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Abstract
In this research, we study and introduce a new family of continuous distributions

known as the T-Marshall-Olkin X family. We present some special models and investigate
the asymptotic distributions of order statistics of the family half-logistic-Marshall-Olkin
X family, which is explored in depth as a specific instance. The half-logistic-Marshall-
Olkin Lomax distribution is one unique model in this family that is explored in depth.
We list a few of the new distribution’s mathematical properties. We use the maximum
likelihood method to estimate the model’s parameters. The bias and mean square error
of the maximum likelihood estimators are examined in a simulation study that is given.
Testing the importance of a distribution parameter is done using the likelihood ratio test
with a simulation study. The potentiality and flexibility of the new family are illustrated by
using two practical data sets.

Key words: T-X family; Marshall-Olkin; Moments; Maximum likelihood estimation; Likeli-
hood ratio test; Applications.
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1. Introduction

The statistical literature is rich with different kinds univariate distributions and is
still growing rapidly. The classical distributions have various limitations in modelling real-
life data. This persuades the statistical researcher to develop methods for generating new
classes of distributions starting with a base line distribution.

Marshall and Olkin (1997) proposed a flexible family of distributions by introducing a
new shape parameter to the existing family of distributions called the Marshall-Olkin family
of distributions. The cumulative density function (CDF) of the Marshall-Olkin (MO) family
is given respectively, by G(x) = F (x)

c+(1−c)F (x) , c > 0, x ∈ R, where F (x) is the baseline CDF.
This approach produces a stable distribution with broad field behaviour in probability density
function (PDF) and hazard rate function (HRF) compared to the baseline distribution. It
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provides a flexible framework for modelling a variety of circumstances and is useful in areas
such as reliability, finance, simulation studies, health research, and engineering. Some MO
families of distributions are MO-extended Lomax by Ghitany et al. (2007), MO-extended
Lindley by Ghitany et al. (2012), MO-Fréchet by Krishna et al. (2013), MO-exponential
Weibull by Pogány et al. (2015), MO-generalized exponential by Ristić and Kundu (2015),
MO-Ikum by Tomy and Gillariose (2018), MO modified Lindley by Gillariose et al. (2020),
MO Gumbel-Lomax by Nwezza and Ugwuowo (2020) MO-Lindley-Log-logistic by Moakofi
et al. (2021), MO alpha power inverse exponential by Basheer (2022), MO Inverse log-logistic
by Aako et al. (2022), MO Extended Gumbel Type-II by Willayat et al. (2022), MO extended
unit-Gompertz by Opone et al. (2022), MO Exponentiated Dagum by Sherwani et al. (2023),
MO Extended Generalized Exponential by Innocent et al. (2023), MO Pranav by Alsultan
(2023), MO Exponentiated Fréchet by Niyoyunguruza et al. (2023), MO Chris-Jerry by
Obulezi et al. (2023), MO Pareto type-I by Aldahlan et al. (2023), MO Cosine Topp-Leon
by Osi et al. (2024a), MO Bilal by İrhad et al. (2024).

Alzaatreh et al. (2013) introduced a powerful method to generate new families of
distributions called the transformed-transformer method, and the family is called the T-X
family of distributions. This approach extends the beta-G by Eugene et al. (2002) and
Kumaraswamy-G by Cordeiro and de Castro (2011) families by using any continuous dis-
tribution for a random variable T on [a, b]. The CDF of the T-X family of distributions is

given by R(x) =
W [G(x)]�

a
j(t)dt, where j(t) is the PDF of a random variable T , T ∈ [a, b] for

−∞ < a < b < ∞ and W [G(x)] is a function of the baseline CDF of a random variable X
and satisfies three conditions, namely

• W [G(x)] ∈ [a, b].

• W [G(x)] is differentiable and monotonically non decreasing.

• W [G(x)] → a as x → −∞ and W [G(x)] → b as x → ∞.

Numerous research papers on the T-X family have been published in the literature. The
Weibull-Pareto distribution by Alzaatreh et al. (2013), Kumaraswamy-Geometric Distri-
bution by Akinsete et al. (2014), McDonald quasi Lindley distribution by Merovci et al.
(2015), Kumaraswamy -Weibull geometric distribution by Rasekhi et al. (2018), generalized
odd inverted exponential generated family of distributions by Chesneau and Djibrila (2019),
Weibull Burr X-G family of distribution by Ishaq et al. (2019), weighted odd Weibull gen-
erated family of distributions by Mi et al. (2021), exponentiated odd Chen-G family of
distributions by Eliwa et al. (2021), generalized odd linear exponential family of distribu-
tions by Jamal et al. (2022), Rayleigh-Exponentiated Odd Generalized-Pareto distribution
by Yahaya and Doguwa (2022), MO odd power generalized Weibull distribution by Chipepa
et al. (2022), New Generalized Logarithmic-X family of distributions by Shah et al. (2023),
New Generalized Odd Fréchet-Exponentiated-G family of distribution by Sadiq et al. (2023),
new generalized exponentiated Fréchet–Weibull distribution by Klakattawi et al. (2023), MO
Topp-Leone Half-Logistic-G family of distributions by Sengweni et al. (2023), exponentiated
Cosine Topp-Leone Generalized family of distributions by Osi et al. (2024b) and others are
a few examples. A review paper by Tomy et al. (2019) provides a detailed account of the
T-X family of distributions.
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Nowadays, there is a trend toward combining various families of distributions to in-
crease the flexibility and properties of new distributions. Some of them are the beta MO fam-
ily by Alizadeh et al. (2015a), Kumaraswamy MO family by Alizadeh et al. (2015b), general-
ized MO Kumaraswamy-G family by Handique and Chakraborty (2015a), MO-Kumaraswamy-
G family by Handique and Chakraborty (2015b), T-transmuted X family by Moolath and
Jayakumar (2017), MO Zubair-G family by Nasiru and Abubakari (2022), MO Weibull–Burr
XII family by Alsadat et al. (2023), type II exponentiated half logistic-MO-G family by
Oluyede and Gabanakgosi (2023), new generalized exponentiated Fréchet–Weibull family by
Klakattawi et al. (2023), new Topp-Leone Kumaraswamy MO generated family by Atchadé
et al. (2024). The new idea is based on both the MO and T-X families of distributions,
combining the MO and T-X families of distributions. The motivations for introducing this
new family of distributions are:

1. To generate a new family of distributions that have the properties contained in the
MO and T-X families of distributions.

2. The new family of distributions is more adaptable to real-life data than models with
same number of parameters and baseline distribution.

3. The desirable characteristics and adaptability provided by this new family of distribu-
tions, particularly in terms of the forms of the density and hazard rate functions, have
inspired us to create this model, as it proves beneficial for real-life data analysis.

In this chapter, we propose a new extension of the T-X family by considering MO as
baseline distribution called the T-Marshall-Olkin X family of distributions. The proposed
distribution is well-suited to both biomedical and survival datasets. This study demonstrates
that the novel extension of the Lomax distribution provides a better match to the datasets
than other well-known distributions (see Section 8). The chapter unfolds as follows: In
Section 2, we introduce a new family of distributions called “T-Marshall-Olkin X family”
and study its properties. In Section 3, some members of T-Marshall-Olkin X family are
identified. The mathematical properties of one of the member of T-Marshall-Olkin X family
called, half logistic-Marshall-Olkin X family of distributions are studied in Section 4. In
Section 5, we study the half logistic-Marshall-Olkin Lomax distribution and its properties.
The maximum likelihood estimator of the unknown parameters with simulation study are
discussed in Section 6. The analysis of two real data sets has been presented and illustrat-
ing the modelling potential of half logistic-Marshall-Olkin Lomax distribution in Section 8.
Finally, the conclusion of the paper appears in Section 9.

2. T-Marshall-Olkin X family of distributions

The CDF of a T-X family of distributions is defined as

R(x) =
W [G(x)]�

a

j(t)dt. (1)
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Let [W (G(x)] = − log(1 − G(x)) and the random variable T be defined on (0, ∞). Then the
CDF becomes

R(x) =
− log(1−G(x))�

0

j(t)dt. (2)

As a special case, we assume G(x) is a MO family of distributions.

Then

W (G(x)] = − log
{

1 − F (x)
c + (1 − c)F (x)

}
= − log

{
c(1 − F (x))

c + (1 − c)F (x)

}
.

From Equation (2), the CDF of the new family is

R(x) =

− log
{

c(1−F (x))
c+(1−c)F (x)

}
�

0

j(t)dt = J
{

− ln{ c(1 − F (x))
c + (1 − c)F (x)}

}
. (3)

When considering X as a continuous random variable, the probability density function (PDF)
can be generated as follows:

r(x) = d

dx
J
{

− log { c(1 − F (x))
c + (1 − c)F (x)}

}

= j
{

− log { c(1 − F (x))
c + (1 − c)F (x)}

}
f(x)

(1 − F (x))(c + (1 − c)F (x)) ; x ∈ R. (4)

The corresponding HRF can be found using the formula

hr(x) =
j
{

− log { c(1−F (x))
c+(1−c)F (x)}

}
f(x)

[1 − F (x)][c + (1 − c)F (x)][1 − J{ − log { c(1−F (x))
c+(1−c)F (x)}}]

. (5)

The shapes of the PDF and HRF can be enumerated analytically. The critical points of the
density function are the roots of the equation:

∂ log[r(x)]
∂x

=
j′
{

− log { c(1−F (x))
c+(1−c)F (x)}

}
j
{

− log { c[1−F (x)]
c+(1−c)F (x)}

} f(x)
[1 − F (x)][c + (1 − c)F (x)] + f ′(x)

f(x)

+ f(x)
1 − F (x) − (1 − c)f(x)

c + (1 − c)F (x) = 0. (6)

Equation (6) may have more than one root. If the root of Equation (6) is x = x0,
then it corresponds to a local maximum if ∂2 log[r(x)]

∂x2 < 0, a local minimum if ∂2 log[r(x)]
∂x2 > 0,

and a point of inflection if ∂2 log[r(x)]
∂x2 = 0
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Similarly, the critical points of hr(x) are the roots of the equation

∂ log[hr(x)]
∂x

=
j′
{

− log { c(1−F (x))
c+(1−c)F (x)}

}
j
{

− log { c[1−F (x)]
c+(1−c)F (x)}

} f(x)
[1 − F (x)][c + (1 − c)F (x)]

f ′(x)
f(x) + f(x)

1 − F (x)

− (1 − c)f(x)
c + (1 − c)F (x) +

j
{

− log { c[1−F (x)]
c+(1−c)F (x)}

}
1 − J

{
− log { c[1−F (x)]

c+(1−c)F (x)}
} f(x)

[1 − F (x)][c + (1 − c)F (x)]

= 0. (7)

Equation (7) may have more than one root. If the root of Equation (7) is x = x0, then it
corresponds to a local maximum if ∂2 log[hr(x)]

∂x2 < 0, a local minimum if ∂2 log[hr(x)]
∂x2 > 0, and a

point of inflection if ∂2 log[hr(x)]
∂x2 = 0.

Some remarks on the T-Marshall-Olkin X family of distributions:

1. The T-Marshall-Olkin X family of distributions CDF and PDF, which are given in
equations Equation (3) and Equation (4), can be as

R(x) = J

{
− log

{
1 − F (x)

c+(1−c)F (x)

}}
= J(Hg(x)) and r(x) = hg(x)j(Hg(x)) where

h(x) and H(x) are HRF and cumulative HRF of the random variable X with CDF{
F (x)

c+(1−c)F (x)

}
, ie, the Marshall-Olkin distribution. Hence, the T-Marshall-Olkin X

family of distributions can be considered as a family of distributions arising from a
weighted hazard function.

2. The random variable T which follows the PDF j(t) and the random variable X fol-
lowing PDF r(x) are related in the following way: X = F −1

{
c(1−e−T )

1−(1−c)(1−e−T )

}
. This

inverse function provides an easy way to simulate the random variable from T-Marshall-
Olkin X family of distribution by initially simulating the random variable T and sub-
sequently figuring out X = F −1

{
c(1−e−T )

1−(1−c)(1−e−T )

}
, which has the CDF R(x). Thus,

E(X) = E

{
F −1

{
c(1−e−T )

1−(1−c)(1−e−T )

}}
.

The quantile function, Qr(u), 0 < u < 1, for the T-Marshall-Olkin X family of distri-
bution likely to be obtained by

Qr(u) = F −1
{

c(1 − e−J−1(u))
1 − (1 − c)(1 − e−J−1(u))

}
.

3. If X is a discrete random variable with probability mass function (PMF) f(x). Then
the PMF of the T-Marshall-Olkin X family of discrete distributions can be exhibited as

r(x) = R(x)−R(x−1) = J
{

−log { c(1 − F (x))
c + (1 − c)F (x)}

}
−J

{
−log { c(1 − F (x − 1))

c + (1 − c)F (x − 1)}
}

.

In this article, the situation in which X is a continuous random variable will be covered.
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4. when c = 1, the T-Marshall-Olkin X family of distributions reduces to the T-X family
of distributions.

3. Some members of T-Marshall-Olkin X family of distributions

Several families of distributions can be derived from the T-Marshall-Olkin X family
for different choices of j(t). For various T distributions, Table 1 lists a few members of the
T-Marshall-Olkin X family.

Some characteristics of the T-Marshall-Olkin X family for various T distributions will
be dealt in the remaining areas of this section.

3.1. Exponential-Marshall-Olkin X family of distributions

In the instance when the random variable T follows the exponential distribution with
parameter λ then j(t) = λe−λt; t > 0, λ > 0. Based on the Equation (4), the PDF of the
exponential-Marshall-Olkin X family is.

r(x) = λ
{

c(1 − F (x))
c + (1 − c)F (x)

}λ f(x)
(1 − F (x))(c + (1 − c)F (x)) ; c, λ > 0. (8)

The CDF of the exponential distribution is J(t) = 1 − e−λx and from Equation (3) the CDF
of the exponential-Marshall-Olkin X family is

R(x) = 1 −
{

c(1 − F (x))
c + (1 − c)F (x)

}λ

. (9)

The corresponding HRF is illustrated as

hr(x) = λf(x)
(1 − F (x))(c + (1 − c)F (x)) = λhf (x)

c + (1 − c)F (x) = λhg(x), (10)

where hf (x) and hg(x) are the HRF of the distribution with PDF f(x) and g(x).
Thus

lim
x→−∞

hr(x) = lim
x→−∞

λhf (x)
c

= lim
x→−∞

λhg(x)

lim
x→∞

hr(x) = lim
x→∞

λhf (x) = lim
x→∞

λhg(x).

It follows from Equation (10) that

λhf (x)
c

≤ hr(x) ≤ λhf (x) (−∞ < x < ∞, λ ≤ c)

λhf (x) ≤ hr(x) ≤ λhf (x)
c

(−∞ < x < ∞, λ ≥ c).

Again, Equation (10) shows that hr(x)
hf (x) is increasing in x forc ≥ 1 and dereasing for 0 < c ≤ 1.

Some unique instances of exponential-Marshall-Olkin X family are illustrated below

1. When c = 1, the exponential-Marshall-Olkin X family reduces to exponential-X family
of distribution.
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+
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+
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+
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2. When λ = 1, the exponential-Marshall-Olkin X family reduces to Marshall-Olkin X
family of distribution.

3. When λ =c = 1, the exponential-Marshall-Olkin X family reduces to a distribution
with PDF f(x).

3.2. Half-logistic-Marshall-Olkin X family of distributions

In the instance when the random variable T follows the half-logistic distribution with
parameter λ then j(t) = 2λe−λt

(1+e−λt)2 ; t > 0, λ > 0. Based on the Equation (4), the PDF of the
half-logistic-Marshall-Olkin X (HLMO-X) family is

r(x) =
2λ{ c(1−F (x))

c+(1−c)F (x)}
λ{

1 + { c(1−F (x))
c+(1−c)F (x)}

λ
}2

f(x)
(1 − F (x))(c + (1 − c)F (x)) ; c, λ > 0. (11)

When c = 1, the HLMO-X family reduces to half-logistic-X family of distributions.
The CDF of the half-logistic distribution is J(t) = 1−e−λt

1+e−λt and hence from Equation (3) the
CDF of the HLMO-X family is

R(x) =
1 −

{
c(1−F (x))

c+(1−c)F (x)

}λ

1 +
{

c(1−F (x))
c+(1−c)F (x)

}λ . (12)

The corresponding HRF is given by

hr(x) = λ{
1 + { c(1−F (x))

c+(1−c)F (x)}
λ
} hf (x)

(c + (1 − c)F (x))

= λhg(x){
1 + { c(1−F (x))

c+(1−c)F (x)}
λ
} , (13)

where hf (x) and hg(x)are the HRF of a distribution with PDF f(x) and g(x).
Thus

lim
x→−∞

hr(x) = lim
x→−∞

λhf (x)
2c

= lim
x→−∞

λhg(x)
2

lim
x→∞

hr(x) = lim
x→∞

λhf (x) = lim
x→∞

λhg(x).

It follows from Equation (13) that

λhf (x)
2c

≤ hr(x) ≤ λhf (x) (−∞ < x < ∞, λ ≤ 2c)

λhf (x) ≤ hr(x) ≤ λhf (x)
2c

(−∞ < x < ∞, λ ≥ 2c).
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Again, Equation (13) shows that hr(x)
hf (x) is increasing in x for c ≤ 1 and decreasing for 0 < c ≥

1.

The quantile function, Qr(u), 0 < u < 1, is given by

Qr(u) = F −1
{ c

[
1 − [1−u

1+u
]1/λ

]
1 − [1 − c]

[
1 − [1−u

1+u
]1/λ

]}. (14)

To generate a random variable from HLMO-X first generate a U ∼ U(0, 1) then use

X = F −1
{ c

[
1 − [1−u

1+u
]1/λ

]
1 − [1 − c]

[
1 − [1−u

1+u
]1/λ

]}.

Another approach to simulate the HLMO-X random variable is to simulate the half-Logistic
random variable T and then calculate X = F −1

{
c(1−e−T )

1−(1−c)(1−e−T )

}
The pth quantile for HLMO-X family can be obtained as

Qr(p) = F −1
{ c

[
1 − [1−p

1+p
]1/λ

]
1 − [1 − c]

[
1 − [1−p

1+p
]1/λ

]}.

4. Properties of HLMO-X family of distributions

This section is devoted to some important properties of HLMO-X family of distribu-
tions.

4.1. Some valuable expansions

Here we provide linear representations for the CDF and PDF of the HLMO-X family
of distributions. If c ∈ (0, 1), by applying the generalized binomial expansion in Equation
(12), we are getting the following result.

R(x) = −1 + 2
{ ∞∑

j=0

∞∑
k=0

k∑
l=0

(−1)j+k+lcλj[1 − c]k
(

−λj

k

)(
λj + k

l

)
(F (x))l

}
.

By swapping the indices k and l in the sum symbol,

R(x) = −1 + 2
{ ∞∑

j=0

∞∑
l=0

∞∑
k=l

(−1)j+k+lcλj[1 − c]k
(

−λj

k

)(
λj + k

l

)
(F (x))l

}
.

and then

R(x) =
∞∑

l=0
bl[F (x)]l, (15)
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where al = 2∑∞
j=0

∑∞
k=l(−1)j+k+lcλj[1 − c]k

(
−λj

k

)(
λj+k

l

)
, b0 = −1 + a0and, for l ≥ 1, bl = al.

That is, the PDF of X can be expressed as a mixture of exponentiated-F (“exp-F” for short)
densities

r(x) =
∞∑

l=0
bl+1hl+1(x), (16)

where hl+1(x) = (l + 1)[F (x)]l(f(x)) represents the PDF of exp-F distribution with (l + 1)
as the power parameter. Therefore, using Equation (16), several mathematical properties of
the new distribution are able to be readily derived from those of the exp-F distribution. For
instance, the ordinary and incomplete moments as well as the moment generating function
of X can be derived from those quantities of the exp-F distribution.

4.2. Moments, generating functions and mean deviation

Let Yl+1(l > 0) be a random variable with power parameter l + 1 and PDF hl+1. The
nth raw moment of X, that is nth raw moment of HLMO-X family of distribution follows
from Equation (16) as

µ́n = E(Xn) =
∞∑

l=0
bl+1E(Y n

l+1). (17)

Another formula for µ́n follows from (17) as

µ́n = E(Xn) =
∞∑

l=0
(l + 1)bl+1wn,l, (18)

where wn,l =
� 1

0 QF (u)nuldu, QF (u) is the quantile function with CDF F (x).

The mth central moment of X by using µ́n in Equation (18) is given by

µm = E(X − µ́1)m =
m∑

n=0

(
m

n

)
(−µ́1)m−nµ́n. (19)

The nth incomplete moment of X is described by mn(y) =
� y

−∞ xnr(x) . So mn(y)
follows as

mn(y) =
∞∑

l=0
(l + 1)bl+1

� F (y)

o

QF (u)nuldu, (20)

For most F distributions, the integral can be calculated at least numerically.

For the moment generating function (MGF) M(t) of X, we propose two formulas.
The first formula comes from Equation (16) as

M(t) =
∞∑

l=0
bl+1Ml+1(t), (21)
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where Ml+1(t) represented as the MGF of exp-F distribution with power parameter (l + 1).
The second formula comes from Equation (21) as

M(t) =
∞∑

l=0
(l + 1)bl+1τ(t, l), (22)

Where τ(t, l) =
� 1

0 exp[tQF (u)]uldu.

The mean deviation about the mean(δ1 = E(|X − µ́1|) and about the median (δ2 =
E(|X − M |)of X are given by

δ1 = 2µ́1R(µ́1) − 2m1(µ́1) (23)

and

δ2 = µ́1 − 2m1(M), (24)

where M = Qr(0.5) is the median of X ,µ́1 = E(X), R(µ́1) is simply calculated from
Equation (12) and m1(y) is the first incomplete moment given by Equation (20) with n = 1
that is,

m1(y) =
∞∑

l=0
(l + 1)bl+1ρ(y, l), (25)

where ρ(y, l) =
� F (y)

o
QF (u)uldu can be computed numerically. Other formulae for m1(y) is

m1(y) =
∞∑

l=0
bl+1jl+1(y), (26)

where jl+1(y) =
� y

−∞ xhl+1(x)dx is the key quantity needed to compute the first incomplete
moment of the exp-F distribution. The equations Equation (25) and Equation (26) may be
applied to construct Bonferroni and Lorenz curves that are useful in reliability, economics,
insurance, demography, and medicine. For a given probability π the Bonferroni and Lorenz
curves is defined by B(π) = m1(q)/(πµ́1) and L(π) = m1(q)/µ́1 respectively, where q = Q(π)
is the quantile function of X at π.

4.3. Order statistics

Assume that X1, X2..., Xn is a random sample drawn from HLMO-X family of distri-
bution and X1:n, X2:n, ..., Xn:n is the corresponding order statistic. Then the PDF fi:n(x) of
the ith order statistic, let’s say Xi:n, is provided by

fi:n(x) = n!
(i − 1)! (n − i)!r(x)Ri−1(x)[1 − R(x)]n−i

= n!
(i − 1)! (n − i)!

n−i∑
j=0

(−1)j

(
n − i

j

)
r(x)[R(x)]i+j−1. (27)

using Equation (16) and Equation (17) we can get
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fi:n(x) = n!
(i − 1)!

n−i∑
j=0

(−1)j

(n − i − j)! j!

[ ∞∑
k=0

bk+1(k + 1)[F (x)]kf(x)
][ ∞∑

l=0
bl[F (x)]l

]i+j−1
.

Then we use power series expansion raised to a positive integer by Gradshteyn and Ryzhik
(2014)

fi:n(x) =
∞∑

k,l=0
mk,lhk+l+1(x). (28)

where hk+l+1 represents the exp-F density function with k+l+1 as its parameter,
mk,l = n!(k+1)bk+1

(i−1)!(k+l+1)
∑n−i

j=0
(−1)jrj+i−1,l

(n−i−j)!j! , bl is defined in Equation (16), the quantities rj+i−1,l are
obtained recursively from rj+i−1,0 = bj+i−1

0 and (for l ≥ 1) rj+i−1,l = (lb0)−1∑l
m=1[m(i +

j)− l]bmrj+i−1,l−m. Equation (28) allows us to obtain the ordinary and incomplete moments,
generating function and mean deviations of Xi:n.

4.4. Asymptotic distributions of sample extremes

A CDF R is said to belong to the domain of maximal (minimal) attraction of a non
degenerate CDF H(H⋆), denoted by R ∈ Dmax(H)(R ∈ Dmin(H⋆)), if there exist normalizing
constants an and bn > 0 (a⋆

n and b⋆
n > 0) such that Rn:n(an + bnx) = P (Xn:n ≤ an + bnx) →

H(x)(R1:n(a⋆
n + b⋆

nx) = P (X1:n ≤ a⋆
n + b⋆

nx) → H(x)) for all continuity points of H(H⋆),
where H⋆(x) = 1 − H(−x).
As it is widely known, see (Arnold et al. (2008), p. 210, 213), that H belongs to any of the
following types:

(i) H1(x, α) = e−x−α

, x > 0, α > 0.

(ii) H2(x, α) = e−(−x)α

, x < 0, α > 0.

(iii) H3(x, α) = e−e−x

, −∞ < x < ∞.

Lemma 1: (See Arnold et al. (2008), p. 218)
(i) F ∈ Dmax(H) if and only if nF (an + bnx) → − log H(x)
(ii) F ∈ Dmin(H⋆) if and only if nF (a⋆

n + b⋆
nx) → − log[1 − H⋆(x)].

Theorem 1: For any CDF F , we have
(i) R ∈ Dmax(H) if and only if G ∈ Dmax(H)
(ii) R ∈ Dmax(H) if and only if F ∈ Dmax(H).
More specifically, we have
(1) G ∈ Dmax(H1(x; α)) if and only if R ∈ Dmax(H1((2)−1/αλx; αλ))
Also F ∈ Dmax(H1(x; α)) if and only if R ∈ Dmax(H1(2cλ)−1/αλx; αλ))
(2) G ∈ Dmax(H2(x; α)) if and only if R ∈ Dmax(H2((2)1/αλx; αλ))
Also F ∈ Dmax(H2(x; α)) if and only if R ∈ Dmax(H2(2cλ)1/αλx; αλ))
(3) G ∈ Dmax(H3(x)) if and only if R ∈ Dmax(H3(xλ − log 2))
Also F ∈ Dmax(H3(x)) if and only if R ∈ Dmax(H3(xλ − log 2cλ)
If an and bn > 0 are the appropriate normalizing constants for the weak convergence of the
upper extremes according to G(or F) in the three cases mentioned above, then aφ(n;λ) and
bφ(n;λ) > 0 are the appropriate normalizing constants for the weak convergence of the upper
extremes according to R, where φ(n; b) = [n1/b] and [µ] indicates the integer part of µ.
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Proof. If G ∈ Dmax(H), with appropriate normalizing constants an and bn > 0, then
by applying (i) of Lemma 1, as n → ∞,

φ(n; λ)(1 − G(aφ(n;λ) + bφ(n;λ)x)) → − log H(x),

which implies n(1 − G(aφ(n;λ) + bφ(n;λ)x))λ → [− log H(x)]λ. Instead, we have 1 − G(an +
bnx) → 0, for all values of x for which − log H(x) is finite. This implies that (1 − G(aφ(n;λ) +
bφ(n;λ)x) → 0, for all values of x for which − log H(x) is finite. Thus,

n[1 − R(aφ(n;λ) + bφ(n;λ)x); λ] = n
{ 2[Ḡ(aφ(n;λ) + bφ(n;λ)x)]λ

1 + [Ḡ(aφ(n;λ) + bφ(n;λ)x)]λ
}

∼ 2n[Ḡ(aφ(n;λ) + bφ(n;λ)x)]λ → 2[− log H(x)]λ.

and also noting that
2(− log H1(x; α))λ = − log(H1((2)−1/αλx; αλ));
2(− log H2(x; α))λ = − log(H2((2)1/αλx; αλ));
2(− log H3(x))λ = − log(H3(xλ − log 2)).
Moving on to the converse claim, let us assume that for a given λ > 0 we have R ∈ Dmax(H),
with ân and b̂n > 0 are the normalizing constants based on R. From (i) of Lemma 1, we
then have

n[1 − R(ân + b̂nx); λ] → − log H(x),
as n → ∞, which implies 1 − R(ân + b̂nx; λ) → 0, that is, G(ân + b̂nx → 1), as n → ∞, for
all values of x for which − log H(x) is finite. Thus,

n[1 − R(ân + b̂nx); λ] = n
{ 2[Ḡ(ân + b̂nx)]λ

1 + Ḡ(ân + b̂nx)λ

}
∼ 2n[Ḡ(ân + b̂nx)]λ.

From this we get, 2n[Ḡ(ân + b̂nx)]λ → − log H(x) or equivalently, φ(n; λ)(1−G(ân + b̂nx)) →
[− log H(x)]1/λ

2 . Since the last convergence holds for all subsequence of n and specifically holds
for the subsequence ń = φ(n; 1/λ) = [nλ], where φ(ń; λ) = [[nλ]1/λ] ∼ n, we get n(1 −
G(ãn + b̃nx)) → [− log H(x)]1/λ

2 , where ãn = â[nλ] and b̃n = b̂[nλ]. Thus, we get the expected
result (notice that the theorem’s converse portion holds true for the normalizing constants ãn

and b̃n, that is R(ân + b̂nx) ∈ Dmax(H). Implies G(ãn + b̃nx) = G(â[nλ] + b̂[nλ]x) ∈ Dmax(H)),
Hence, the given theorem is proved for the part (i) scenario. The proof of theorem for the
part (ii) scenario follows by similar manner by using Lemma 1, Part (i).This completes the
proof.

5. Half-logistic-Marshal-Olkin Lomax distribution

Let X be a random variable following the Lomax (L) distribution with parameters α
and θ then f(x) = α

θ
[1 + x

θ
]−(α+1); x > 0, α, θ > 0. The PDF of half-logistic-Marshall-Olkin

Lomax (HLMOL) distribution using Equation (11) is defined as

r(x) = 2λαcλ

θ

[(1 + x
θ
)α + c − 1]λ−1[1 + x

θ
]α−1[

[(1 + x
θ
)α + c − 1]λ + cλ

]2 ; x > 0, c, λ, α, θ > 0, (29)
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Figure 1: PDF of HLMOL for various values of α, θ, λ and c

where c, λ, α and θ are location, location scale, scale, and shape parameters, respectively.
Hereafter, a random variable X with a PDF in Equation (29) will be denoted by X ∼
HLMOL(c, λ, α, θ). The CDF of the Lomax distribution is F(x) = 1 − [1 + x

θ
]−α and hence

from Equation (12) the CDF of the HLMOL distribution is

R(x) =
[(1 + x

θ
)α + c − 1]λ − cλ

[(1 + x
θ
)α + c − 1]λ + cλ

. (30)

In the form of graphical representations, Figure 1 displays a few plots of r(x) for selected
values of the parameter c, λ, α and θ. These plots demonstrate that the PDF has good shape
flexibility. It can be reversed J-shape, left-skewed, right-skewed, or symmetric.

Some unique cases of HLMOL distribution:

1. When c = 1, the HLMOL distribution reduces to half-logistic Lomax by Anwar and
Zahoor (2018) distribution.

2. When λ = 1, the HLMOL distribution reduces to Marshall-Olkin half-logistic Lomax
distribution.

3. When λ = 1 and c=0.5, the HLMOL distribution reduces to Lomax distribution.

In lifetime analysis, the HRF is a useful function. Therefore, the HRF of X ∼
HLMOL(c, λ, α, θ) is given by

hr(x) =
λα
θ

[(1 + x
θ
)α + c − 1]λ−1[1 + x

θ
]α−1[

[(1 + x
θ
)α + c − 1]λ + cλ

] . (31)

Figure 2 displays the graphs of hr(x) for selected values of the parameters α, θ, λ and c. It
can be upside down bathtub and decreasing.
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Figure 2: HRF of HLMOL for various values of α, θ, λ and c

By using Equation (14) the quantile function, Qr(u), 0 < u < 1, is given by

Qr(u) = θ
{[ [1−u

1+u
]1/λ

1 − [1 − c][1 − [1−u
1+u

]1/λ]

]−1/α

− 1
}

.

To generate a random variable from HLMOL, first generate a U ∼ U(0, 1) then use

X = θ
{[ [1−u

1+u
]1/λ

1 − [1 − c][1 − [1−u
1+u

]1/λ]

]−1/α

− 1
}

.

Another approach to simulate the HLMOL random variable is by simulating the half-logistic
random variable T and then calculate

X = θ
{[ [e−T ]1/λ

1 − [1 − c][1 − [e−T ]1/λ]

]−1/α

− 1
}

.

The pth quantile for HLMOL distribution can be obtained as

Qr(p) = θ
{[ [1−p

1+p
]1/λ

1 − [1 − c][1 − [1−p
1+p

]1/λ]

]−1/α

− 1
}

.

If p =1/2, that is median of HLMOL is given by

M = θ
{[ [1

3 ]1/λ

1 − [1 − c][1 − [1
3 ]1/λ]

]−1/α

− 1
}

.

5.1. Linear representation

By using Equations (16) and (17) the linear representation of CDF and PDF of
HLMOL distribution is given by

R(x) =
∞∑

l=0
bl[1 − [1 + x

θ
]−α]l, (32)
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Where al = 2∑∞
j=0

∑∞
k=l(−1)j+k+lcλj[1 − c]k

(
−λj

k

)(
λj+k

l

)
, b0 = −1 + a0and, for l ≥ 1 ,bl = al

r(x) =
∞∑

l=0

l∑
j=0

(l + 1)bl+1(−1)j

(
l

j

)
α

θ
[1 + x

θ
]−(α+αj+1)

=
∞∑

l=0

l∑
j=0

(l + 1)bl+1(−1)j

(
l

j

)
α

α + αj
L(x; α + αj, θ), (33)

Where L(x; α + αj, θ) denoted the Lomax PDF with parameter θ and α + αj. So the
PDF of HLMOL is simply an infinite linear combination of Lomax distribution. Thus, some
mathematical properties of the new distribution can be obtained straightly from those Lomax
distribution properties based on Equation (33).

5.2. Moments and generating functions

The nth raw moment of X is obtained from Equation (20)

µ́n = E(Xn) =
∞∑

l=0

n∑
i=0

(l + 1)bl+1θ
n(−1)i

(
n

i

)
β(l + 1, 1 + i − n

α
), n < α.

If n=1, That is the mean of HLMOL distribution is given by

µ́1 = E(X) =
∞∑

l=0
(l + 1)bl+1θ[β(l + 1, 1 − 1/α) − β(l + 1, 1)], α > 1.

If n=2

µ́2 = E(X2)

=
∞∑

l=0
(l + 1)bl+1θ

2[β(l + 1, 1 − 2/α) − 2β(l + 1, 1 − 1/α) + β(l + 1, 1)], α > 2.

The mth central moment of X by using µ́n in Equation (19) is given by

µm = E(X − µ́1)m =
m∑

n=0

(
m

n

)
(−µ́1)m−nµ́n.

If m=2, That is the variance of HLMOL distribution is given by

µ2 =
∞∑

l=0
(l + 1)bl+1θ

2[β(l + 1, 1 − 2/α) − 2β(l + 1, 1 − 1/α) + β(l + 1, 1)]

−
[ ∞∑

l=0
(l + 1)bl+1θ[β(l + 1, 1 − 1/α) − β(l + 1, 1)]

]2
, α > 2.

Then, the moment measure of skewness S = µ2
3

µ3
2

and moment measure of kurtosis K = µ4
µ2

2
can be calculated from the second, third and fourth central moments.
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The nth incomplete moment of X is defined by using Equation (20) is given by

mn(y) =
∞∑

l=0

n∑
i=0

(l + 1)bl+1θ
n(−1)i

(
n

i

)
βF (y)(l + 1, 1 + i − n

α
), n < α.

By using Equation (22) the MGF of X is given by

M(t) =
∞∑

l=0
(l + 1)bl+1

� 1

0

∞∑
n=0

(tθ)n

n! [(1 − u)−1/α − 1]nuldu

=
∞∑

n=0

tn

n! µ́n,

where µ́n is the nth raw moment of the HLMOL distribution. The Bonferroni and the Lorenz
curve are given by

B(π) =
∑∞

l=0(l + 1)bl+1[βF (q)(l + 1, 1 − 1/α) − βF (q)(l + 1, 1)]
π
∑∞

l=0(l + 1)bl+1[β(l + 1, 1 − 1/α) − β(l + 1, 1)] , α > 1.

L(π)) =
∑∞

l=0(l + 1)bl+1[βF (q)(l + 1, 1 − 1/α) − βF (q)(l + 1, 1)]∑∞
l=0(l + 1)bl+1[β(l + 1, 1 − 1/α) − β(l + 1, 1)] , α > 1, (34)

where q = Q(π) is the quantile function of X at π.

Table 2 gives the mean, variance, third raw moment, skewness and kurtosis of HLMOL
distribution for different choices of parameter values. For fixed λ and c, the mean and
variance of the HLMOL distribution are increasing functions of θ and α. Also the distribution
of the HLMOL distribution tends to be skewed more to the right as θ and α decreases. For
fixed λ, θ and α, the HLMOL distribution can be platykurtic, mesokurtic and leptokurtic
as c increases. Also the distribution of the HLMOL distribution tends to be skewed more to
the left as c increases. That is, the HLMOL is positively and negatively skewed, platykurtic,
mesokurtic and leptokurtic distribution.

5.3. Order statistics

Assume that X1, X2..., Xn is a random sample drawn from HLMOL distribution and
X1:n, X2:n, ..., Xn:n is the corresponding order statistic. Then the PDF fi:n(x) of the ith order
statistic, let’s say Xi:n, is provided by

fi:n(x) =
∞∑

k,l=0

k+l∑
j=0

mk,l(−1)j(k + l + 1)
(

k + l

j

)
α

α + αj
L(x; α + αj, θ), (35)

where mk,l = n!(k+1)bk+1
(i−1)!(k+l+1)

∑n−i
j=0

(−1)jrj+i−1,l

(n−i−j)!j! , the quantities rj+i−1,l are obtained recursively
from rj+i−1,0 = bj+i−1

0 and (for l ≥ 1) rj+i−1,l = (lb0)−1∑l
m=1[m(i + j) − l]bmrj+i−1,l−m and

L(x; α + αj, θ) denoted the Lomax PDF with parameter θ and α + αj. So the PDF of ith

order statistic of HLMOL distribution is simply an infinite linear combination of Lomax
distribution.
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Table 2: µ́1, µ2, µ3, S and K for various choices of parameters

Parameter µ́1 µ2 µ3 S K
λ = 0.95
c=0.25 0.1218 0.0343 0.03572 31.6755 107.1577
θ=0.7
α=5.2

λ = 0.95
c=0.25 0.1319 0.0370 0.0342 23.0538 61.2956
θ=0.9
α=6

λ = 0.95
c=0.25 0.3904 0.2398 0.3475 8.7539 17.3673
θ=10
α=20
λ =3
c=20 2.3191 1.1223 0.1005 0.0071 2.7521
θ=50
α=50
λ =3

c=74.4263 3.5554 1.5711 -0.5373 0.0744 3
θ=50
α=50
λ =3
c=80 3.6277 1.5920 -0.5798 0.0833 3.0237
θ=50
α=50

λ = 0.6
c=0.2 0.1686 0.0757 0.1411 45.8365 433.6134
θ=0.7
α=7

λ = 10
c=1.1 0.1706 0.0257 0.0091 4.8254 12.1528
θ=1.1
α=1.1

λ = 4.9
c=1 0.3709 0.1731 0.2933 16.5825 62.3333
θ=1
α=1
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5.4. Asymptotic distributions of sample extremes

Consider the asymptotic distributions of first order statistic X1:n and nth order statis-
tic Xn:n. We using the asymptotic results for X1:n and Xn:n by Arnold et al. (2008) and
Theorem 1, we can find the limiting distribution of extreme order statistic.

For HLMOL distribution R−1(O) = 0 which is finite and by using L‘Hospital’s

lim
ϵ→0+

R[R−1(0) + ϵx]
R[R−1(0) + ϵ] = lim

ϵ→0+
x

r[ϵx]
r[x] = x.

Therefore the asymptotic distribution X1:n is of Weibull type with α = 1, that is
R ∈ Dmin(H⋆

2 (x; 1)) = 1 − e−x, x > 0. Here the normalizing constants based on R are given

by a⋆
n = R−1(O) = 0, b⋆

n = R−1(1/n) − R−1(O) = θ
{[ [ n−1

n+1 ]1/λ

1−[1−c][1−[ n−1
n+1 ]1/λ]

]−1/α

− 1
}

.

For Lomax distribution F −1(1) = ∞, by using L‘Hospital’s

lim
t→∞

1 − F (tx)
1 − F (t) = lim

t→∞
x

f(tx)
f(t) = x−α.

Therefore the asymptotic distribution of Xn:n based on F is Fréchet type. From Theorem 1
the asymptotic distribution of Xn:n based on R is Fréchet type, that is R ∈ Dmax(H1(x; α)) =
e−x−α

, x > 0, α > 0. Here the normalizing constants based on R are given by an = 0,

bn = R−1(1 − 1/n) = θ
{[ [ 1

2n−1 ]1/λ

1−[1−c][1−[ 1
2n−1 ]1/λ]

]−1/α

− 1
}

.

6. Estimation of parameters by maximum likelihood method

Here, we discuss maximum likelihood estimation of HLMO-X family of distribution
along with a simulation study of HLMOL. Let x1, ..., xn be a sample from X ∼ HLMO-
X(λ, c, ξ). Let Θ = (λ, c, ξ)T be the parameter vector and ξ corresponds to the parameter
vector of the baseline distribution F , F (x) = F (xi; ξ), f(x) = f(xi; ξ). The total log-
likelihood function for Θ is given by

ℓn = ℓn(Θ|x1, ..., xn) = n log(2λ) + λ
n∑

i=1
log

{
c[1 − F (xi; ξ)]

c + (1 − c)F (xi; ξ)

}
+

n∑
i=1

log[f(xi; ξ)]

−
n∑

i=1
log[1 − F (xi; ξ)] − 2

n∑
i=1

log
{

1 +
[

c[1 − F (xi; ξ)]
c + (1 − c)F (xi; ξ)

]λ}

−
n∑

i=1
log[c + (1 − c)F (xi; ξ)].

The score function Un(Θ) = (∂ℓn

∂λ
, ∂ℓn

∂c
, ∂ℓn

∂ξ
)T has components given by

∂ℓn

∂λ
= n

λ
− 2

n∑
i=1

log
{

c[1 − F (xi; ξ)]
c + (1 − c)F (xi; ξ)

} [c[1 − F (xi; ξ)]]λ

[c + (1 − c)F (xi; ξ)]λ + [c[1 − F (xi; ξ)]]λ

+
n∑

i=1
log

{
c[1 − F (xi; ξ)]

c + (1 − c)F (xi; ξ)

}
,
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∂ℓn

∂c
= λ

n∑
i=1

F (xi; ξ)
c[c + (1 − c)F (xi; ξ)] − [1 − F (xi; ξ)]

[c + (1 − c)F (xi; ξ)]

− 2λ
n∑

i=1

c(λ−1)[1 − F (xi; ξ)]λF (xi; ξ)
[c + (1 − c)F (xi; ξ)]{[c + (1 − c)F (xi; ξ)]λ + [c[1 − F (xi; ξ)]]λ}

,

∂ℓn

∂ξ
= −λ

n∑
i=1

F (ξ)(xi; ξ)
[1 − F (xi; ξ)][c + (1 − c)F (xi; ξ)] +

n∑
i=1

f (ξ)(xi; ξ)
f(xi; ξ)

− (1 − c)
n∑

i=1

F (ξ)(xi; ξ)
c + (1 − c)F (xi; ξ) +

n∑
i=1

F (ξ)(xi; ξ)
1 − F (xi; ξ)

− 2c
n∑

i=1

[1 − F (xi; ξ)]λ−1F (ξ)(xi; ξ)
[c + (1 − c)F (xi; ξ)]{[c + (1 − c)F (xi; ξ)]λ + [c[1 − F (xi; ξ)]]λ}

,

where f (ξ)(xi; ξ) = ∂f(xi;ξ)
∂ξ

and F (ξ)(xi; ξ) = ∂F (xi;ξ)
∂ξ

. The maximum likelihood estimates
(MLEs) of Θ, say Θ̂ = (λ̂, ĉ, ξ̂), are the simultaneous solutions of the following equations:
∂ℓn

∂λ
= 0, ∂ℓn

∂c
= 0 and ∂ℓn

∂ξ
= 0. These equations cannot be solved analytically and statistical

software can be used to solve them numerically.

6.1. Simulation study

Here we perform a simulation study evaluating the performance of the MLEs pre-
sented above for the HLMOL distribution for selected values of the parameters θ, α, λ and
c. The simulation experiment was repeated 1000 times each with sample sizes 50, 100, 150,
200 and parameter combinations are

1. λ=1.5, α=4 fixed c=1 and θ=1.

2. α=0.5, θ=0.6 fixed λ=1 and c=0.5.

3. θ= 0.2, c=0.5 fixed λ=1 and α=1.

4. λ=1, θ= 1 fixed c=1 and α=1.

5. λ=0.5, c= 0.2, θ=0.4 and fixed α=1.

6. λ= 0.75, α=0.15, c=0.1, θ= 0.05.

Table 3 presents the average estimates (AEs), average bias (Bias) and mean square
error (MSE) values of parameters for different sample sizes. It can be noted that as sample
size increases, the Bias decay towards zero and MSE decreases. That is, the estimators
are asymptotically unbiased and consistent. Therefore the maximum likelihood estimation
method works quite well to estimate the parameters of the HLMOL distribution.
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Table 3: AEs, Bias and MSE of parameters based on 1000 simulations of the
HLMOL distribution

n Parameter AEs Bias MSE

I

50 λ 1.1136 -0.3864 5.6075
α 3.8552 -0.1448 0.7885

100 λ 1.3263 -0.1736 4.0699
α 3.9348 -0.0652 0.5723

150 λ 1.4484 -0.0516 1.8639
α 3.9805 -0.0195 0.2621

200 λ 1.5022 0.0022 0.0059
α 4.0006 0.0006 0.0008

II

50 α 0.5389 0.0388 0.0182
θ 0.7409 0.1409 0.0205

100 α 0.5196 0.0196 0.0069
θ 0.6635 0.0635 0.0131

150 α 0.5113 0.0113 0.0043
θ 0.6367 0.0367 0.0120

200 α 0.5080 0.0079 0.0033
θ 0.6256 0.0256 0.0117

III

50 c 0.5013 0.0013 0.0002
θ 0.2051 0.0051 0.0019

100 c 0.5002 0.0002 0.0001
θ 0.2017 0.0017 0.0010

150 c 0.5001 6.5753e-05 0.0001
θ 0.2016 0.0016 0.0007

200 c 0.4999 -1.2853e-05 1.2186e-05
θ 0.2001 5.4980e-05 7.6654e-05

IV

50 λ 1.1002 0.1002 0.1468
θ 1.2458 0.2458 0.8529

100 λ 1.0464 0.0464 0.0350
θ 1.1082 0.1082 0.1621

150 λ 1.0325 0.0325 0.0224
θ 1.0732 0.0732 0.1109

200 λ 1.0233 0.0233 0.0149
θ 1.0489 0.0489 0.0635

Continued on the next page
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Table 3:(Continued)

n Parameter AEs Bias MSE

V

50 λ 0.5263 0.0263 0.0105
c 0.2272 0.0272 0.0096
θ 0.4128 0.0128 0.0023

100 λ 0.5132 0.0132 0.0043
c 0.2136 0.0136 0.0040
θ 0.4067 0.0067 0.0010

150 λ 0.5085 0.0085 0.0028
c 0.2076 0.0076 0.0024
θ 0.4035 0.0035 0.0006

200 λ 0.5032 0.0032 0.0020
c 0.2049 0.0049 0.0017
θ 0.4022 0.0022 0.0004

VI

50 λ 0.4659 -0.2840 0.8821
α 0.1225 -0.0274 0.0375
c 0.0669 -0.0331 0.0938
θ 0.2106 0.1606 1.5323

100 λ 0.8875 0.1375 0.5642
α 0.1976 0.04764 0.0187
c 0.0882 -0.0118 0.0074
θ 0.1965 0.1465 0.2604

150 λ 0.8732 0.1232 0.4111
α 0.1873 0.0373 0.0147
c 0.0885 -0.0114 0.0061
θ 0.1566 0.1066 0.0987

200 λ 0.8688 0.1188 0.2939
α 0.1763 0.0263 0.0119
c 0.0901 -0.0099 0.0048
θ 0.1357 0.0857 0.0739

7. Test to compare HLMOL with Lomax and Half-logistic-Lomax
distributions

Since Lomax (L), half-logistic-Lomax (HLL) by Anwar and Zahoor (2018) and HLMOL
distributions are nested models, To distinguish between them, the likelihood ratio (LR) test
is employed. For the nested models, the LR statistic is

LR = −2
{

likelihood under the null hypothesis

likelihood under the alternative hypothesis

}
.

This statistic is asymptotically (as n → ∞) distributed as chi-square distribution with m
degrees of freedom (df ), where m is the number of additional parameters .

When c is equal to 1, the HLMOL distribution becomes the HLL distribution. So, in
order to compare the HLMOL with the HLL distribution, we test the null hypothesis that
H0 : c = 1 against H1 : c ̸= 1, and the corresponding LR statistic asymptotically (as n →
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∞) distributed as chi-square distribution with 1 df. To investigate how well the test statis-
tic performed for the above hypothesis , we conducted a simulation study.The simulation
experiment was performed 1000 times, with sample sizes of 100, 250, and 500 with different
parameter combinations. From the HLMOL distribution, a random sample is created, and
the test is then run with a 5% level of significance . Calculating the proportion of times
the null hypothesis H0 is rejected requires running the simulation 1000 times for each set of
parameter combinations. In order to estimate the test’s power, we look at the proportion of
times that H0 is rejected. Table 4 provides the proportions for the 5% level of significance.

The findings in Table 4 show that, for fixed c, θ and α the power of the tests increases
as a function of λ. Additionally, given a fixed value of θ, α and λ the tests’ power is a
diminishing function of c. In general, as sample sizes grow, power grows as well

Table 4: The proportion of times (out of 1000) that the H0 is rejected at 5% level
of significance.

Parameter value n=100 n=250 n=500
c θ α λ

0.15 0.979 0.989 0.993
0.9 1.25 0.984 0.991 0.999

0.05 2 0.987 0.993 0.999
0.15 0.969 0.971 0.999

1.25 1.25 0.972 0.993 1
2 0.986 0.988 1

0.1 0.15 0.96 0.976 0.998
0.9 1.25 0.971 0.991 1

0.5 2 0.987 0.993 1
0.15 0.973 0.981 0.986

1.25 1.25 0.984 0.985 1
2 0.989 0.994 1

0.15 0.848 0.886 0.904
0.9 1.25 0.924 0.935 0.946

0.05 2 0.902 0.945 0.985
0.15 0.907 0.952 0.954

1.25 1.25 0.924 0.956 0.983
2 0.972 0.980 0.983

0.25 0.15 0.893 0.899 0.95
0.9 1.25 0.9 0.912 0.954

0.5 2 0.911 0.921 0.962
0.15 0.87 0.901 0.915

1.25 1.25 0.907 0.927 0.939
2 0.916 0.949 0.966

Similarly, When λ is equal to 1 and c=0.5, the HLMOL distribution becomes the L
distribution. So, in order to compare the HLMOL with the L distribution, we test the null
hypothesis that
H0 : λ = 1, c = 0.5 against H1 : λ ̸= 1, c ̸= 0.5, and the corresponding LR statistic
asymptotically (as n → ∞) distributed as chi-square distribution with 2 DF. To investigate
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how well the test statistic performed for the above hypothesis, we conducted a simulation
study. The simulation experiment was performed 1000 times, with sample sizes of 100, 250,
and 500 with different combination of parameters. From the HLMOL distribution, a random
sample is created, and the test is then run with a 5% level of significance . Calculating the
proportion of times the null hypothesis H0 is rejected requires running the simulation 1000
times for each set of combination of parameters. In order to estimate the test’s power, we
look at the proportion of times that H0 is rejected. Table 5 provides the proportions for the
5% level of significance.

Table 5: The proportion of times (out of 1000) that the H0 is rejected at 5% level
of significance.

Parameter value n=100 n=250 n=500
c θ α λ

0.1 0.2 0.986 0.998 1
0.15 1 0.987 0.999 1

0.05 2 0.991 1 1
0.2 0.998 0.999 1

1.5 1 0.972 0.973 0.986
2 0.975 0.982 0.994

0.1 0.2 0.989 0.998 1
0.15 1 0.993 0.999 1

0.5 2 0.998 1 1
0.2 0.996 0.997 1

1.5 1 0.997 0.997 1
2 0.997 1 1

0.2 0.961 0.986 0.993
0.15 1 0.982 0.988 0.994

0.05 2 0.982 0.985 0.997
0.2 0.997 0.999 1

1.5 1 0.914 0.95 0.998
2 0.95 0.981 1

0.25 0.2 0.97 0.984 0.99
0.15 1 0.979 0.985 0.991

0.5 2 0.98 0.985 0.991
0.2 0.987 0.992 0.999

1.5 1 0.988 0.994 1
2 0.993 0.994 1

The results in Table 5 demonstrate that, for fixed c, θ and α, the power of the tests
generally increases as a function of λ. Additionally, the power of the tests is a decreasing
function of c for a certain value of λ, θ and α. In general, power increases as sample size
increase.
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8. Applications

Under this head, we exhibit the importance of the proposed family. We fit the HLMOL
distribution to two data sets and compare this distribution with four other models, namely:
Kumaraswamy-generalized Lomax (Kw-GL) distribution by Shams (2013), Weibull Lomax
(WL) distribution by Tahir et al. (2015), HLL and L distribution. The MLEs of the param-
eters of the models are calculated and goodness-of-fit statistics for the models are compared.
The measures including the Akaike information criterion (AIC), Bayesian information cri-
terion (BIC) and Kolmogorov-Smirnov (K-S) statistic with p-value (p-V). Additionally, we
employ the LR test to compare the HLMOL distribution with the L and HLL distributions.

8.1. The secondary reactor pumps data set

This data represents the time period between secondary reactor pump failures. The
data was originally discussed in Suprawhardana and Prayoto (1999). and was previously
used by Bebbington et al. (2007). Following are the time between failures for 23 secondary
reactor pumps.
{2.160, 0.150, 4.082, 0.746, 0.358, 0.199, 0.402, 0.101, 0.605, 0.954, 1.359, 0.273, 0.491, 3.465,
0.070, 6.560, 1.060, 0.062, 4.992, 0.614, 5.320, 0.347, 1.921}

The necessary numerical summaries for the five fits using the secondary reactor pumps
data set includes the estimated log-likelihood function (ℓ̂), AIC, BIC and K-S with p-V are
provided in Tables 6 and 7. Additionally, Table 8 provides two LR statistics based on data
set from secondary reactor pumps along with (p-V).

Table 6: Estimated values, log-likelihood, AIC and BIC for the secondary reactor
pumps data set

Distribution Estimates −ln(L) AIC BIC
HLMOL λ̂ = 0.5250

α̂ = 8442.2096 31.862 67.7242 69.9952
ĉ = 0.1662

θ̂ = 9025.7431
Kw-GL â = 0.8085

b̂ = 185.7834 32.51709 73.03418 77.57616
λ̂ = 297.5083
α̂ = 0.3337

WL â = 7.2122
b̂ = 0.8163 32.51238 73.02476 77.56674

β̂ = 12.6936
α̂ = 0.8239

HLL λ̂= 0.6797
α̂ = 2.3802 32.64682 71.29364 74.70013
θ̂ = 0.7796

L α̂ = 2.2425
θ̂= 2.1699 32.4952 68.9903 71.2613
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Table 7: K-S with p-V for the secondary reactor pumps data set

Distributions K-S p-V
HLMOL 0.0954 0.9718
Kw-GL 0.1186 0.8654

WL 0.1176 0.8717
HLL 0.096283 0.9695

L 0.099734 0.9589

Table 8: The values of LR statistic for different hypothesis and data sets

Models Hypothesis Secondary reactor pumps data set
LR df p-V

HLMOL vs. L H0 : λ= 1,c=0.5 vs. 7.2334 2 0.0269
H1 : H0 is false

HLMOL vs. HLL H0 : c=1 vs. 14.6222 1 < 0.001
H1 : H0 is false

Figure 3 display the total time test (TTT) plot for the secondary reactor pumps
data set, and Figure 4 display the graphs of estimated PDF and CDF of the considered
distributions for secondary reactor pumps data set.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

i/n

T
(
i/
n

)

Figure 3: TTT-plot for the secondary reactor pumps data set

8.2. Bladder cancer patients data set

The data set was given by Almheidat et al. (2015). It is corresponding to remission
times (months) of a random sample of 128 bladder cancer patients. The data are as given
below
{0.080, 0.200, 0.400, 0.500, 0.510, 0.810, 0.900, 1.050, 1.190, 1.260, 1.350, 1.400,1.460, 1.760,
2.020, 2.020, 2.070, 2.090, 2.230, 2.260, 2.460, 2.540, 2.620, 2.640, 2.690, 2.690, 2.750,
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Figure 4: Estimated PDF and CDF for the HLMOL, Kw-GL, WL, HLL and L
distributions for secondary reactor pumps data set

2.830, 2.870, 3.020, 3.250, 3.310, 3.360, 3.360, 3.480, 3.520, 3.570, 3.640, 3.700, 3.820, 3.880,
4.180, 4.230, 4.260, 4.330, 4.340, 4.400, 4.500, 4.510, 4.870, 4.980, 5.060, 5.090, 5.170, 5.320,
5.320, 5.340, 5.410, 5.410, 5.490,5.620, 5.710, 5.850, 6.250, 6.540, 6.760, 6.930, 6.940, 6.970,
7.090, 7.260, 7.280, 7.320, 7.390, 7.590, 7.620, 7.630, 7.660, 7.870, 7.930, 8.260, 8.370, 8.530,
8.650,8.660, 9.020, 9.220, 9.470, 9.740, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98,
12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12,
17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 3.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66,
43.01, 46.12, 79.05}

The necessary numerical summaries for the five fits using the bladder cancer patients
data set includes ℓ̂, AIC, BIC and K-S with p-V are provided in Tables 9 and 10. Additionally,
Table 11 provides two LR statistics based on data set bladder cancer patients along with
p-V.

Figure 5 display the TTT-plot for the bladder cancer patients data set, and Figure 6
displays the graphs of estimated PDF and CDF of the considered distributions for bladder
cancer patients data sets.

In Tables 6, 7, 9 and 10, the MLEs of the parameters for the fitted distributions
along with -log-likelihood, AIC, BIC, K-S with p-V values are given for two distinct data
sets. The HLMOL distribution proves to be a superior model than the Kw-GL, WLo, HLL,
and L models because it has the lowest values of AIC, BIC, K-S, and the highest p-V of
the K-S statistic. Tables 8 and 11 also show the LR statistic values and p-V. In light of
these results, we reject the null hypothesis for the aforementioned data sets and come to the
conclusion that the HLMOL distribution offers a much more accurate depiction than the L
and HLL distributions.

Figures 3 and 5 indicates decreasing HRF for he secondary reactor pumps data set
and upside-down bathtub shaped HRF for the bladder cancer patients data set. Therefore,
the HLMOL distribution can fit these data sets.

Figures 4 and 6 present a diagrammatic comparison of the closeness of the fitted
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Figure 5: TTT-plot for the bladder cancer patients data set
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distributions for bladder cancer patients data sets
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Table 9: Estimated values, log-likelihood, AIC and BIC bladder cancer patients
data set

Distribution Estimates −ln(L) AIC BIC
HLMOL λ̂ = 0.3401

α̂ = 8.6402 406.579 821.158 832.5661
ĉ = 4.0693
θ̂ = 8.7546

Kw-GL â = 1.5493
b̂ = 10.3464 407.3357 822.6713 834.0794
λ̂ = 11.5419
α̂ = 0.4372

WL â = 16.3314
b̂ = 1.5541 407.611 823.222 834.6301
β̂ = 5.3873
α̂ = 0.1607

HLL λ̂= 0.5540
α̂ = 0.4941 409.4457 824.8915 833.4476
θ̂ = 26.6014

L α̂ = 13.0380
θ̂=110.7043 411.5897 827.1794 832.8835

Table 10: K-S with p-V for the secondary reactor pumps data set

Distributions K-S p-V
HLMOL 0.0286 0.9999
Kw-GL 0.0404, 0.985

WL 0.0449 0.9587
HLL 0.0808 0.3738

L 0.1006 0.1498

densities with the observed histogram and CDFs with the empirical CDFs of the data sets.
These diagrams demonstrate that the proposed distribution renders a closer fit the above
two data sets.

9. Conclusion

In this article, the T-X method was utilized to introduce the T-Marshall Olkin X
family of distribution, a novel family of distributions. HLMO-X and one of its members,
HLMOL, are investigated in depth as a particular case. The quantile function, moments,
incomplete moments, moment generating function, Lorenz curve, Bonferroni curve, skew-
ness, kurtosis, order statistics, and asymptotic distributions of order statistics are some of
the structural characteristics are investigated. The maximum likelihood approach, together
with simulation analysis, is the technique utilized to estimate the model parameters. The
distribution fit between HLL and HLMOL and also between L and HLMOL is tested using
the LR test with simulation research. The outcome demonstrates that the HLMOL dis-
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Table 11: The values of LR statistic for different hypothesis and data sets

Models Hypothesis Bladder cancer patients data set
LR df p-V

HLMOL vs. L H0 : λ= 1,c=0.5 vs. 709.4762 2 < 0.001
H1 : H0 is false

HLMOL vs. HLL H0 : c=1 vs. 24.6404 1 < 0.001
H1 : H0 is false

tribution is superior to the other two. When compared to the Kw-GL, WL, GL, and EL
distributions, fitting to two real-world data produce good results in favour of the suggested
distribution. As a result, the proposed distribution can be viewed as making a worthwhile
contribution to the existing knowledge. Future research will include more generalizations
that can be made for both continuous and discrete cases. One such generalization is the
exponential-Marshall-Olkin X family of distributions. For evaluating the accuracy of the
new models, different inferential investigations will be taken into consideration.
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