estimators

θ̂(`) =
1

N

∑
i∈s

w
(`)
i yi, ` = 1, ..., L, (4.2)

where w(`)
i is replication modified weight for the i − th unit based on replication `. The repli-

cation based estimator of the variance of θ̂ is then given by

V(θ̂) =
L∑
`=1

c`(θ̂L − θ̂)2. (4.3)

For example, using the jackknife replication method (see Rao (1988), Rao, Wu and Yue (1992))
w

(`)
i = (n − 1)−1Ii 6=` and c` = (1 − nN−1)(n − 1)n−1. Other methods in this category are
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grouped jackknife (see Rao, Wu and Yue (1992) and Shao and Wu (1989)) and balanced re-
peated replication (BRR) (Shao (1993), Shao and Tu (1995)). Berger and Skinner (2005) pro-
posed a jackknife based method for variance estimation under unequal probability sampling.
The above estimator is computationally cumbersome and may produce negative estimate. An
alternative jackknife method has been investigated in the context of ȳrat,π by Berger (2007),
that could be potentially used in the non-response setup. Rust and Rao (1996) discuss a va-
riety of replication methods for variance estimation in complex survey sampling. Lin et al.
(2013) discuss replication variance estimation using BRR and bootstrap methods in the context
of unequal probability sampling, that could also be adapted in our context.

Most of these methods have been studied in context to stratified sampling and/or with im-
putation and calibration techniques. There is still a lot of scope for variance estimation in the
context of estimators using estimated response probabilities. In order to use these methods for
estimation of variance of ȳGRE,πφ̂ and ȳGSE,πφ̂, the variation is basically attributed to errors
yk − ŷk, (see Chaubey and Crisalli (2002)). Hence, the replication method can be applied to
(1/N)

∑
i∈s ωiφ̂

−1ei to handle ȳGRE,πφ̂ and ȳGSE,πφ̂, where ei represent residuals yi − ŷi from
the regression model or from the nonparametric regression model. The methods described in
Berger (2007) and Rust et al. (2013) will be applicable for estimating the variance of ȳGRErat,πφ̂
and ȳGSErat,πφ̂.

5. Discussion

In this paper I provide a selective review of the topic of estimation of mean under unit
non-response, when the response probabilities are estimated using some parametric models or
using some nonparametric methods. The estimation of variance of the resulting estimators is an
important topic for further research as the plug-in estimator (the variance estimator with known
response probabilities substituted with their estimates) is not consistent. In recent literature,
replication variance estimators for these have been suggested but their investigation is limited to
jackknife method only that too with simple random sampling. Non-parametric smoothing based
estimator of mean as an alternative to model based generalised regression estimator may be
strong competitor, especially in face of model mis-specification and needs further investigation
for complex surveys. The modern replication techniques for variance estimation developed for
design based estimator may be easily adapted to model/smoothing assisted estimators simply
by replacing the observations by the prediction errors. This opens a large scope of the modern
smoothing methods for finite population sampling and needs further investigation.

Acknowledgments

This research is partially supported by a the Discovery Research Grant from NSERC of
Canada awarded to the author that is gratefully acknowledged.

References

Berger, Y. G. (2007). A Jackknife Variance Estimator for Unistage Stratified Samples with
Unequal Probabilities. Biometrika, 94, 953-964.

Berger, Y. G. and Skinner, C. J. (2005). A Jackknife Variance Estimator for Unequal Proba-
bility Sampling. Journal of the Royal Statistical Society, Series B, 67, 79-89.



2018] ADJUSTMENT FOR UNIT NON-RESPONSE 69

Breidt, F. J. and Opsomer, J. D. (2000). Local Polynomial Regression Estimators in Survey
Sampling. The Annals of Statistics, 28, 1026-1053.

Breidt, F. J. and Opsomer, J. D. (2017). Model-Assisted Survey Estimation with Modern
Prediction Techniques. Statistical Science, 32, 190-205

Cassel, C. M., Särndal, C. E. and Wretman, J. H. (1977). Foundations of Inference in Survey
Sampling. John Wiley and Sons, New York, USA (ISBN 0-471-02563-1).

Cassel, C. M., Särndal, C. E. and Wretman, J. H. (1979). Prediction Theory for Finite Pop-
ulations when Model-Based and Design-Based Principles are Combined. Scandinavian
Journal of Statistics, 6, 97-106.

Chaubey, Y. P. and Crisalli, A. N. (2002). The Generalized Smoothing Estimator. Journal of
Statistical Research, 36, 111-129.

Crisalli, A. N. (1999). Nonparametric Prediction in Survey Sampling and its Application to
the Nonresponse Problem. Ph. D. disseration, Department of Mathematics and Statistics,
Concordia University.

Da Silva, D. N. and Opsomer, J. D. (2006). A Kernel Smoothing Method to Adjust for Unit
Nonresponse in Sample Surveys. Canadian Journal of Statistics, 34, 563-579.

Da Silva, D. N. and Opsomer, J. D. (2009). Nonparametric Propensity Weighting for Survey
Nonresponse Through Local Polynomial Regression. Survey Methodology, 35, 165-176.

Fay, R. E. (1991). A Design-Based Perspective on Missing Data Variance. In Proceedings
of the 1991 Annual Research Conference, U.S. Bureau of the Census, Washington, DC,
429-440.

Fuller, W. A. and Kim, J.-K. (2005). Hot Deck Imputation for the Response Model. Survey
Methodology, 31, 139-149.

Giommi, A. (1985). On Estimation in Nonresponse Situations. Statistica, 1, 57-63.

Giommi, A. (1987). Nonparametric Methods for Estimating Individual Response Probabili-
ties. Survey Methodology, 13, 127-133.

Hansen, M. H., and Hurwitz, W. N. (1946). The Problem of Non-Response in Sample Surveys.
Journal of American Statistical Association, 41, 517-529.

Horvitz, D. G., and Thompson, D. J. (1952). A Generalization of Sampling Without Replace-
ment from a Finite Universe. Journal of American Statistical Association, 47, 663-685.

Kim, J. K., and Kim, J. J. (2007). Nonresponse weighting adjustment using estimated re-
sponse probability. The Canadian Journal of Statistics, 4, 501-514.

Lin, C. D., Lu, W. W., Rust, K. and Sitter, R. R. (2013). Replication variance estimation
in unequal probability sampling without replacement: One-stage and two-stage. The
Canadian Journal of Statistics, 41, 696-716.

Nadaraya, E. A. (1964). On Estimating Regression. Theory of Probability and Applications,
10, 189-190.



70 YOGENDRA P. CHAUBEY [Vol. 16, No. 1

Nargundkar, M. S., and Joshi, G. B. (1975). Nonresponse in Sample Surveys. 40th Session of
the International Statistical Institute, Warsaw, Contributed papers, 626-628.

Niyonsenga, T. (1994). Nonparametric Estimation of Response Probabilities in Sampling
Theory. Survey Methodology, 20, 177-184.

Rao, J. N. K. (1988): Variance Estimation in Sample Surveys. In Handbook of Statistics,
Volume 6, (Eds.: P. R. Krishnaiah and C. R. Rao), Elsevier Science, Amsterdam, 427-
447.

Rao, J. N. K. and Shao, J. (1992). Jackknife variance estimation with survey data under hot
deck imputation. Biometrika, 79, 811-822.

Rao, J. N. K., Wu, C. F. J. and Yue, K. (1992): Some recent work on resampling methods for
complex surveys. Survey Methodology, 18, 209-217.

Rust, K. F. and Rao, J. N. K. (1996). Variance estimation for complex surveys using replica-
tion techniques. Statistical Methods in Medical Research, 5, 283-310.

Särndal, C. E. and Hui, T. K. (1981). Estimation for Nonresponse Situations: To What Extent
Must We Rely on Models? In Current Topics in Survey Sampling, Academic Press, New
York,USA, 227-246.

Särndal, C. E., Swensson, B. and Wretman J. (1992). Model Assisted Survey Sampling.
Springer-Verlag, New York, USA (ISBN 0-387-40620-4) .

Schoenberg, I. J. (1964). Spline Functions and the Problem of Graduation. Proceedings of the
National Academy of Sciences of the United States of America, 52(4), 947-950.

Shao, J. (1993). Balanced Repeated Replication. In Proceedings of the Section on Survey
Research Methods, American Statistical Association, 544-549.

Shao, J. and Steel, P. (1999). Variance Estimation for Survey Data with Composite Imputation
and Nonnegligible Sampling Fractions. Journal of the American Statistical Association,
94, 254-265.

Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap. Springer-Verlag, New York, USA
(ISBN 978-1-4612-0795-5).

Shao, J. and Wu, C. F. J. (1989): A General Theory for Jackknife Variance Estimation. Annals
of Statistics, 17, 1176-1197.

Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF Regional Conference
Series, SIAM, Philadelphia.

Watson, G. S. (1964). Smooth Regression Analysis. Sankhya: The Indian Journal of Statis-
tics, Series A, 26(4), 359-372.


