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Abstract  

 

We consider the classical survey problem of estimation of finite population proportions 

based on a polychotomous response variable when data on an auxiliary variable is known for all 

units in the finite population. Under simple random sampling different model and design-based 

estimators are compared theoretically and it is shown that model-based estimator performs more 

efficiently under mild conditions.  
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______________________________________________________________________________ 

 

1 Introduction 

 

Finite population proportion estimation is a common problem in survey sampling. Suppose 

variable of interest has )2(p categories. Let us consider a finite population of N identifiable 

units defined by },...,1{ NU  . Then we want to estimate the finite population proportions 


U i

T

pN dNPPP 1

1 ),...,( , 

of a polychotomous response variable 
T

pddd ),...,( 1 with its value 
T

ipii ddd ),...,( 1 for the i -th 

population unit, Ui , where 1ihd if i -th unit belongs to the h -th category and 0 otherwise. 

Based on a simple random sample (SRS) )( US   of n distinct units the classical design-based 

estimator is the Horvitz-Thompson (HT) estimator (Horvitz and Thompson (1952)) given by the 

sample mean  


S ihHTh dnP 1

,
ˆ , ph ,...,1 . 

Often apart from data on the response variable (say, };{ Sidd iS  ), unit level data on some 

auxiliary variable x  is also available from some other sources. Then };{ Uixx iU   is called 

complete auxiliary information. A fundamental question in finite population inference is how to 

make use of the complete auxiliary information effectively at the estimation stage. To this end, 

two distinct approaches exist, viz., design-based and model-based estimation. Both the estimation 

procedures employ a regression model (called superpopulation model) relating the response 
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variable and the covariate x  to include covariate information by predicting responses for the non-

sample units )( SUS  . Under design-based paradigm the basis of inference is randomization 

due to random sampling from finite populationU ; whereas in model-based approach inference is 

based on sampling distribution from infinite superpopulation model. These two distinct approaches 

are reconciled by many authors from different aspects (e.g., Smith (1976); Sarndal et al. (1978); 

and Little (2004) and references therein). The most sharply drawn difference among these 

estimators from data analytic point of view is in terms of robustness. Grossly speaking, when the 

working model approximates the true model, model-based estimator’s exhibit higher precision; 

while misspecification of working model may lead to a substantial model bias. In contrast, a class 

of design-based estimators, called model-assisted estimators, are approximately unbiased with 

respect under repeated sampling irrespective of the validity of the working models, but show 

enhanced precision when the working model approximates the true model well. 

     

To compare theoretically these two kinds of estimators, viz., the design and model-based 

estimators representing two different paradigms, Isaki and Fuller (1982) introduce a criterion, 

called anticipated variance. Anticipated variance is defined as the variance of an estimator with 

respect to the sampling design and the superpopulation model. In this paper we provide theoretical 

comparisons of different model-based and model-assisted estimators of finite population 

proportion 𝑃𝑁 by extending the definition of anticipated variance for approximately model and 

design-unbiased estimators. The motivation of this work is traced back to our earlier work Adhya 

et al. (2011). Through an extensive simulation studies it has been observed that (i) model 

misspecification has an adverse effect on the performance of model-based estimator, still its 

performance is comparable with the model-assisted estimators; (ii) surprisingly, "the model-

assisted estimators are found to be insensitive to the model choice, and hence fail to incorporate 

auxiliary information well Adhya et al. (2011); p 799. These findings indicate that the design-

based estimators of population proportion may not be a good choice. It prompts us to study how 

well model-based estimators perform when the model is assumed to be true since the possibility 

of gross model misspecification can be avoided by implementing a simple graphical method to 

select a working model which approximates the true model well (Adhya et al., 2011; p. 796).  

  

The rest of the paper is outlined as follows. In section 2, we define multinomial logit type 

model in superpopulation and briefly introduce the model-based and the model-assisted estimators 

of population proportions. We provide some theoretical comparisons among the estimators in 

section 3. Finally, we conclude in section 4.  

 

2 Competing Estimators 
 

Here we consider the superpopulation model which assumes observations ),( ii xd 's are 

independent with 

                                                
);()|1(  ihiih xxdP  ,                                                             (1) 

ph ,...,1 , where 1

1
}]);(exp{1)}[;(exp{)();( 


p

u uiuhihihih xgxgx  , 

1)( h ih  , 
T

hahh h
)...,( ,1   , 1ha , 1,...,1  ph , and 

TT

p

T ),...,( 11   , and )(.; hhg  , 

1,...,1  ph , are known but arbitrary parametric functions. Based on the sample data },{ SS xd , 
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let S̂ be the maximum likelihood estimator (MLE) of model parameter  , obtained by 

maximizing the sample log-likelihood function 

  

                                          


S

p

h ihihS iSSS dlxdl
1

)}(ln{)(),|(  .  

For details we refer to Adhya et al. (2011). We consider three estimators of NP for comparison. 

First, we consider the model-based (MB) estimator (Royall (1970, 1976)) (say, MhP ,
ˆ ) which is the 

estimated best predictor of finite population proportion hP given the sample S and the observed 

data },{ US xd under model (1). This is given by  

 

                                                    
]ˆ[ˆ 1

,   

S ihS ihMh dNP  ,                                                   (2) 

where the predictor )ˆ(ˆ
Sihih   is the predictor of ihd  for Si Adhya et al. (2011).Next we 

consider two most commonly used model-assisted estimators when relationship between response 

and auxiliary variable is nonlinear. These are Generalized difference (GD) estimator (Sarndal 

(1980)) (say, )ˆ
,GDhP  and Model-calibrated (MC) estimator Wu and Sitter (2001) (say, MChP , ). The 

GD estimator is given by  

                                                  
S ihU ihHThGDh nNPP  ˆˆˆˆ 11

,,                                         (3) 

where the bias hHTh PP ,
ˆ  of HT estimator is adjusted by the difference   

S ihU ih nN  ˆˆ 11
, 

assuming ih̂ is a good proxy of ihd for Ui (that is, hhd ̂ ). The MC estimator 

                                                                   S ihihMCh dwP ,
ˆ , 

is given by the set of weights };{ Siwih  that minimizes the aggregated square distance 

 
S ih Nnw 2)/( between ihw and design weight Nn /  ( Si ) subject to calibration constraints  

                                              11 

S ihwN , and  
S U ihihih Nw  ˆˆ 1

.  

 

Notice that MC estimator reduces to 

                                             
}ˆˆ{ˆˆˆ 11

,,   
S ihU ihhHThMCh nNBPP  ,                                  (4) 

where   

S ShihShihS Shihh ddB )ˆˆ)((})ˆˆ({ˆ
,,

12

,  is the regression coefficient of hd on h̂

based on {( }),ˆ, Sid ihih  , 
S ihSh dnd 1

, , 
S ihh n  ˆˆ 1

 (Wu and Sitter (2001); eqn. (9)). 

Here also the bias HTh PP ˆˆ   of HT estimator is adjusted by scaled difference

}ˆˆ{ˆ 11   
S ihU ihh nNB  , assuming hhd ̂ .  
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3 Asymptotic Efficiency of MB Estimator 
 

In this section, we compare the performance of the MhP ,
ˆ with the model-assisted estimators

GDhP ,
ˆ and MChP ,

ˆ by computing their anticipated variances. For large sample study, we assume the 

asymptotic set up as considered in Isaki and Fuller (1982) (p. 90). In short, we consider a sequence 

of finite populations }{ U (of size }{ N ), and samples )}({  US  (of size }{ n ) drawn from the 

corresponding population using a sequence of sampling designs. As the index   both N and 

n  such that )1,0(/  Nn . Hereafter, we suppress the index  to simplify the notations. 

The model-assisted estimators are asymptotically design-unbiased irrespective of whether the 

working model is correct or not Wu and Sitter (2001). In other words the estimators are 

asymptotically equal to hP under SRS from the same population. The only uncertainty is which 

sample will be observed, and this uncertainty disappears under repeated sampling. For the model-

based predictive estimator on the other hand, the uncertainty is about the distribution of non-

sample values. It is shown to be asymptotically model-unbiased for the finite population proportion 

Ph under standard assumptions Adhya et al. (2011). The predictive estimator is then asymptotically 

equal to hP . Though the model-based and the model-assisted approaches represent two entirely 

different paradigms for judging the performance of the estimators, in practice, however, the 

estimators are used to estimate the same finite population entity. With this consideration in mind, 

we ask: are the predictive estimators more efficient than the model-assisted estimators in large 

samples if one uses the large sample anticipated variance as the performance criterion? This is 

variance anticipated at the time of sample being constructed which incorporates "both the survey 

designer's conceptualization of a superpopulation (prior knowledge) and the design". The 

theoretical results under a simple random sampling using intuitive arguments proved below show 

that the answer is in affirmative.  

 

From the proof of Theorem 1 of Adhya et al. (2011), notice that for a generic model-assisted 

estimator mahP ,
ˆ  anticipated variance of the prediction error }ˆ{ , hmah PPAV  is given by  

 

                                        
)(}|ˆ{}ˆ{ 1

,,

 noSPPVEPPAV hmahmdhmah ,                               

 

where (.) and (.) dd VE ( (.) and (.) mm VE ) denote design (model) expectation and variance 

respectively. On the other hand for model-based estimator 
 

                                     
)(}|ˆ{}ˆ{ 1

,,

 noSPPVEPPAV hNhmdhNh .  

Thus to compare }ˆ{ , hmh PPAV  and }ˆ{ , hmah PPAV  in large sample we ignore )( 1no terms and 

compare only large sample anticipated variances }|ˆ{ , SPPVE hmhmd  and }|ˆ{ , SPPVE hmahmd   

respectively. For this it is enough to compare conditional model variances }|{. SVm uniformly for 

all samples S. Now we state our results concerning }|{. SVm in large samples. The proofs are given 

in the Appendix. 
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Theorem 1.Under the regularity conditions stated in section 2 of Adhya et al. (2011), 

 

 (i) }|ˆ{}|ˆ{ ,, SPPVSPPV hMhmhGDhm 
 

})ˆ(){(/})ˆ({1 11   

S ihihmS ihihm dnNVdnV   

in large samples, and 

(ii) )(}|ˆ{}|ˆ{ 1

,,

 noSPPVSPPV hMChmhGDhm . 

  

From the equality in (ii) of Theorem 1, model variances of MChP ,
ˆ  and GDhP ,

ˆ  estimators are 

asymptotically equal; whereas (i) and (ii) together imply that MhP ,
ˆ is more efficient than GDhP ,

ˆ and

MChP ,
ˆ . Also from (i) it is expected that efficiency of that of MhP ,

ˆ will be high when N is large 

compared to n . This follows from the fact that given ,S the variance of mean of the differences

)ˆ( hh d  based on non-sample units is small compared to variance of mean of the differences 

based on sample units.  

     

Before stating following corollaries let us define 

 






S ih
n

h n )(lim)( 1  ,   

 S ih
n

h n  /)(lim)( 1 , 

}/)({)( '

2

'

T

hhimi lEI
hh

  , 




S ihh
n

InI ))((lim)( '

1  , and  

  

 S ihih
n

hh nNv )}(1){()(lim)( 1  , 

where details of the expressions are given in Adhya et al. (2011), and the limits are defined with 

respect to asymptotic density of x  Chambers et al. (1992). 

Corollary 1. If the limiting sampling fraction  is less than equal to 0.5 then the asymptotic 

efficiency of MhP ,
ˆ  relative to GDhP ,

ˆ  is at the least equal to 2. 

Proof. From Theorem 1, we obtain 

                                 SShMhmhGDhm ccSPPVSPPV /1}|ˆ{}|ˆ{ ,,   ,                                        (5) 

where })ˆ({ 1  

S ihihmS dnVc   and })ˆ(){( 1  

S ihihmS
dnNVc  . After some algebra, 

neglecting the terms of order )( 1no , we obtain )()()()(3 111  hhh

T

hS vnInc    and 

),()}1/({)()()( 111  hhh

T

hS
vnInc  

 thus yielding  

                            

)(}
1

1{)()()(2 111 



 hhh

T

hSs vnIncc


 
.  

So (5) entails  

                   S

hhh

T

h

hMhm

hGDhm

c

vnIn

SPPV

SPPV



)()}1/()21{()()()(2
2

}|ˆ{

}|ˆ{ 111

,

,  




 

 

and hence the result. 
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Corollary 2. As 0 , the asymptotic efficiency of mhP ,
ˆ relative to GDhP ,

ˆ  increases to . 

This follows immediately from (5) by noting that ))(( and )( 11   nNOcnOc
SS .  

4 Concluding Remarks 

Adhya et al. (2011) show that for polychotomous responses the model-assisted estimators 

viz. GD estimator and MC estimator of finite population proportion are model insensitive, and 

hence they fail to incorporate unit level auxiliary information. Here we establish theoretically that 

Adhya et al. (2011)'s MB estimator is asymptotically more efficient than the model-assisted 

estimators under simple random sampling when sampling fraction is relatively small and the 

assumed model is true. Since for multinomial-type logit model a simple graphical procedure as 

described in Adhya et al. (2011) leads to the selection of a good working model, in the light of this 

fact we prefer the model-based estimator MhP ,
ˆ to model-assisted estimators GDhP ,

ˆ and MChP ,
ˆ under 

simple random sampling if the sampling fraction is small. In future, we will consider similar study 

for other sampling designs. 
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Appendix: Proof of Theorem 1 

Proof of part (i). Rewrite the estimators MhP ,
ˆ , GDhP ,

ˆ  and MChP ,
ˆ ((2)-(4)) as: 

 
S ihihShmh dwPP )ˆ(ˆ

,  , 

 
S ihihSS ihihShGDh dwdwPP )ˆ()ˆ(ˆ

,  , and                                                             (A1) 

 hMCh PP ,
ˆ  

U ihihhi dBw )ˆˆ(  ,  

where Si for ww Si  and Si for w
S

 . For simplicity of presentation we drop the notation 

conditioning on S  from model expectations and model variances.  

Now, (A1) entails 

})ˆ({)ˆ()ˆ( ,, 



Si

ihihSmhmhmhGDhm dwVPPVPPV   

})ˆ(,)ˆ({2  
S ihihS ihihmSS ddCovww  ,                                                                          (A2) 

where (.)mCov  is the model-based covariance. Letting ihih  )( and ihih   )( , we have

})ˆ(,)ˆ({2  
S ihihS ihihmSS ddCovww   

)(})ˆ()(,)ˆ()({ 1  noddCovww
S ih

T

SS ihihS ih

T

SS ihihmSS  .(A3) 

Letting hhihihih xggu   /);()( ,  
S ihihihh duS )()(  ,

TT

p

T SSS ))(,....,)(()( 11    

is the score function based on sample likelihood ),|( SSS xdl   and from section 2 of Adhya et al. 

(2011),  

)()}(){(ˆ 111   noSnI PS  , and )()(})ˆ)(ˆ{( 111   noInE T  . 

Thus (A3) reduces to   

))}(()({)[(2 111   

S ih

T

S ihSS noInww   

).()}])(())(,...,)((,)({ 11

111111

1 



   noIdudundCov
S ihS ipip

T

ipS ii

T

iS ihihm 

After some algebra it again reduces to 

)()()])(()())(()[(2 11111    nonoIIwwn
S ihS ihS ih

T

S ihSS  .                 (A4) 

For large n , (A2) and (A4) entail   

})ˆ({)ˆ()ˆ( ,,  
S ihihSmhMhmhGDhm dwVPPVPPV   

}])ˆ({})ˆ(){([)1( 112   

S ihihmS ihihm dnVdnNVf  . 

Thus we obtain 

)ˆ()ˆ( ,, hMhmhGDhm PPVPPV  }.)ˆ(){(/})ˆ({1 11 






 
Si

ihihm

Si

ihihm dnNVdnV   
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Proof of part (ii). We note that from (4) after linearization hB̂ )ˆ(ˆ
ShB  can be written as 

)(ˆ 121

0

 no
n

B

n

B
BB P

hh
hh ,                                                                                            (A5) 

where hh BB 10 , and hB2 are stochastically bounded. Thus we have 

  
U PihihhihhihhihMCh nodBnBnBwPP ))(ˆˆˆ(ˆ 1

2

1

1

2/1

0,   

).(ˆˆ 11
0

  nOw
n

B
dwwBP PU ihi

h

U ihiU ihihh                                                     (A6) 

Now, we find the expressions for hB0 and hB1 in (A6). Letting ihih   )( , note that  

)()ˆ()ˆ)(2/1()ˆ(ˆ 1 noPSih

T

Sih

T

Sihih  .  

Letting 
S ihSh n  1

, ,   

S ihSh n  1

, , and   

S ihSh n  1

,  , above expansion gives 

 

S ShihShih ddn )ˆˆ)(( ,,

1   

  

S ShihShih

T

S ShihShih ddnddn ))(()ˆ())(( ,,

1

,,

1   

)()ˆ)(()ˆ)(2/1( 1

,

1    non PS SShih

T

S  ,                                                        (A7) 

where 

 

S Shihn 2

,

1 )ˆˆ(  )ˆ())(()ˆ()( ,,

12

,

1    

SS

T

ShihShih

T

SS Shih nn  

  

S

T

ShihShih

T

S n ))(()ˆ(2 ,,

1   

)()ˆ())(()ˆ( 1

,,

1    non PSS ShihShih

T   

)( 121
0

 no
n

b

n

b
b P

hh
h  ,                                                                                                   (A8) 

where 2,1,0),1(  kOb Pkh . We define hhS Shihh aana 01

2

,

1

0 )8(,)(  
A . Note that ha0  

),1(PO )( 2/1

1

 nOa Ph . Now, (A7) and (A8) imply  

1

1

1

0

12

,

1 )1(})({)7(ˆ    hhS Shihh aanB A  

)}()(1{)}({ 12

1

1

01

1

0

1

0

121

0

  noaaaaano
n

b

n

b
b PhhhhhP

hh
h , say 

)( 121
0

 no
n

B

n

B
B P

hh
h , 

where 












S Shih

S ShihShih

h

h
h

n

ddn

a

b
B

2

,

1

,,

1

0

0
0

)(

))((




. This entails )(1 2/1

0

 nOB Ph .                                                          

Now,
211

0

2

, )}(ˆ)ˆ{(}ˆ{   nOw
n

B
dwwBEPPE PU ihi

h

U ihiU ihihmhMChm  , and  



2019]            ESTIMATORS OF FINITE POPULATION PROPORTION UNDER SIMPLE RANDOM SAMPLING               61 

 
 

)()1()ˆ(ˆ 1

00

  nOwBdwdwwB PU ihihU ihihiU ihiU ihih   

)()1( 1

0

  nOwBt PU ihihN  , say. 

Further note that 

hGDhU ihihiN PPdwt  ,
ˆ)ˆ( , )(}{}ˆ{ 1  nOwtEwtE

U ihiNmU ihiNm  , 

where we have )(}{ 1 nOtE Nm . Thus we obtain 

2

, }ˆ{ hMChm PPE 
211

0 )}(ˆ)1({   nOw
n

B
wBtE PU ihi

h

U ihihNm   

)(}ˆ{
2

)})(1{(2}{ 1

10

2   nowtE
n

BwtBEtE
U ihiNmhU ihihNhmNm   

)()})(1{(2}{ 1

0

2   nowtBEtE
U ihihNhmNm   

)()})}{()1{()1(2}{ 111

0

2    nonnNtBEftE
S ihS ihNhmNm   

)(}{ 12  notE Nm  

 = )(}ˆ{ 12

,

 noPPE hGDhm . 

 

 

 


