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Abstract 

In this paper, the class of life-time distributions is considered for Bayesian analysis. The 

expressions for Bayes estimators of the parameter have been derived under four different prior 

distributions assuming four different loss functions and the comparison between estimators is 

made by using the mean square error through generated different sample sizes by using 

simulation technique.  
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______________________________________________________________________________ 

 

1. Introduction 

In Bayesian inference prior information about the parameter of a model is represented by 

probability function. So in case of assortment of prior information we must be cautious. In more 

general sense, prior information is a way to recapitulate the available information. There is no 

exclusive way for the assortment of a prior distribution so the consequence may be negligible 

and there is always a possibility of obtaining the final answer with the help of distorted prior 

information. In case of very little explanatory information about the unknown parameter we use 

non-informative prior. However, if one has sufficient information about the parameter(s), it is 

better to choose informative prior. In order to handle such situation Laplace, Jeffreys, Lindley etc 

provides different approaches. In the present study we consider two non-informative (Jeffery’s 

and Quasi) and two informative (Inverse exponential and Pareto Type II) priors. 

      

  The class of life-time distributions is very imperative concept when we study the 

reliability of the system. Schnabel (1991) commenced the Bayesian ideas life testing and 

reliability analysis under symmetric loss function, Pander and Rai (1992), Dey et al. (2010) 

explains the Bayesian estimation under different loss factions, Siu and Kelly (1998), Nigm et al. 

(2003), Murthy et al. (2004) explained different cases of generalize Weibull   distribution,  Gupta  
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& Kundu (2003) noted that the two-parameter EE distribution provides a better fit than the two-

parameter Weibull distribution for some specific data. Ahmad et al.  (2014) studied the Bayesian 

analysis of exponentiated inverted Weibull distribution under asymmetric loss functions. Kazimi 

et al. (2012) explains the preference of prior of class of life time distributions using Jeffery’s, 

Gamma and Gumbell type-II priors.     

In this paper, we compare the Bayesian estimators of the parameter of the class of Life 

time distribution using four different prior distributions (Jeffery, Quasi, inverse Exponential and 

Pareto 1) distributions under four different loss functions (Squared error, Al-Bayatti’s, LINEX 

and Weighted), the performance of the obtained estimators are compared by using the mean 

square error, through generated many sample sizes by using simulation technique. 

Let us consider a random sample ),...,,( 21 nxxxx   of size n taken from the class of life 

time distributions (suggested by Prakash and Singh (2010)) with unknown parameter , then the 

probability density function is given as 
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The likelihood function of (1.1) is given as 
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and the log likelihood function  is given as 
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2. Aim of the Bayesian Estimation for the Class of Life time Distributions  

The aim of this study is to show which prior (informative or non-informative) is more 

preferable for our considered class of lifetime model under different loss functions. In this 

section we studied Bayes estimators under four different loss functions. One is symmetric 

(squared error) loss function and the others are asymmetric (LINEX, Al-Bayatti’s and Weighted) 

loss functions. Posterior distribution is obtained when prior information is combined with the 

likelihood. Therefore prior information is necessary for Bayesian approach. The prior 

information is a purely subjective assessment of an expert before any data has been observed. So 

here we employ two non- informative (the Jeffrey’s and the Quasi) priors along with two 

informative (the inverse exponential and the Pareto type I) priors for the class of life time 

distributions.  

 

3. Bayesian Analysis using Jeffery’s Prior  

 

The Jeffreys’ prior proposed by Al-Kutubi (2005) is given as 
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Combining the prior distribution in (2.1) and the likelihood function, the posterior density of  is 

derived as follows: 
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Hence the posterior distribution using Jeffery’s prior is given by 



78                                                    S.P. AHMAD ET.AL                                                   [Vol. 14 Nos. 1&2 

 

     )3.3(exp
1

)(
)|( 1

1

1

1


















































n

i

i

n

n
n

i

i x

n

x

x

which is the probability density function inverse gamma distribution with parameters n and 









 



n

i

ixT
1


 

 

3.1. Bayes estimator using Jeffrey’s prior under SELF 
 

The squared error loss function (SELF) was proposed by Legendre (1805). By using 

squared error loss function 2)(),(  


cl for some constant c the risk function is given by 

   









d
T

n

T
cR

n

n
















 

 exp
1

)(
)(),(

1

0

2

   

 

   






 














21

2 )2()1(
2

)(

)( nnn

n

T

n

T

n

T

n

n

Tc


 






 

   

Now solving 0
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R
, we obtain the Bayes estimator as 
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3.2.   Estimator using Jeffrey’s prior under Al-Bayyati’s loss function 

Al-Bayyati, (2002) introduced a new loss function using Weibull distribution. By using 

Al-Bayyati’s loss function Rcl
c
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, we obtain the Bayes estimator as 
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3.3.   Estimator using Jeffrey’s prior under Weighted loss function 

By using weighted loss function
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l , the risk function is given by 
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Now solving 0
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R
, we obtain the Bayes estimator as 
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3.4. Estimator using Jeffrey’s prior under LINEX loss function 

The LINEX loss function was introduced by Klebanov (1972) and used by Varian (1979) 

in the context of real life assessment. By using LINEX loss function

111exp),( 









































 aal , the risk function is given by 
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Now solving 0
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R
, we obtain the Bayes estimator as 
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4. Bayesian Analysis using Quasi Prior  

When there is no information about the parameter , one may use the quasi density as 

given by: 

           0,0,
1
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The quasi prior leads to diffuse prior when d=0 and to a non informative prior for a case when 

d=1. 
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Combining the prior distribution in (4.1) and the likelihood function, the posterior density 

of  is derived as follows: 
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Hence the posterior distribution using Quasi prior is given by 
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which is the probability density function inverse gamma distribution with parameters 1 dn

and 
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4.1.    Bayes estimator using Quasi prior under SELF 

By using squared error loss function 2)(),(  


cl for some constant c the risk 

function is given by 
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4.2.     Estimator using Quasi prior under Al-Bayyati’s loss function 

By using Al-Bayyati’s loss function Rcl
c
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2 ,)()ˆ,( 2   the risk function is 
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Now solving 0
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, we obtain the Bayes estimator as   
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4.3.   Bayes estimator using Quasi prior under Weighted loss function 

By using weighted loss function
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Now solving 0
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, we obtain the Bayes estimator as 
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4.4.     Estimator using Quasi prior under LINEX loss function 

By using LINEX loss function 111exp),( 









































 aal , the risk function is 
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Now solving 0
),(











R
, we obtain the Bayes estimator as 
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5. Bayesian Analysis using Inverse exponential Prior 
 

It is assumed that the prior distribution of   is the Inverse exponential distribution with 

hyper parameter a is given as:  
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Combining the prior distribution in (5.1) and the likelihood function, the posterior density of  is 

derived as follows: 
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Hence the posterior distribution using Inverse Exponential prior is given by 
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which is the probability density function inverse gamma distribution with parameters 1n and 
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5.1.    Bayes estimator using Inverse exponential prior under SELF 

By using squared error loss function 2)(),(  


cl for some constant c the risk 

function is given by 
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Now solving 0
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, we obtain the Bayes estimator as 
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5.2.       Estimator using Inverse exponential prior under Al-Bayyati’s loss function 

By using Al-Bayyati’s loss function Rcl
c
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5.3.    Bayes estimator using Inverse exponential prior under Weighed loss function 

By using weighted loss function
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Now solving 0
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, we obtain the Bayes estimator as 
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5.4. Estimator using Inverse exponential prior under LINEX loss function 

 

By using LINEX loss function 111exp),( 
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Now solving 0
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, we obtain the Bayes estimator as 
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6. Bayesian Analysis using Pareto I Prior 

It is assumed that the prior distribution of   is the Inverse exponential distribution with 

hyper parameter a is given as:  
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Combining the prior distribution in (6.1) and the likelihood function, the posterior density of  is 

derived as follows: 
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Hence the posterior distribution using Pareto type I prior is given by 
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which is the probability density function inverse gamma distribution with parameters 1n and 
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6.1. Bayes estimator using Pareto I prior under SELF 

By using squared error loss function 2)(),(  


cl for some constant c the risk 

function is given by 
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6.2. Bayes estimator using Pareto I prior under Al-Bayyati’s loss function 

By using Al-Bayyati’s loss function Rcl
c
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Now solving 0
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, we obtain the Bayes estimator as 
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6.3. Bayes estimator using Pareto I prior under Weighted loss function 

By using weighted loss function
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Now solving 0
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, we obtain the Bayes estimator as 
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6.4. Estimator using Pareto I prior under LINEX loss function 

By using LINEX loss function 111exp),( 
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Now solving 0
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, we obtain the Bayes estimator as 
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7. Real data analysis 

This section presents numerical example for the proposed estimates based on a real data 

set. For illustration of our proposed estimates, we consider 55 observations of burning velocity 

(cm/sec) of different chemical materials with  =1.0 and  = 1.0, the data is 68, 61, 64, 55, 51, 

68, 44, 82, 60, 89, 61, 54, 166, 66, 50, 87, 48, 42, 58, 46, 67, 46, 46, 44, 48, 56, 47, 54, 47, 80, 

38, 108, 46, 40, 44, 312, 41, 31, 40, 41, 40, 56, 45, 43, 46, 46, 46, 46, 52, 58, 82, 71, 48, 39, 41. 

The source of the above explained data related to the burning velocity of different chemical 

materials for the year 2005 is available on the website (http://www.cheresources.com/mists.pdf). 

By using different non-informative priors i.e.Jeffreys and Quasi priors and non informative i.e 

invese Exponential and Pareto 1 prior under different Loss functions i.e. Square Error loss 

function, Albayyati loss function, Weighted loss function and LINEX loss function, the Bayes 

estimates and Posterior variance of the posterior distribution are as follows where posterior 

variances are in parentheses.  

 

Table 1. Bayes estimates and Posterior variances 

Prior SELF     ABL WL        LINEX 

c2=2 c2= -2 a=0.5 a= -0.5 

JP 62.1296 

(0.5630) 

64.5192 

(0.6071) 

59.9107 

(0.5235) 

61.00 

(0.5427) 

59.6440 

(0.5188) 

60.1789 

(0.5282) 

QP 62.7102 

(0.5735) 

65.1456 

(0.6189) 

60.4504 

(0.5329) 

61.5596 

(0.5527) 

60.1789 

(0.5282) 

60.7235 

(0.5378) 

IEP 61.0090 

(0.5427) 

63.3113 

(0.5844) 

58.8684 

(0.5053) 

59.9196 

(0.5235) 

58.6109 

(0.5008) 

59.1273 

(0.5097) 

PP 61.5596 

(0.5527) 

63.9047 

(0.5956) 

59.3805 

(0.5142) 

60.4504 

(0.5329) 

59.1185 

(0.5097) 

59.6440 

(0.5188) 
JP=Jeffery’s Prior, QP=Quasi prior, IEP=inverse Exponential prior, PP=Pareto prior, SELF= Squared 

error loss function, ABL= Al-Bayattis’s loss function, WL=Weighted loss function, LINEX=linear 

exponential loss function. 

 

On comparing the Bayes posterior variances of different loss functions, it is observed that the 

LINEX loss function has less Bayes posterior variance than other loss functions. According to 

the decision rule of less Bayes posterior variance we conclude that the LINEX loss function is 

more preferable loss function. 

  

http://www.cheresources.com/mists.pdf
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8. Simulation Study 

This section shows how simulation can be helpful and illuminating way to approach 

problems in Bayesian analysis. In our simulation study, we chose a sample size of n=25, 50 and 

100 to represent small, medium and large data set. The Bayes estimates are estimated for the 

class of Life time distributions using informative (Jeffrey’s and Quasi) & non informative 

(inverse Exponential and Pareto 1) priors under different loss functions. In order to assess the 

statistical performances of these estimates, we conducted a simulation study. The mean square 

error using generated random samples of different sizes are computed for each estimator. The 

value for the loss parameters c2 is ±2.0 and a is ±0.5. The study has been carried out for different 

values of   keeping  and  fixed. This was iterated 5000 times. The results are presented in 

tables for different selections of the parameters. 

                                

                                  Table 2. Mean square error using Jeffery’s prior 

n       
SL



            AL



  WL



            LL



  
c2=2 c2=-2 a=0.5 a=-0.5 

25 0.5 0.5 0.5 0.2639 0.4928 0.1523 0.1986 0.1429 0.1624 

1.0 0.0835 0.1986 0.0697 0.0692 0.0615 0.0685 

0.5 1.0 1.0 0.0159 0.0097 0.0231 0.0194 0.0241 0.0222 

1.0 0.6540 0.7410 0.6024 0.6246 0.5978 0.6074 

0.5 2.0 1.0 0.0464 0.0380 0.0562 0.0514 0.0374 0.0550 

1.0 0.0715 0.1176 0.0500 0.0583 0.0486 0.0517 

50 0.5 0.5 0.5 0.0219 0.0359 0.0147 0.0176 0.0142 0.0153 

1.0 0.0326 0.0404 0.0388 0.0343 0.0303 0.0375 

0.5 1.0 1.0 0.0046 0.0054 0.0047 0.0046 0.0046 0.0047 

1.0 0.0247 0.0327 0.0210 0.0224 0.0208 0.0213 

0.5 2.0 1.0 0.0836 0.0785 0.0885 0.0861 0.0811 0.0879 

1.0 0.1439 0.1248 0.1628 0.1534 0.1651 0.1605 

100 0.5 0.5 0.5 0.0207 0.0276 0.0156 0.0179 0.0150 0.0161 

1.0 0.1605 0.0207 0.0193 0.0194 0.0192 0.0190 

0.5 1.0 1.0 0.0081 0.0100 0.0067 0.0074 0.0065 0.0068 

1.0 0.0099 0.0090 0.0114 0.0106 0.0117 0.0112 

0.5 2.0 1.0 0.0706 0.0681 0.0731 0.0718 0.0634 0.0728 

1.0 0.0255 0.0210 0.0304 0.0279 0.0210 0.0298 
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                                   Table 3. Mean square error using Quasi prior 

n       
SL



            AL



  WL



             LL



  
c2=2 c2=-2 a=0.5 a=-0.5 

25 0.5 0.5 0.5 0.1531 0.3139 0.0825 0.1107 0.0770 0.0884 

1.0 0.7909 1.5706 0.4356 0.5797 0.4071 0.4664 

0.5 1.0 1.0 0.0132 0.0215 0.0103 0.0112 0.0102 0.0104 

1.0 0.4681 0.6764 0.3275 0.3910 0.3135 0.3423 

0.5 2.0 1.0 0.0266 0.0179 0.0356 0.0311 0.0367 0.0345 

1.0 0.1810 0.2837 0.1187 0.1458 0.1130 0.1248 

50 0.5 0.5 0.5 0.0963 0.1415 0.0664 0.0799 0.0635 0.0695 

1.0 0.1232 0.1994 0.0805 0.0986 0.0769 0.0845 

0.5 1.0 1.0 0.0050 0.0062 0.0048 0.0048 0.0048 0.0048 

1.0 0.0653 0.0884 0.0488 0.0563 0.0471 0.0505 

0.5 2.0 1.0 0.0734 0.0682 0.0784 0.0759 0.0790 0.0777 

1.0 0.0622 0.0912 0.0405 0.0505 0.0382 0.0428 

100 0.5 0.5 0.5 0.0415 0.0531 0.0324 0.0367 0.0315 0.0335 

1.0 0.0295 0.0400 0.0237 0.0261 0.0232 0.0242 

0.5 1.0 1.0 0.0095 0.0116 0.0078 0.0086 0.0076 0.0080 

1.0 0.0099 0.0110 0.0098 0.0098 0.0098 0.0098 

0.5 2.0 1.0 0.0755 0.0730 0.0780 0.0768 0.0784 0.0777 

1.0 0.0201 0.0249 0.0165 0.0182 0.0162 0.0169 

                                      

Table 4. Mean square error using inverse Exponential prior 

n       
SL



            AL



  WL



             LL



  
c2=2 c2=-2 a=0.5 a=-0.5 

25 0.5 0.5 0.5 0.1710 0.3182 0.0984 0.1285 0.0923 0.1049 

1.0 0.1749 0.3834 0.1004 0.1269 0.0962 0.1054 

0.5 1.0 1.0 0.0368 0.0574 0.0244 0.0298 0.0233 0.0256 

1.0 0.0546 0.0878 0.0413 0.0460 0.0407 0.0422 

0.5 2.0 1.0 0.0536 0.0433 0.0632 0.0584 0.0643 0.0620 

1.0 0.0794 0.1285 0.0544 0.0645 0.0525 0.0565 

50 0.5 0.5 0.5 0.1146 0.1625 0.0815 0.0965 0.0782 0.0850 

1.0 0.0537 0.0862 0.0409 0.0454 0.0403 0.0417 

0.5 1.0 1.0 0.0111 0.0152 0.0084 0.0096 0.0081 0.0086 

1.0 0.0321 0.0437 0.0252 0.0281 0.0246 0.0258 

0.5 2.0 1.0 0.0558 0.0507 0.0607 0.0583 0.0613 0.0601 

1.0 0.0242 0.0320 0.0206 0.0220 0.0204 0.0209 

100 0.5 0.5 0.5 0.0292 0.0379 0.0224 0.0256 0.0217 0.0232 

1.0 0.0399 0.0544 0.0303 0.0345 0.0295 0.0313 

0.5 1.0 1.0 0.0025 0.0029 0.0024 0.0024 0.0024 0.0024 

1.0 0.0109 0.0126 0.0101 0.0104 0.0100 0.0101 

0.5 2.0 1.0 0.0760 0.0735 0.0785 0.0772 0.0788 0.0781 

1.0 0.0114 0.0133 0.0103 0.0107 0.0102 0.0104 
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Table 5. Mean square error using Pareto 1 prior 

n       
SL



            AL



  WL



           LL



  
c2=2 c2=-2 a=0.5 a=-0.5 

25 0.5 0.5 0.5 0.1391 0.2505 0.0897 0.1094 0.0859 0.0938 

1.0 0.1785 0.3232 0.1451 0.1533 0.1450 0.1459 

0.5 1.0 1.0 0.0151 0.0217 0.0133 0.0137 0.0133 0.0133 

1.0 0.0782 0.1170 0.0616 0.0677 0.0606 0.0628 

0.5 2.0 1.0 0.0421 0.0322 0.0516 0.0469 0.0528 0.0505 

1.0 0.2794 0.4061 0.1974 0.2339 0.1896 0.2057 

50 0.5 0.5 0.5 0.0550 0.0812 0.0386 0.0458 0.0371 0.0402 

1.0 0.0682 0.1001 0.0566 0.0604 0.0561 0.0572 

0.5 1.0 1.0 0.0063 0.0078 0.0058 0.0059 0.0058 0.0058 

1.0 0.0420 0.0559 0.0331 0.0370 0.0323 0.0340 

0.5 2.0 1.0 0.0423 0.0373 0.0470 0.0447 0.0476 0.0465 

1.0 0.0669 0.0888 0.0513 0.0584 0.0497 0.0530 

100 0.5 0.5 0.5 0.0176 0.0233 0.0135 0.0153 0.0130 0.0139 

1.0 0.0314 0.0410 0.0263 0.0284 0.0259 0.0267 

0.5 1.0 1.0 0.0028 0.0032 0.0027 0.0027 0.0027 0.0027 

1.0 0.0244 0.0299 0.0201 0.0221 0.0197 0.0206 

0.5 2.0 1.0 0.0561 0.0536 0.0586 0.0573 0.0589 0.0583 

1.0 0.0167 0.0203 0.0142 0.0153 0.0139 0.0144 

 

In table 2-5, Bayes estimation with LINEX Loss function provides the smallest values in 

maximum cases especially when loss parameter a is 0.5. When the value of the parameters 

2 and 1 (i.e for Rayleigh distribution) Al-Bayatti’s loss function provides least mean 

square. Similarly, the increased true parametric values impose a negative impact on the 

convergence of the estimates. Also among the priors the inverse exponential prior (informative) 

is compatible for the unknown parameter of the class of life-time distributions and preferable 

over all other competitive priors because of having less mean square error. Moreover, when the 

sample size increases from 25 to 100, the MSE decreases quite significantly.  

 

9. Conclusion 

We consider the Bayesian analysis of the class of life-time distributions using different 

informative and non-informative priors. After analysis we conclude that the inverse exponential 

prior (informative) is compatible for the unknown parameter of the class of life-time 

distributions and preferable over all other competitive priors because of having less posterior 

Variance and mean square error. As far as choice of loss function is concerned, one can easily 

observe based on evidence of different properties as discussed above that LINEX loss function 

has smaller mean square error. Further, as we increase sample size posterior variance and mean 

square error comes down.  
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