Statistics and Applications {ISSN 2454-7395 (online)} Volume 21, No. 2, 2023 (New Series), pp 99-106 http://www.ssca.org.in/journal



# COVID-19 Cumulative Death Prediction in Two Most Populated Countries by Fitting ARIMA Model and Linear Regression

Shagun Sachdeva and Ravinder Singh

Department of Statistics, Central University of Haryana, Haryana, India

Received: 26 August 2022; Revised: 01 October 2022; Accepted: 08 November 2022

### Abstract

COVID-19 (Coronavirus) has caused widespread disruption and hindered economic growth worldwide. Since the entire world has been hit by two dangerous waves of this epidemic, it has become increasingly vital for us to analyze COVID-19 casualties in order to forecast our future days. As a result, in this work, an attempt has been made to do a time series analysis and fit linear regression on the cumulative death of the two most populated countries, China and India. The research utilizes a simple yet powerful and objective approach, called autoregressive integrated moving average (ARIMA) to forecast the number of cumulative deaths. We have also fitted linear regression on the data to predict future values. The forecasted values have also been compared with the original cumulative death values. In conclusion, ARIMA model forecasted better results in comparison with regression model. As a result, ARIMA(0,2,1) and ARIMA(1,2,0) turns out to be the best model for China and India respectively. So, in the future, the government and health personnel can use these models to take desirable action to control the death count.

Key words: ARIMA model; Linear regression; Epidemic forecast; Cumulative deaths.

# AMS Subject Classifications: 62J05, 62M10

# 1. Introduction

Coronavirus disease 2019 (COVID-19) is a serious, long-lasting contagious disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that first arose in December 2019 in China. The pandemic has infected 511,749,262 people in 195 nations around the World, with 6,228,622 cases of death as of 28th April 2020. COVID-19's first case was found on 12th December 2019 which is now spreading exponentially and causing a large number of casualties. COVID-19 has been identified as the third largest cause of death in the World. More than half of the world's population lives in one of the 10 most populous countries in the world. China is the most populous country on earth with a population of around 1,397,715,000. The United States has the highest number of COVID-19

deaths (1,019,774), followed by India (523,693). Even though China is among the world's most populous countries, the number of fatalities by COVID-19 in China is lower. How a country faces such tough situations as COVID-19 gives an idea about the development of the country in terms of the medical sector, so it is important to study different countries and compare them.

To compare the most populated country in terms of COVID-19 deaths, we have used ARIMA model and simple linear regression. The regression and SEIR model were fitted on COVID-19 cases previously in (Panday *et al.*, 2020) and the SEIR model predicted closer results. Katoch and Sindhu (2021) also proposed a time series model based on genetic programming for the analysis of confirmed death and cases across the three most pretentious states of India - Maharashtra, Andhra Pradesh, Tamil Nadu, and Karnataka as well as for the whole India. Ding *et al.* (2020) studied the epidemic data from February 24 to March 30, 2020, and concluded that an inflection point was expected in early April in Italy. Bayyurt and Bayyurt (2020) compared the lag between COVID-19 cases and deaths with the help of the ARIMA model. Gambhir *et al.*(2020) applied regression on COVID-19 to study future patterns. An attempt was made by Hengjian and Tao (2020) to fit Non-linear regression on COVID-19 data. Batista (2020) studied the second phase of the coronavirus COVID-19 epidemic by the logistic model. It is vital to model and predict the deaths to deal with their consequences. Forecasting future COVID-19 deaths using statistical models is critical for breaking the transmission cycle in highly populated nations like China and India.

#### 2. Mathematical background

We have used secondary data from World Health Organization (WHO) COVID-19 dashboard from 1st April 2021 to 30th June 2021 considering the number of cumulative deaths per day. The data includes confirmed cases and deaths along with their cumulative counts of all the countries. Excel was used in building the database of time series.

#### 2.1. ARIMA model

#### **ARIMA** model in equations:

$$Y_{t} = \alpha + \beta_{1}Y_{t-1} + \beta_{2}Y_{t-2} + \dots + \beta_{n}Y_{t-n}\epsilon_{t} + \phi_{1}\epsilon_{t-1} + \phi_{2}\epsilon_{t-2} + \dots + \phi_{q}\epsilon_{t-q}$$
(1)

ARIMA, short for 'Auto-Regressive Integrated Moving Average' explains the time series based on its previous values (Box *et al.*, 2015). In ARIMA (p,d,q) the 'p' denotes the order of the 'Auto Regressive' (AR) term which refers to the number of lags of Y, which is used as predictors. The 'Moving Average' (MA) term's order is 'q' showing the number of lagged forecast errors that can be included in the ARIMA model. The value of 'd' is the smallest number of differencing required to get the series stationary. There are different ARIMA models that we can fit, to select the best one we can choose the criteria like AIC (Akaike Information Criteria), and log-likelihood. To check the accuracy of the model, we have calculated the change percentage of both ARIMA and linear regression and compared them. We have also plotted the Auto Correlation Function (ACF) and Partial Auto Correlation Function (PACF) of residuals in order to check the normality.

#### 2.1.1. Analysis of data - I

An attempt has been made in this study to analyze the data collected with the COVID-19 cumulative deaths in China and India. In this case, the methodology described below was applied, and conclusions were drawn from the study. The study was of about 91 days covering second wave data starting from 1st April 2021 to 30th June 2021. During the second wave, India faced more death losses when compared to China. The data is plotted in time series shown in Figure 1 and 2, demonstrating stochastic trends.

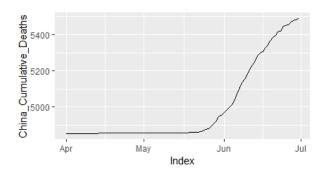



Figure 1: China cumulative death plot

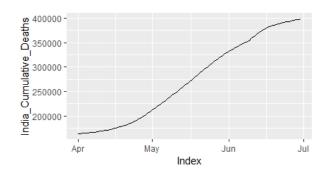



Figure 2: India cumulative death plot

Figure 1 and 2 depict that the COVID-19 peak started to reach India in April whereas for China it was after two months in June. With the use of software R, we plotted the Auto Correlation Function (ACF) and Partial Auto Correlation Function (PACF) to test the stationarity of China and India's time series graphically, as shown in Figure 3 to 6.

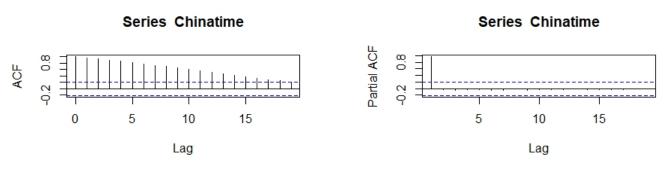





Figure 4: PACF China

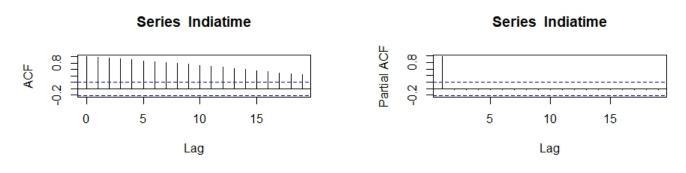


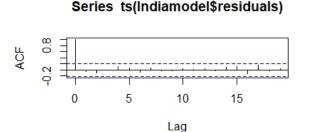



Figure 6: PACF India

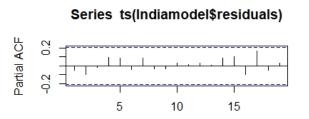
Figure 3 and 5 depict the ACF of China and India respectively, since most of the bars in the ACF plot are above the upper limit so it has been concluded that data depends on the past value and thus it is not stationary. In the PACF plot, (Figure 4 and 6) one bar is not within the limit which also suggests the non-stationarity of data.

To check statistically whether data is already stationary or not, we have also applied Augmented Dickey-Fuller Test (ADF) and the results are demonstrated below in Table 1:

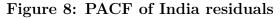
| Country | Hypothesis                         | Test statistic | <i>p</i> -value |
|---------|------------------------------------|----------------|-----------------|
| China   | $H_0$ : The data is not stationary | -1.9889        | 0.5808          |
|         | $H_1$ : The data is stationary     |                |                 |
| India   | $H_0$ : The data is not stationary | -1.9825        | 0.5834          |
|         | $H_1$ : The data is stationary     |                |                 |

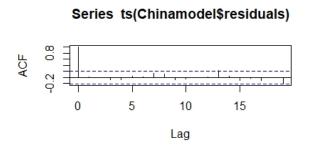

 Table 1: Augmented Dickey- Fuller test results

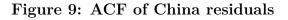
| Table 2: AI | RIMA | models |
|-------------|------|--------|
|-------------|------|--------|


| Country | Model | ARIMA order     | AIC      |
|---------|-------|-----------------|----------|
| China   | 1.1   | ARIMA $(2,2,2)$ | 530.772  |
|         | 1.2   | ARIMA $(0,2,0)$ | 538.1234 |
|         | 1.3   | ARIMA $(1,2,0)$ | 528.0987 |
|         | 1.4   | ARIMA $(0,2,1)$ | 525.1874 |
|         | 1.5   | ARIMA $(1,2,1)$ | 526.9417 |
|         | 1.6   | ARIMA $(0,2,2)$ | 526.9914 |
|         | 1.7   | ARIMA $(1,2,2)$ | 528.8983 |
| India   | 2.1   | ARIMA $(1,2,0)$ | 1374.284 |
|         | 2.2   | ARIMA $(2,2,1)$ | 1377.411 |
|         | 2.3   | ARIMA $(1,2,1)$ | 1375.423 |
|         | 2.4   | ARIMA $(0,2,1)$ | 1375.489 |
|         | 2.5   | ARIMA $(2,2,0)$ | 1375.602 |
|         | 2.6   | ARIMA $(0,2,0)$ | 1394.637 |
|         | 2.7   | ARIMA $(2,2,2)$ | 1379.341 |

By checking the *p*-values we can conclude whether the data is stationary or not. The null hypothesis can be rejected if the *p*-value is less than 0.05; else, the null hypothesis will stand. In both China and India *p*-value is greater than 0.05 so we can't reject the null hypothesis and conclude that the time series of both countries is not stationary. Now we have to make them stationary for that we can take differences or log them. Here we are using R Studio which suggests various models and we can select the best ARIMA Model according to AIC (Akaike Information Criteria).


The model that has the minimum AIC (mentioned in bold) will be the best fit for our data. For India ARIMA model (1,2,0) and the China ARIMA model (0,2,1) satisfies this criterion as shown in Table 2. So we have selected these models and use them to forecast future cumulative death counts. In both China and India, the value of d = 2 means that the data is differenced two times to make it stationary. To ensure that the ARIMA model's residuals are normal, we have plotted the ACF and PACF of the Model's residuals, shown from Figure 7 to 10. The bars were coming within the limit which concludes that residuals follow Normal distribution.






Lag







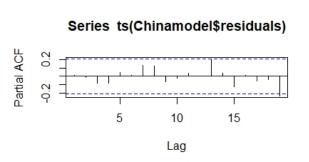



Figure 10: PACF of China residuals

#### 2.2. Regression model

Simple linear regression is a method for predicting a response Y by using only one predictor variable X. The regression model estimates independent variables by using continuous dependent variables provided in the list. The model can be written as :

$$Y = \alpha + \beta X + \epsilon \tag{2}$$

where X is the independent variable that is used to estimate the value of Y by following the above relation. In our study cumulative deaths is the dependent variable whose values are being estimated by taking days as X variable or independent variable. In the above equation,  $\alpha$  and  $\beta$  are the intercept term and slope parameter respectively, which are also known as regression coefficients. The unobservable error component  $\epsilon$  indicates the gap between the true and observed values of Y and accounts for the failure of data to lie on a straight line. For statistical inferences we assume  $\epsilon$  to be an independent and identically distributed random variable with mean zero and constant variance  $\sigma^2$ . We have used R Studio to fit the simple regression model for both China and India.

#### 2.2.1. Analysis of data - II

COVID-19 is spreading exponentially in the world and many people are losing their close ones. The number of deaths due to COVID-19 was increasing in counts as the days were passing especially during the second wave of COVID-19. This study includes the COVID-19 second wave data set from WHO. The collected data was analyzed in R Studio. In India the number of deaths has been increasing day by day while in China the loss of deaths due to COVID-19 has been almost constant, this fact matches our calculated result.

#### 3. Results and conclusion

In ARIMA time series analysis ARIMA (0,2,1) and ARIMA(1,2,0) turn out to be the best model for China and India respectively. The predicted values for the models are shown in Figure 11 and 12. Referring to Table 3 and 4, it has been concluded that ARIMA is the better model for forecasting future cumulative death as the change percentage for the ARIMA model is only 0.01 to 0.2% and 0.01 to 0.3% for China and India respectively but on the other hand we can see a higher percentage difference for regression model of about 3.4 to 3.7 % for China and 4.0 to 9.9% for India. It is also observed that the second wave of COVID-19 has turned out to be less severe for China as compared to India. The government and associated departments can use ARIMA model to forecast COVID-19 deaths rather than regression model. The comprehensive study designed on the cumulative deaths of COVID-19 can help to see the severity of the situation by predicting the mortality rate. This will help the policymakers to take preventive measures and actions such as fulfilling the oxygen and vaccination demand, arranging beds and medical experts for controlling the COVID-19 situation. This research will also help policymakers to keep a track of how different decisions such as quarantine, lockdown, vaccination *etc.* are helpful in reducing the death count. This can be done by monitoring the difference between predicted deaths and actual deaths taking place after the implementation of policies.

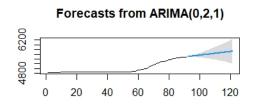



Figure 11: China forecast plot

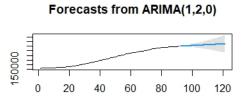



Figure 12: India forecast plot

| Date       | ARIMA  | ARIMA      | ARIMA        | Regression | Regression   |
|------------|--------|------------|--------------|------------|--------------|
|            | actual | forecasted | percentage   | forecasted | percentage   |
|            | data   | data       | change       | data       | change       |
| 01-07-2021 | 5495   | 5497.672   | 0.048626024  | 5305.5117  | -3.448376706 |
| 02-07-2021 | 5508   | 5505.344   | -0.04822077  | 5312.3607  | -3.551911765 |
| 03-07-2021 | 5523   | 5513.016   | -0.18077132  | 5319.2097  | -3.689847909 |
| 04-07-2021 | 5533   | 5520.688   | -0.222519429 | 5326.0587  | -3.740128321 |
| 05-07-2021 | 5535   | 5528.36    | -0.119963866 | 5332.9077  | -3.651170732 |
| 06-07-2021 | 5537   | 5536.032   | -0.017482391 | 5339.7567  | -3.562277407 |
| 07-07-2021 | 5554   | 5543.704   | -0.185379906 | 5346.6057  | -3.73414296  |
| 08-07-2021 | 5563   | 5551.376   | -0.208952004 | 5353.4547  | -3.766767931 |
| 09-07-2021 | 5566   | 5559.048   | -0.124901186 | 5360.3037  | -3.695585699 |
| 10-07-2021 | 5578   | 5566.72    | -0.202223019 | 5367.1527  | -3.77998028  |
| 11-07-2021 | 5584   | 5574.392   | -0.172063037 | 5374.0017  | -3.760714542 |
| 12-07-2021 | 5588   | 5582.064   | -0.106227631 | 5380.8507  | -3.707038296 |
| 13-07-2021 | 5589   | 5589.736   | 0.013168724  | 5387.6997  | -3.601723027 |
| 14-07-2021 | 5595   | 5597.407   | 0.043020554  | 5394.5487  | -3.582686327 |
| 15-07-2021 | 5601   | 5605.079   | 0.072826281  | 5401.3977  | -3.563690412 |

 Table 3: Forecasted and actual value comparison of China

Table 4: Forecasted and actual value comparison of India

| Date       | ARIMA  | ARIMA      | ARIMA        | Regression | Regression  |
|------------|--------|------------|--------------|------------|-------------|
|            | actual | forecasted | percentage   | forecasted | percentage  |
|            | data   | data       | change       | data       | change      |
| 01-07-2021 | 399459 | 399313.2   | -0.036499365 | 413929.61  | 4.01359566  |
| 03-07-2021 | 401050 | 401001.3   | -0.012143124 | 420171.85  | 4.550959328 |
| 04-07-2021 | 402005 | 401845.6   | -0.039651248 | 423292.97  | 5.029133841 |
| 05-07-2021 | 402728 | 402692     | -0.008939036 | 426414.09  | 5.554715605 |
| 06-07-2021 | 403281 | 403537.4   | 0.063578497  | 429535.21  | 6.112236992 |
| 07-07-2021 | 404211 | 404383.3   | 0.042626252  | 432656.33  | 6.574578488 |
| 08-07-2021 | 405028 | 405229     | 0.049626199  | 435777.45  | 7.056227898 |
| 09-07-2021 | 405939 | 406074.7   | 0.033428668  | 438898.57  | 7.509609794 |
| 10-07-2021 | 407145 | 406920.4   | -0.055164622 | 442019.69  | 7.889849884 |
| 11-07-2021 | 408040 | 407766.2   | -0.067101265 | 445140.81  | 8.334623375 |
| 12-07-2021 | 408764 | 408611.9   | -0.037209735 | 448261.93  | 8.811350542 |
| 13-07-2021 | 410784 | 409457.6   | -0.322894757 | 451383.05  | 8.994367423 |
| 14-07-2021 | 411408 | 410303.4   | -0.268492591 | 454504.17  | 9.482018614 |
| 15-07-2021 | 411989 | 411149.1   | -0.203864666 | 457625.29  | 9.972414331 |

### References

Batista, M. (2020). Estimation of the final size of the second phase of the coronavirus COVID-19 epidemic by the logistic model. *medrxiv*. DOI:10.1101/2020.02.16.20023606
Bayyurt, L. and Bayyurt, B. (2020). Forecasting of COVID-19 cases and deaths using ARIMA models. *medrxiv*. DOI:10.1101/2020.04.17.20069237

- Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). *Time Series Analysis: Forecasting and Control.* John Wiley Sons.
- Ding, G., Li, X., Jiao, F., and Shen, Y. (2020). Brief analysis of the ARIMA model on the COVID-19 in Italy. *medRxiv*. DOI:10.1101/2020.04.08.20058636
- Gambhir, E., Jain, R., Gupta, A., and Tomer, U. (2020, September). Regression analysis of COVID-19 using machine learning algorithms. *International Conference on Smart Electronics and Communication (ICOSEC)*, 65-71. DOI:10.1109/ICOSEC49089.2020.9215356
- Hengjian, C. and Tao, H. (2021). Nonlinear regression in COVID-19 forecasting. Scientia Sinica Mathematica, 51. DOI:10.1360/SSM-2020-0055
- https://covid19.who.int/data
- Katoch, R. and Sidhu, A. (2021). An application of ARIMA model to forecast the dynamics of COVID-19 epidemic in India. *Global Business Review*. DOI:10.1177/0972150920988653
- Pandey, G., Chaudhary, P., Gupta, R., and Pal, S. (2020). SEIR and regression model based COVID-19 outbreak predictions in India. arXiv preprint arXiv:2004.00958. DOI:10.48550/arXiv.2004.00958