
Statistics and Applications {ISSN 2454-7395 (online)}  

Volume 16 Nos. 2, 2018 (New Series), pp 77-87  

 

Mixture Designs based on Hadamard Matrices 
 

Poonam Singh
1
,  Vandana Sarin

2
 and Rashmi Goel

2 

1
Department of Statistics, University of Delhi, Delhi  

2
 Kirori Mal College, University of Delhi, Delhi  

 

Received March 15, 2018; Revised August 04, 2018; Accepted August 18, 2018 

___________________________________________________________________________ 
 

Abstract 
  

Prescott (2000) constructed orthogonally blocked mixture designs using projection of 

augmented pair designs. Singh (2003) constructed optimal orthogonally blocked designs for 

the Darroch and Waller quadratic model in three and four components.  In this paper, mixture 

designs have been constructed by projecting screening designs based on Hadamard matrices. 

The constructed designs have been further compared on the basis of uniformity and G 

efficiency criteria.  Orthogonal blocking of the constructed mixture designs has also been 

presented. 
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___________________________________________________________________________ 

 

1.  Introduction 
 

Mixture experiments are characterized by the fact that the response(y) depends on the 

relative proportion of each component xi satisfying  

 

0≤ xi≤1, i = 1, 2,…, m and x1 + x2+ ...+xm = 1   (1.1) 

 

and not on the total amount of the mixture.  These constraints define a (m-1) dimensional 

simplex.  Scheffé (1958, 1963) introduced models and designs for experiments with mixtures. 

The linear and quadratic models given by Scheffé (195 8) are as follows: 

 

            
 
           (1.2) 

                 
 
     

 
                                                                      (1.3) 

  

 Scheffé (1963) introduced process variables for these experiments.  John (1984) 

discussed the need of blocking for mixture experiments in the presence of process variables 

and constructed orthogonal block designs using Latin squares.  Singh (2003) used the 

Darroch and Waller quadratic model to construct optimal orthogonal designs in two blocks 

for three and four components. Aggarwal et al (2008) used F-squares as a basis for the 

Darroch and Waller quadratic mixture model to construct optimal orthogonal designs in two 

blocks for four components. The quadratic model given by Darroch and Waller (1985) for 

mixture experiments is 
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                 (1.4) 

 

This model is additive in the mixture components, in the sense that it is a sum of 

separate functions x1, x2,…,xm.  When mixture components x1, x2,…,xm  vary but the sums x1 +  

x2+ ….+xs and xs+1+xs+2+….+xm (1 ≤ s ≤ m)are fixed, the total effect of the expected 

response is the sum of the effects of varying x1, x2, …,xs and xs+1,xs+2,...,xm separately.  Such 

models are suitable for the designs of industrial products where mixture components have 

additive effects on the response function.  An example where the Darroch and Waller 

quadratic model was more suitable than Scheffé’s quadratic model was discussed by Chan 

(1998: p.361) in the design of a solder plate used in surface- mount technology in electronic 

manufacturing. 

 

A detailed bibliography of mixture designs is available at IASRI site at 

http://iasri.res.in/design/mixture/mixture/Bibliography.htm. 

 

In this paper, we have used Hadamard matrices to construct screening designs and 

then projected them to obtain mixture designs. These designs have been compared for various 

values of n for their uniformity and design criteria. Section 2 contains Hadamard matrices 

and their applications. In Section 3, we have discussed the mixture designs obtained through 

projection of Quantitative Screening Designs(QSDs).  Section 4 compares these designs on 

the basis of uniformity measures.  In Section 5 we have compared these designs on the basis 

of G- efficiency criteria.  In Section 6, we have presented orthogonal blocking of these 

projected designs.  Section 7 gives the conclusion. 

 

2.   Hadamard Matrices 

 

A square matrix Hn of order n whose entries are +1 or -1 is called a Hadamard matrix 

of order n provided that its rows are pair wise orthogonal, in other words, Hn is such that 

 

HnH'n= nI= H'nHn                                              (2.1) 

 

Hadamard matrices were first studied by Sylvester (1867) who observed that if H is a 

Hadamard matrix, then 

 

 
     
   

  

 

is also a Hadamard matrix. He also claimed that there is a Hadamard matrix of order 2
t
for all 

non-negative t. The matrices of order 2
t
 constructed using Sylvester’s techniques are usually 

referred to as Sylvester-Hadamard matrices. Apart from Sylvester’s techniques, there are 

several other systematic ways of constructing such matrices. Lists of those techniques can be 

found in Hedayat et al. (1999) and the listing of the matrices can be found in Seberry (2004) 

and Sloane (2004). For comprehensive review and methods of construction of Hadamard 

matrices, one may refer to Gupta et al.( 2007) and for online generation, may refer to 

http://iasri.res.in/design/WebHadamard/WebHadamard.htm. 

 

Two Hadamard matrices are essentially the same if one can be obtained from the 

other by a permutation of the rows, or of the columns, or by negating certain rows, or 

columns. Two Hadamard matrices are called equivalent if one can be obtained from the other 
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by a sequence of these operations. The number of non equivalent Hadamard matrices of order 

n is known only for n ≤ 32. The number of non equivalent Hadamard matrices of order 1, 2, 

4, 8, 12, 16, 20, 24, 28, 32 is respectively 1, 1, 1, 1, 1, 5, 3, 60, 487, 13710027. 

 

2.1 Applications of Hadamard Matrices 

 

Hadamard matrices have a very wide variety of application in modern 

communications and statistics. Hadamard matrices constructed using Sylvester’s techniques 

are used in engineering applications including communication systems and digital image 

processing. 

 

The application of  Hadamard matrices in the construction of weighing designs, group 

divisible designs, optimal resolution 3 designs, Youden designs, factorial designs and 

orthogonal arrays has been discovered recently. 

 

Hadamard matrices are intimately connected to factorial experiments in which each 

factor is at two levels. Plackett and Burman (1946) utilized Hadamard matrices for the 

construction of optimum multi factorial experiments. Other statisticians have used Hadamard 

matrices for a number of experiments under different optimality criteria. Applications of 

Hadamard matrices in the area of optimal regression theory have been noticed recently by 

workers in the field of optimal design theory.  

 

Hadamard matrices have recently been found useful in spectrometry and pattern 

recognition in the construction of masks. These applications can be found in Tai, Harwit and 

Sloane (1975) and Decker (1973). 

 

3.   Projection of Quantitative Screening Designs (QSDs) based on Hadamard 

Matrices 

  

Georgiou et al (2013) have proposed a new concept of three level QSDs from 

weighing matrices. Let W=W(n, k) be a weighing matrix of order n and weight k. Set 

 

`Q    
 

    

  
  (3.1) 

Where Osxn is an s  n zero matrix (the centre points). Then QD is a three-level screening 

design with 2n+s design points. The columns of the design matrix QD are orthogonal to each 

other. We have used Hadamard matrices Hm instead of weighing matrices and s=1 to obtain 

QSDs with 2m+1 design points.  

 

Box and Hau (2001), Prescott (2000, 2004),Aggarwal and Singh (2003) discussed the 

projection of an unconstrained design D into a constrained mixture simplex. Given an 

unconstrained design D, we need a projection matrix P, to project D into a mixture space to 

get the design matrix       
 

 
       , satisfying the constraints in (1.1) where J2m+1,m 

is an  2m+1x m matrix of 1’s and α is a scaling constant needed to ensure that all design 

points lie within the mixture simplex. The elements of the constrained region DP are defined 

as        
         

   
for u=1, 2,…,2m+1, i= 1,2,…m, where    is any point, x˷0 is some 

reference point and ri
’
s determine the direction of projection.   Equation (1.1) implies that we 

must have     
 R = 0, where R = (r1,r2,...,rm)′  and dp,u is the u

th 
row of DP. Then the 
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projection matrix P=I–R (R′R)
-1

R′ with R′ = (1, 1, …,1). Prescott (2000) illustrated 

projection of central composite response surface designs into constrained mixture simplexes. 

Aggarwal and Singh (2003) projected three level response surface designs to construct 

mixture designs for 3 to 5 mixture components. 

 

We have used various Hadamard matrices to obtain mixture designs by projection of 

QSDs. We considered these designs to fit models given in (1.2), (1.3) and (1.4). The model 

given in (1.3) required at least m(m+1)/2 design points to estimate the parameters whereas the 

Darroch and Waller quadratic model given in (1.4) can be fitted using 2m design points. In 

this paper, we restrict ourselves to designs containing (2m+1) design points only. The 

constructed designs are compared on the basis of uniformity and optimality criteria for 

Scheffé linear model and the Darroch and Waller quadratic model.  

 

As an example consider the following Hadamard matrix of order 4 

 

 

                                 H4= 

 

 

 

 
  

    

   

  has 9 points For this matrix QD = 

which are projected to get a mixture design. 

 

The design matrix obtained by taking   
 

 
 is as follows: 

 

 

 

(3.2) 

 

 

 

 

 

 

 

The design points in X given in (3.2) are displayed in Figure 1, where the centre run (0.25 

0.25 0.25 0.25) is replicated thrice. 
 

Figure 1: Design points of the projected design given in (3.2) 

 

 

 

 

 

 

 

 

 

1 1 1 1 

1 1 -1 -1 

1 -1 1 -1 

1 -1 -1 1 

 0.2500 0.2500 0.2500 0.2500 

 0.5000 0.5000 0.0000 0.0000 

 0.5000 0.0000 0.5000 0.0000 

 0.5000 0.0000 0.0000 0.5000 

                  X = 0.2500 0.2500 0.2500 0.2500 

 0.2500 0.2500 0.2500 0.2500 

 0.0000 0.0000 0.5000 0.5000 

 0.0000 0.5000 0.0000 0.5000 

 0.0000 0.5000 0.5000 0.0000 
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The design matrix obtained by taking   
 

 
   is as follows: 

  

 

 

 

 

 

(3.3) 

 

 

 

 

 

The design points in X given in (3.3) are displayed in Figure 2 where the centre run  

(0.25 0.25 0.25 0.25) is replicated thrice. 

 

Figure 2: Design points of the projected design given in (3.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have used Hadamard matrices for m varying from 4 to 32 to construct mixture 

designs with   
 

 
 and   

 

   
. After projecting these QSDs we obtain the required 

mixture designs containing 2m+1 design points for various values of m. These designs are 

available with the authors. It is interesting to note that for a particular value of m, more than 

one Hadamard matrices exist, but the mixture designs constructed by projecting the QSDs 

based on these matrices are all the same. 

 

4.  Uniformity Measures 

 

A Uniform Design seeks design points that are uniformly scattered on the domain (see 

Fang, Lin, Winker and Zhang(2000)).  Warnock (1972)gave an analytical formula for 

calculating the L2 discrepancy which is a measurement of uniformity. Hickernell (1998) 

pointed out some disadvantages in the formula. To overcome these, he proposed three new 

measures of uniformity, namely, the Centered L2 discrepancy (CL2), Symmetric L2 

discrepancy (SL2) and modified L2 discrepancy(ML2). Hickernell(1998) gave an analytical 

expression for the above three as follows: 
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where Pn is a set of n design points for s factors. 

 

We compiled uniformity measures for the various designs obtained in Section 3. The 

results are given in Table 1a. 

 

Table 1a: Discrepancy measures for mixture designs based on Hm, m varying 

 from 4 to 32 with    
 

 
. 

S.No. m 

No. of Hadamard 

matrices used to 

construct mixture 

designs  

CL2 ML2 SL2 

1 4 1 0.6142 1.2379 2.0615 

2 8 1 2.4650 8.9039 9.8312 

3 12 1 6.3632 40.8943 38.8861 

4 16 5
* 

14.9750 170.8800 154.7159 

5 20 3
* 

34.2487 693.8280 617.2743 

6 24 4
* 

77.5736 2790.7 2469.4 

7 28 4
* 

175.0859 11188.0 9881.5 

8 32 2
* 

394.6331 44803.0 39543.0 

 

Table 1b: Discrepancy measures for mixture designs based on Hm, 

m varying from 4 to 32 with   
 

   
 

 

S.No. m 

No. of Hadamard 

matrices used to 

construct 

mixture designs 

CL2 ML2 SL2 

1 4 1 0.6218 1.3290 2.2227 

2 8 1 2.5338 9.0881 10.3670 

3 12 1 6.4938 41.3666 40.4265 

4 16 5
* 

15.1407 172.2685 159.2459 

5 20 3
* 

34.5458 698.2477 632.5255 

6 24 4
* 

78.1282 2.805E+03 2.52E+03 

7 28 4
* 

176.1530 1.123E+04 1.006E+04 

8 32 2
* 

396.7308 4.498E+04 4.015E+04 

   * All designs had the same uniformity values 

 

As m increases from 4 to 32, the variation increases in the discrepancy measures CL2, 

ML2and SL2 in Table 1a and Table 1b.  
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On comparing the values for the discrepancy measures between Table 1a and Table 

1b, it is observed that all measures of Table 1a are better than those of Table 1b.  That is, CL2 

value in Table 1a for a particular design with α=
 

 
 is better than that of the corresponding 

design with   
 

   
.  A similar pattern is observed for the rest of the values in Table 1a and 

Table 1b. 

  

Thus uniformity is affected by the values of m and α. The smaller the value of m, 

better is the uniformity.  Discrepancy measures for designs projected using   
 

 
 are better 

than the designs projected using   
 

   
. 

 

5.   Design Criteria 

 

Several popular design criteria are available for the evaluation of a proposed 

experimental design.  A systematic study of the specification of optimum experimental 

designs was undertaken by Kiefer (1959,1961) in a series of papers, where he introduced 

various design criteria            , discussed interrelations amongst these and established 

the optimality property of some well-known designs for some particular problems.  

 

A design is said to be D-optimal if             is minimized, A-optimal if 

             is minimized and G-optimal if                             is 

minimized, where X is the extended design matrix corresponding to the model under 

consideration.  

 

Moreover, G-efficiency criterion, defined as     
 

      
 , where p is the number of 

factors and    is the number of design points, is commonly used for mixture designs. It refers 

to minimizing the maximum variance of the prediction over the experimental region. Wheeler 

(1972) suggested that any design with G efficiency of 50% or more can be considered as an 

efficient design. Tabulated below are the G and G-efficiency values for the mixture designs 

based on the Hadamard matrices Hm, with m varying from 4 to 32 for Scheffé’s linear model. 

 

Table 2a: G and G-efficiency values for mixture designs  

based on Hm, m varying from 4 to 32, for Scheffé’s Linear Model 

S. 

No. 
m 

No. of Hadamard 

matrices used to 

construct 

mixture designs 

     

Scheffé’s Linear Model 

 

  
 

 
 

 

  
 

   
 

G 
G-efficiency 

(%) 
G 

G-efficiency 

(%) 

1 4 1 4, 9 0.6100 73 0.6100 73 

2 8 1 8, 17 0.5588 84 0.5588 84 

3 12 1 12, 25 0.5400 89 0.5400 89 

4 16 5
* 

16, 33 0.5303 91 0.5303 91 

5 20 3
* 

20, 41 0.5244 93 0,5244 93 

6 24 4
* 

24, 49 0.5204 94 0.5204 94 

7 28 4
* 

28, 57 0.5175 95 0.5175 95 

8 32 2
* 

32, 65 0.5154 96 0.5154 96 

* All designs had the same G values  
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The G values are identical for   
 

 
      

 

   
. As the value of m increases the G 

efficiency improves. From Table 2a, we notice that all the mixture designs constructed have  

G efficiency greater than 50%. Hence the designs in Section 3 are all G efficient for fitting 

Scheffé’s linear model. The designs constructed in Section 3 by projecting a QSD based on 

Hadamard matrices of order m contain 2m+1 points. Hence these designs can be used for 

fitting a Darroch and Waller quadratic model with p = 2m parameters.  

 

In Table 2b, we have given the values for the best or optimal design for different m by 

G- optimality criterion. Also tabulated are the corresponding G- efficiency of the best 

designs. 

 

Table 2b: G  and G- efficiency values for mixture designs 

 based on Hm, m varying from 4 to 32, Darroch and Waller Quadratic Model 

S. 

No. 
m 

No. of Hadamard 

matrices used to 

construct mixture 

designs 

 

 

 

     
 

 

Darroch and Waller Quadratic Model 

  
 

 
   

 

   
 

G 
G-efficiency 

(%) 
G 

G-efficiency 

(%) 

1 4 1 8, 9 1.5 59 1.4647 61 

2 8 1 16, 17 1.5156 62 7.2596 13 

3 12 1 24, 25 1.8090 53 1.4841 65 

4 16 5 32, 33 0.6519 149 0.6337 153 

5 20 3 40, 41 1.7063 57 0.9554 102 

6 24 4 48, 49 1.4851 66 1.1307 87 

7 28 4 56, 57 0.6586 149 0.8185 120 

8 32 2 64, 65 1.2954 76 0.8735 113 

 

The G efficiency values of almost all the designs, except for the case m=8 when  

  
 

   
    are greater than 50%. Hence, the designs constructed in Section 3 are efficient 

designs. 

 

6.  Orthogonal blocking in Mixture Experiments 

 

Block designs for mixture experiments are group of mixture blends where each group 

or block is assumed to differ from other groups or blocks by an additive constant. A design is 

said to block orthogonally with respect to the blending properties of the components if the 

estimates of the blending properties in the fitted model are uncorrelated with and are 

unaffected in the presence of block effects. 

 

Orthogonally blocked mixture designs have been studied by Nigam (1970, 1976) and 

John(1984). John (1984) gave simplified conditions for estimation of the parameters of 

Scheffé’s quadratic model in the presence of block effects and constructed orthogonally 

blocked designs for mixture experiments using Latin squares. Cornell (2002, pp 438-454) 

gives an excellent review of block designs for mixture experiments.  

 

Let N mixture blends (not necessarily all distinct) be arranged in t blocks such that the 

w
th

 block contains nw blends and n1+ n2+……+ nt = N.  Let γw represent the effect of the w
th

 

block, then the Darroch and Waller quadratic model with block terms is  
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where Zuw is a dummy block variable that equals 1 if the u
th

 blend is in the w
th

 block and 0 

otherwise. 

 

Singh (2003) suggested the following conditions for orthogonal blocking of blends for 

the Darroch and Waller quadratic model: 

 

 

                              
  
            

                                                                                                                            (6.2) 

    
           

  

     

                                                                                      

 

where ci’s and cii’s are constants. 

 

As an illustration, we consider the design matrix X obtained by projecting a QSD 

based on H8 with   
 

 
 

 

   

 

 

 

 

 

 

X =            

 

 

 

 

 

 

 

 

 

 

This design satisfies the conditions for orthogonal blocking given in (6.2). 

 

                

  

      

    
                                                                    

  

   

 

All projected designs with different value of   are particular cases when ci =2.125 for all i. 

 

Permuting the columns in the mixture design X we can construct 8! designs.  All these 

designs satisfy (6.3). Therefore, we obtain 8! orthogonal blocks satisfying (6.3). 

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

0.25 0 0.25 0 0.25 0 0.25 0 

0.25 0.25 0 0 0.25 0.25 0 0 

0.25 0 0 0.25 0.25 0 0 0.25 

0.25 0.25 0.25 0.25 0 0 0 0 

0.25 0 0.25 0 0 0.25 0 0.25 

0.25 0.25 0 0 0 0 0.25 0.25 

0.25 0 0 0.25 0 0.25 0.25 0 

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

0 0.25 0 0.25 0 0.25 0 0.25 

0 0 0.25 0.25 0 0 0.25 0.25 

0 0.25 0.25 0 0 0.25 0.25 0 

0 0 0 0 0.25 0.25 0.25 0.25 

0 0.25 0 0.25 0.25 0 0.25 0 

0 0 0.25 0.25 0.25 0.25 0 0 

0 0.25 0.25 0 0.25 0 0 0.25 
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7.  Conclusion 

 

This paper uses Hadamard matrices to construct QSDs which are projected to 

obtained unconstrained mixture experiments. Hadamard matrices have not been used in this 

way earlier for this purpose. The number of design points in the constructed designs has been 

kept to 2m+1 where m is the number of components in the mixture.  This makes the 

constructed designs appropriate for estimating all the parameters of Scheffé’s linear model as 

well as the reduced Darroch and Waller quadratic model.  

 

In this paper, we have noticed that uniformity and efficiency are both affected by the 

values of m. Uniformity measures for designs obtained through projection using   
 

 
 are 

better than those designs using   
 

   
. The designs constructed in Section 3 are G efficient. 

As illustrated, orthogonally blocked mixture designs can be constructed using Hadamard 

matrices for the Darroch and Waller quadratic model. 

 

Although the focus of this paper is on construction of unconstrained mixture designs 

based on Hadamard matrices, we can use the projection of Hadamard matrices for 

constructing designs for constrained mixture experiments, as well. The important area of 

orthogonal block designs for constrained mixture regions is also an open problem. 
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