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Abstract

We consider the classical survey problem of estimation of finite population proportions
based on a polychotomous response variable when data on an auxiliary variable is known for all
units in the finite population. Under simple random sampling different model and design-based
estimators are compared theoretically and it is shown that model-based estimator performs more
efficiently under mild conditions.
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1 Introduction

Finite population proportion estimation is a common problem in survey sampling. Suppose
variable of interest has p(= 2) categories. Let us consider a finite population of N identifiable

units defined by U ={1,..., N}. Then we want to estimate the finite population proportions
Py =(R....P) =Ny d;,
of a polychotomous response variable d = (dl,...,dp)T with its value d; =(d.,,..., dip)T for the i-th

population unit, i eU , where dih =1if i-th unit belongs to the h-th category and 0 otherwise.
Based on a simple random sample (SRS) s(cuU) of Ndistinct units the classical design-based
estimator is the Horvitz-Thompson (HT) estimator (Horvitz and Thompson (1952)) given by the
sample mean
Pour = n’lzlsdih ,h=1...p.
Often apart from data on the response variable (say, ds :{di e S}), unit level data on some

auxiliary variable X is also available from some other sources. Then X ={Xi;i €U} is called

complete auxiliary information. A fundamental question in finite population inference is how to
make use of the complete auxiliary information effectively at the estimation stage. To this end,
two distinct approaches exist, viz., design-based and model-based estimation. Both the estimation
procedures employ a regression model (called superpopulation model) relating the response
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variable and the covariate X to include covariate information by predicting responses for the non-

sample units S_(:U —S). Under design-based paradigm the basis of inference is randomization

due to random sampling from finite populationU ; whereas in model-based approach inference is
based on sampling distribution from infinite superpopulation model. These two distinct approaches
are reconciled by many authors from different aspects (e.g., Smith (1976); Sarndal et al. (1978);
and Little (2004) and references therein). The most sharply drawn difference among these
estimators from data analytic point of view is in terms of robustness. Grossly speaking, when the
working model approximates the true model, model-based estimator’s exhibit higher precision;
while misspecification of working model may lead to a substantial model bias. In contrast, a class
of design-based estimators, called model-assisted estimators, are approximately unbiased with
respect under repeated sampling irrespective of the validity of the working models, but show
enhanced precision when the working model approximates the true model well.

To compare theoretically these two kinds of estimators, viz., the design and model-based
estimators representing two different paradigms, Isaki and Fuller (1982) introduce a criterion,
called anticipated variance. Anticipated variance is defined as the variance of an estimator with
respect to the sampling design and the superpopulation model. In this paper we provide theoretical
comparisons of different model-based and model-assisted estimators of finite population
proportion Py by extending the definition of anticipated variance for approximately model and
design-unbiased estimators. The motivation of this work is traced back to our earlier work Adhya
et al. (2011). Through an extensive simulation studies it has been observed that (i) model
misspecification has an adverse effect on the performance of model-based estimator, still its
performance is comparable with the model-assisted estimators; (ii) surprisingly, "the model-
assisted estimators are found to be insensitive to the model choice, and hence fail to incorporate
auxiliary information well Adhya et al. (2011); p 799. These findings indicate that the design-
based estimators of population proportion may not be a good choice. It prompts us to study how
well model-based estimators perform when the model is assumed to be true since the possibility
of gross model misspecification can be avoided by implementing a simple graphical method to
select a working model which approximates the true model well (Adhya et al., 2011; p. 796).

The rest of the paper is outlined as follows. In section 2, we define multinomial logit type
model in superpopulation and briefly introduce the model-based and the model-assisted estimators
of population proportions. We provide some theoretical comparisons among the estimators in
section 3. Finally, we conclude in section 4.

2 Competing Estimators

Here we consider the superpopulation model which assumes observations (d;,X;)'s are
independent with

P(d;, =1[%) =7, (%; 5). 1)
----- p., where 7, (x;; B) = 7, (B) = exp{ g, (X;; 5, )}[1+EXD{ZL 9. B
2B =1, By =B Bra) 821, h=1. p-1, and f=(B .. 5;4)", and G (/)

h=1,.., p—1, are known but arbitrary parametric functions. Based on the sample data{dS . XS},
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let ﬁs be the maximum likelihood estimator (MLE) of model parameter s , obtained by
maximizing the sample log-likelihood function

s (B1ds, %) =D L (B =D > di {7, (B)}-
For details we refer to Adhya et al. (2011). We consider three estimators of Py for comparison.
First, we consider the model-based (MB) estimator (Royall (1970, 1976)) (say, FA’hYM ) which is the
estimated best predictor of finite population proportion P, given the sample S and the observed
data {d, X, Junder model (1). This is given by

ISh,M = N_l[zsdih+z§7%ih]’ (2)

where the predictor 7, =7zih(,83) is the predictor of 0, for i « S Adhya et al. (2011).Next we

consider two most commonly used model-assisted estimators when relationship between response
and auxiliary variable is nonlinear. These are Generalized difference (GD) estimator (Sarndal

(1980)) (say, If’h’GD) and Model-calibrated (MC) estimator Wu and Sitter (2001) (say, Ph,MC ). The
GD estimator is given by

Pooo =Ponr + N Y A, - Ay, ®3)
where the bias ISh,HT — P, of HT estimator is adjusted by the difference N‘lzu i —n‘lzs Tin s
assuming 7, is a good proxy of 0, for i eU (that is, d, ~ 7). The MC estimator
P, wc ZZS w,d.
is given by the set of weights {W,;i €S} that minimizes the aggregated square distance

ZS (W, —n/N)? between W,,and design weight n/ N (i € S) subject to calibration constraints
Ny w,=1,and D W2, =N 7.
Notice that MC estimator reduces to
Powe =Poir FB AN A - D A, (4)
where B, =3 (7, — 7,5)"3 "D (A, —d, s )7y, — 7. ) is the regression coefficient of d,on7,
based on {(d;, 7)1 €S}, d, s =n™>" dyy, 7, =n"> A, (Wuand Sitter (2001); eqn. (9)).
Here also the bias If’h - ISHT of HT estimator is adjusted by scaled difference

e e _ )
B {N" 2 =N Zsﬂih},assummgdh o« 7T, .
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3 Asymptotic Efficiency of MB Estimator
In this section, we compare the performance of the lsh,M with the model-assisted estimators

If’h’GD and I5h',\,IC by computing their anticipated variances. For large sample study, we assume the
asymptotic set up as considered in Isaki and Fuller (1982) (p. 90). In short, we consider a sequence
of finite populations {U, }(of size{N,}), and samples {S,(cU, )} (of size{n,}) drawn from the

corresponding population using a sequence of sampling designs. As the index V — both N and

N, —oosuch thatn, / N, >pe (0)) . Hereafter, we suppress the indexV to simplify the notations.
The model-assisted estimators are asymptotically design-unbiased irrespective of whether the
working model is correct or not Wu and Sitter (2001). In other words the estimators are
asymptotically equal to P, under SRS from the same population. The only uncertainty is which

sample will be observed, and this uncertainty disappears under repeated sampling. For the model-
based predictive estimator on the other hand, the uncertainty is about the distribution of non-
sample values. It is shown to be asymptotically model-unbiased for the finite population proportion
Ph under standard assumptions Adhya et al. (2011). The predictive estimator is then asymptotically
equal to P,. Though the model-based and the model-assisted approaches represent two entirely

different paradigms for judging the performance of the estimators, in practice, however, the
estimators are used to estimate the same finite population entity. With this consideration in mind,
we ask: are the predictive estimators more efficient than the model-assisted estimators in large
samples if one uses the large sample anticipated variance as the performance criterion? This is
variance anticipated at the time of sample being constructed which incorporates "both the survey
designer's conceptualization of a superpopulation (prior knowledge) and the design”. The
theoretical results under a simple random sampling using intuitive arguments proved below show
that the answer is in affirmative.

From the proof of Theorem 1 of Adhya et al. (2011), notice that for a generic model-assisted
estimator P, . anticipated variance of the prediction error AV{ISh'ma — P, }is given by

h,ma

AV{ISh,ma - Ph}: Edvm{lsh,ma - Ph | S}+O(n_l) )

where Ey()andV, () ( E, ()andV () ) denote design (model) expectation and variance
respectively. On the other hand for model-based estimator

AV{P,\ ~R}=ENVu{Ry —P 1 S}Ho(n™).
Thus to compare AV{P, . —P.}and AV{P, .. —P,}in large sample we ignore 0(N"*) terms and
compare only large sample anticipated variances Ede{Iﬁhym —P, | S} and Ede{If’,ma—Ph | S}
respectively. For this it is enough to compare conditional model variances Vm{. | S}uniformly for

all samples S. Now we state our results concerning V,,{. | S}in large samples. The proofs are given
in the Appendix.
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Theorem 1.Under the regularity conditions stated in section 2 of Adhya et al. (2011),

(i)vm{lsh,GD B Ph | S}/Vm{lsh,M B Ph | S} z1"'\/m{n_1Z:S (ﬁih _dih)}lvm{(N - n)—lz§ (7%ih _dih)}
in large samples, and
(ii)vm{Ph,GD - Ph | S}:Vm{Ph,MC - Ph | S}"'O(n_l) .

From the equality in (ii) of Theorem 1, model variances of |ShYMC and If’h'GD estimators are
asymptotically equal; whereas (i) and (ii) together imply that If’hyM is more efficient than If’hyGD and

P, wc. Also from (i) it is expected that efficiency of that of P, will be high when N is large
compared to N. This follows from the fact that given s, the variance of mean of the differences

(7, —d,) based on non-sample units is small compared to variance of mean of the differences
based on sample units.

Before stating following corollaries let us define

7 (B)=lmn > 7,(B), 7 (B)=limn™' > om, (B)10p,
L, (B)=E{-0°(B)/8B,0B,}.T(B) = m n* X (1, (B)) , and
Vin (B) = r!mo(N - n)_lzg 7Ty (B — 7, (B}

where details of the expressions are given in Adhya et al. (2011), and the limits are defined with
respect to asymptotic density of X Chambers et al. (1992).

Corollary 1. If the limiting sampling fraction p is less than equal to 0.5 then the asymptotic
efficiency of IS,LM relative to F3h'GD is at the least equal to 2.
Proof. From Theorem 1, we obtain
Vm{FA)h,GD -h |S}/Vm{|5h,|v| —R [S}=1+cs/cq 5)

where ¢ =V, {n™> (%, —d;,)} and cg =V, {(N-n)"> (%, —d,)} . After some algebra,
neglecting the terms of order 0(N™) , we obtain ¢, 307 (B)" 1 ()7, (B) +n ", (B) and
Cs N7 (B) 1 7H(B) 7 (B) +n"{p /(1 p)}¥,, (B), thus yielding

c, =C + 20 BB T AR (B) 0 =123 (B).

So (5) entails

VidProo — P 1S} oy 2T (B (B) + 0 {1~ 2p) (1= )} ()
Vm{r:)h,M - Ph | S} CS’

and hence the result.
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Corollary 2. Asp 40 , the asymptotic efficiency of F'Shym relative to FA’h,GD increases t0 o .

This follows immediately from (5) by noting thatc; =O(n™) and c. =O((N - n™).
4 Concluding Remarks

Adhya et al. (2011) show that for polychotomous responses the model-assisted estimators
viz. GD estimator and MC estimator of finite population proportion are model insensitive, and
hence they fail to incorporate unit level auxiliary information. Here we establish theoretically that
Adhya et al. (2011)'s MB estimator is asymptotically more efficient than the model-assisted
estimators under simple random sampling when sampling fraction is relatively small and the
assumed model is true. Since for multinomial-type logit model a simple graphical procedure as
described in Adhya et al. (2011) leads to the selection of a good working model, in the light of this

fact we prefer the model-based estimator If’h,M to model-assisted estimators I5h,GD and I5h'MC under

simple random sampling if the sampling fraction is small. In future, we will consider similar study
for other sampling designs.
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Appendix: Proof of Theorem 1
Proof of part (i). Rewrite the estimators If’h]M : If’h’GD and If’h,MC ((2)-(4)) as:

Pon =P+ W > (i —dy),

Pooo =P+ W > (A —dy) +Wg > (#, —d,,) , and (A1)
Pove =P+ X Wi (B, —dy,),

where W, = W, forieSand Wi forieS. For simplicity of presentation we drop the notation

conditioningon S from model expectations and model variances.
Now, (Al) entails

Vm(lsh,GD -R) :Vm(lsh,m -PR) +Vm{WSZ(7%ih —d;)}

+2WsWs Cov, > (7, =), D (i — i)}, (A2)
where Cov,, (.) is the model-based covariance. Letting 7;, () =7, and 7}, (f) =7}, , we have
2w Wy Cov, £ (7, —din), D < (i —din)}

= WeWs Cov, 3" (i —dip) + (Bs = B) D s O (i = i) + (Bs = B) D i }+0(n") (A3)
Letting Uy, = 9in (B,) =09(%; 8,)1 0By S, (B) = D Ui (i = 7). S(B) = ($,(B) 1S, 1 (B))'

is the score function based on sample likelihood Is(f|ds,Xs) and from section 2 of Adhya et al.
(2011),

By - =1 (B S(B)}+0,(n?), and E{(S-B)B-B) }=n"T7(B)+o(n™).

Thus (A3) reduces to

2w [ 7)) {n T (B) +o(n™)HD #h)

- COVm{Z:S (diy =)0~ (Zs Uy (i = 733 e ZS Uip-s (g = 7ip 1)) I (ﬂ)(Zg i) H+o(n™),
After some algebra it again reduces to

20w We [ i) T (B i) = Qg mnd 1T (B s i)l +o(n ) =o(n™). (Ad)
For largeN, (A2) and (A4) entail

Vi (If)h,GD -R) =V, (If)h,M =B+ Vi {ws Zs (7T —din)}

= (1_ f )2[\/m{( N - n)—lZ§ (ﬁih - dih)}+vm{n_1zs (ﬁih - dih)}] :

Thus we obtain

Vm (Ish,GD - Ph)/Vm (Ish,M - Ph) ~ 1+Vm{n_12(7%ih - dih)}/vm{( N — n)_lZ(ﬁ-ih - dih)}'

ieS ieS
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Proof of part (ii). We note that from (4) after linearization I§h = I§h (ﬁs)can be written as

I_5>h B, +B—+B—+o -(n?), (A5)
n

Jn

where By, B, and B, are stochastically bounded. Thus we have

Ph we = P +z W, (By, 77y, +1 2B 10 7Zip TN 1Bzh7T|h d;, +0p(n” D))
=R+ BOhZU W, 7, _Zu w,d;, +Tlhzu Wiz, +0p (n7). (A6)
n
Now, we find the expressions for By, and By, in (A6). Letting 7, (#) = 7, note that
=(Bs =B i+ U 2(Bs - B)' 7 (B — B)+0p(n ).
Lettlng Tos =N My Ths =N D 7y, and 7 =n"Y 7, above expansion gives
n_lzs (di — h,S)(ﬂ-ih _ﬂ'h,s)
= nilz (dip _Jh $ )i — s )+ (:B_ﬂ)T nflzs (dip _d_h,s)(ﬂ-i'h —Ths)
+UD(Bs =AY (mh ~ T ) Bs — B +0,(n7), (A7)

where

nflzs (i _;h 3)2 = nflz (7in — 72, 5)2 +(:és -p)" nflzs (7 — 70 s )iy — 70 s )' (,Bs -5)
+2(ﬁs ) —12 (7w = 705 )i — ”hs

+(ﬂ ﬂ)T —128 (7 _ﬂ'h,s)(ﬂ'ih _ﬁr:’,s)(ﬂs - pB)+0, (n™)

—b0h+%+b7+o (n™) (A8)

where by =0, 1),k =012, We define a,, =n™>" (m, — 7, s)* &, = (AB)—ay, . Note that 3,
— 0, @), &, =0:(n"?) . Now, (A7) and (A8) imply

B = (AT)x{n 12 (73, — ”hs)} (1+a0ha1h)7

b b - - ~ _ _
={b,, +ﬁ+ﬁh+op(n Dixag{l-aga, +(a5a,)* +0, (N}, say

B,, B,
=B, +—=+—2"+0,(n7"),
n

Jn

-1
where B, _ By N 2 (A =y s )i — 771 5) . This entails By, =1+ 0, (n _1/2).
oy n-1z (i — ”hs)

. . B . _
Now, E,{P, wc — Ph}2 = E.{(By Zu WiTin _Zu w,d;,) +Tlr:zu W, 7y +Op (N ¥, and
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Bon D, Wity = > Wiy = D Wi (i, —dip) + (B, =)D Wiz, +Op (n7)

=ty +(By, —1)D_, Wiz, +Op (), say.

Further note that

ty =D W (A, — i) =P, oo — P Efty D, Wit} = E {1 Wiy, +O(n ™),
where we have E_{t,}=0(n"). Thus we obtain

- B . :
En{Pvc — P} =E.{ty +(By _1)Zu WiTin +Tlr:zu W7, +0p (7))

2 2 . -
=E.{ty}" +2E,{(B,, -D(t, ZU Wi i )3+ By ﬁ En{ty 2, Wizin}+o(n™)
=E, {ty}" + 2E,{(B,, ~)(t, Zu W, 7 )} +0(n ")
=E,.{t,}’ +2(1- f)E{(By, —Dty H(N _n)ilzgﬂ.ih - nilzs Tin)}+o(n™)

CE 1) +o(n)
= Em{lsh,GD - Ph}2 +o(n™).
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