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Abstract
Consider an mth order Markov chain {Xj : j ≥ −m + 1} taking values in {0, 1}. We

set Ri = 0 for i = 0, −1, . . . , −l + 1. A l-look-back run of length k starting at i, Ri is defined
inductively as a run of 1’s starting at i, provided that no l-look-back run of length k occurs,
starting at time i − 1, i − 2, . . . , i − l, i.e., Ri = ∏i−l

j=i−1(1 − Rj)
∏i+k−1

j=i Xj. We study the
conditional distribution of the number of runs of length exactly k1, till the r-th occurrence
of the l-look-back run of length k where k1 ≤ k − 1 and obtain the explicit expression of it’s
probability generating function. We establish that the number of runs can be written as sum
of r independent random variables with the first term having a slightly different distribution.
We further establish the strong law of large numbers for the number of runs of length exactly
k1.

Key words: Runs; Markov chain; Stopping time; Probability generating function; Strong
Markov property: Strong law of large numbers.
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1. Introduction

Theory of distributions of runs has been studied, since Feller (1968) introduced runs
as an example of a renewal event. In recent years, this field has received a lot of interest
among researchers. Many powerful techniques such as Markov embedding technique, method
of conditional p.g.f.s etc. have been developed which enabled us to study new features of the
distributions of various run statistics. For a more detailed discussion on the run statistics
and its application, we refer the readers to Balakrishnan and Koutras [2002].

We consider an m-th order homogeneous {0, 1}-valued Markov chain. Further, we
assume that the initial condition {X0 = x0, X−1 = x1, . . . , X−m+1 = xm−1} is given to
us. The state 1 can be thought as success in an experiment while 0 as failure. A run
of length k is a consecutive occurrence of k successes. Anuradha (2022) introduced the
l-look-back counting scheme for runs. In this scheme a run is counted starting at time i,
if Xi = Xi+1 = · · · = Xi+k−1 = 1, and no runs can be counted till the time point i + l.
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The next counting of run can start only from the time point i + l + 1. This mechanism is
repeated every time a run is counted. In other words, if a run is counted starting at time
i, there are k-consecutive successes from the time point i and no runs of length k has been
counted which had the starting time as i − 1, i − 2, . . . , i − l. Such a run will be referred as a
l-look-back run of length k. Clearly, if l = 0, this counting of run matches exactly with the
number of overlapping runs of length k, while if we set l = k − 1, this counting results in the
number of non-overlapping runs of length k. Aki and Hirano (2000) also defined a counting
scheme which they referred as µ-overlapping counting. It should be noted that both these
concepts match if we set l = k − µ − 1.

The following example illustrates the practical usage of the l-look-back counting
scheme for runs of length k. Consider an experiment of a drug administration where obser-
vations are taken every hour for the presence or absence (success or failure) of a particular
symptom, say, fever exceeding a specified temperature. If we observe the presence of the
symptom for k-successive time points, a drug has to be administered; however, as is the case
with most drugs, once the drug is administered, we have to wait for l-hours for the next
administration of the drug. But the process of the observation for the presence or absence
of the symptom is continued as ever. In such a case, the number of administrations of the
drug until time point n, is the number of l-look-back runs of length k up to time n.

Aki and Hirano (1994) studied the marginal distributions of failures, successes and
success-runs of length less than k until the first occurrence of consecutive k successes where
the underlying random variables are either i.i.d. or homogeneous Markov chain or binary
sequence of order k. Aki and Hirano (1995) derived the joint distributions of failures, suc-
cesses and success-runs for the same set-up. Hirano et. al. (1997) obtained the distributions
of number of success-runs of a specific length for various counting schemes (e.g. runs of
length k1, overlapping runs of length k1, non-overlapping runs of length k1 etc.) until the
first occurrence of the success-run of length k for a m-th order homogeneous Markov chain
where m ≤ k1 < k. Uchida (1998) studied the joint distributions of the waiting time and
the number of outcomes such as failures, successes and success-runs of length less than k

for various counting schemes of runs for an mth order homogeneous Markov chain. Chad-
jiconstantindis and Koutras (2001) also obtained the distribution of number of failures and
successes in a waiting time problem.

In this paper, we study the distribution of runs of successes of exact length. A run
of length exactly k can be described as an occurrence of a failure, followed by k consecutive
successes, followed by another failure. The literature on runs of exact length is rather
limited. This is indeed a difficult problem, specially when the underlying distribution of
random variables has a dependent structure.

In recent years, the runs of exact length has found usage in very important areas.
We site one such example here. The study of random sequences constitutes an important
part of cryptography specially in the areas of challenge and response authentication systems,
generation of digital signatures, and zero-knowledge protocols. Many protocols in cryptog-
raphy depend on the assumption that the resulting ciphertext from a cipher (cryptographic
algorithm) should appear to be as random as possible. Various tests are used for testing
the randomness of such ciphertexts, which in turn help in deciding whether a given protocol
leaks information or not. Doganaksoy et. al. (2015) developed three statistical randomness
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tests based on runs of exact length and named them as runs of length one, runs of length
two, and runs of length three tests respectively and showed that they work better than the
traditional tests. However, the main challenge in the wider application of their work was
that the distribution of the resulting statistic is not tractable when the (exact) length of run
is large. In fact they could use only lengths 1, 2 and 3. Hence there is an imperative need
to study the distribution, or at least find good approximation of the distribution, of runs of
exact length for larger values of length, specially when the underlying random variables are
not i.i.d. but have some dependent structure.

Since the study of the exact distribution of runs of exact length is complicated, it
is prudent to find a simpler structure embedded in this set up. We study the conditional
distribution of the number of runs of length exactly k1, until a specified stopping time,
namely the rth occurrence of the l-look-back run of length k where k1 < k. The study
of distributions of runs until a stopping time brings out many salient features of various
run statistic and establishes new connection between various discrete distributions. Indeed,
our results exhibit an independence structure in the number of runs until the stopping time
where we may explicitly write the distribution in terms of simpler random variables following
Bernoulli and geometric distributions. (see Corollary 1 for details).

The novelty of our method lies in translating our problem into a first order homo-
geneous Markov chain. Indeed, we define a new first order Markov chain taking values in
a finite set in such a way that the states of the new chain combines the last k1 states of
the previous chain (refer to the third section for exact definition). Further, the states of the
original m-th order Markov chain may be recovered from the states of the newly defined
Markov chain. This allows us to translate the problem in terms of the new Markov chain.
For a simple Markov chain, the powerful results such as the strong Markov property can
now be used to derive a recurrence relation between the probabilities. We now employ the
method of conditional probability generating functions. We use this basic relation involving
the probabilities to obtain a recurrence relation involving probability generating functions.
This, in turn, provides a simple linear equation involving the generating function of the
probability generating functions which can be solved to obtain its expression.

The explicit expression of the probability generating function implies that the dis-
tribution of the number of runs of length exactly k1 until the stopping time has a renewal
structure. Hence the number of runs until the stopping time splits into sum of independent
random variables, which may be interpreted as arrival times in a renewal process. Further,
we have shown that the arrival times are identical except the first arrival time. In other
words, it admits a delayed renewal structure. We are also able to identify the arrival times
through geometric and Bernoulli random variables. Thus we are able to approximate the
number of runs of length exactly k1 through simpler random variables.

We may apply our results to obtain an approximation of the number of runs of length
exactly k1 until time n in the following way: we choose some k > k1 and find the number of
non-overlapping runs of length k, i.e., number of (k−1)-look-back runs of length k, until time
n, say r. Clearly the total number of runs of length exactly k1 until time n lies between the
number of runs of length exactly k1 until the rth and (r + 1)th occurrence of non-overlapping
runs of length k respectively. Now we use our main result to compute the distribution of
the number of runs of length exactly k1 until this rth as well as (r + 1)th occurrences of
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non-overlapping runs of length k. For large values of n, this works quite well. We use the
Markov inequality and this method of approximation effectively to derive the strong law of
large numbers (see Theorem 2) for the number of runs of length exactly k1. We hope that
the methods of approximation can, in future, be extended to obtain a central limit theorem
as well as the law of iterated logarithm for the same.

In the next section, we give the important definitions and state the main Theorem
and Corollary related to the distribution of the number of runs of length exactly k1 until a
stopping time, where k1 < k. Section 3 is devoted towards formalizing the underlying set
up for deriving the results. In Section 4, we prove the main theorem, while in Section 5, we
prove the strong law for the number of runs.

2. Definitions and statement of results

Let X−m+1, X−m+2, . . . , X0, X1, . . . be a sequence of stationary m-order {0, 1} valued
Markov chain. It is assumed that the states of X−m+1, X−m+2, . . . , X0 are known, i.e., we
are given the initial condition {X0 = x0, X−1 = x1, . . . , X−m+1 = xm−1}.

To make things formal, for any i ≥ 0, define Ci = {0, 1, . . . , 2i − 1}. It is clear that
Ci and {0, 1}i can be identified easily by the mapping x = (x0, x1, . . . , xi−1) −→ ∑i−1

j=0 2jxj.
Since, {Xn : n ≥ −m + 1} is mth order Markov chain, we have, for any n ≥ 0,

px = P(Xn+1 = 1|Xn = x0, Xn−1 = x1, . . . , Xn−m+1 = xm−1) (1)

where x = ∑m−1
j=0 2jxj ∈ Cm. Consequently, we have qx = P(Xn+1 = 0|Xn = x0, Xn−1 =

x1, . . . , Xn−m+1 = xm−1) = 1 − px. We assume that 0 < px < 1 for all x ∈ Ci. One particular
case will be of importance in our study, when {Xn = 1, Xn−1 = 1, . . . , Xn−m+1 = 1}. In our
notation, this condition will become x = ∑m−1

j=0 2j1 = 2m − 1. Thus, using (1), for all n ≥ 0,
we have

p2m−1 = P(Xn+1 = 1|Xn = 1, Xn−1 = 1, . . . , Xn−m+1 = 1) = 1 − q2m−1.

Definition 1: (l-look-back run) Fix two integers k ≥ 1 and 1 ≤ l ≤ k − 1. We set
Ri(k, l) = 0 for i = 0, −1, . . . , −l + 1 and for any i ≥ 1, define inductively,

Ri(k, l) =
i−1∏

j=i−l

(1 − Rj(k, l))
i+k−1∏

j=i

Xj. (2)

If Ri(k, l) = 1, we say that an l-look-back run of length k has been recorded which started at
time i.

It should be noted that for an l-look-back run to start at the time point i, we need
to look back at the preceding l many time points, i.e., i − 1 to i − l, none of which can be
the starting point of an l-look-back run of length k.

Next we define the stopping times where the r-th occurrence of l-look-back run of
length k is completed.
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Definition 2: For r ≥ 1, the stopping time τr(k, l) be the (random) time point at which
the r-th occurrence of l-look-back run of length k is completed. In other words,

τr(k, l) = k − 1 + inf{n :
n∑

i=1
Ri(k, l) = r}. (3)

Now we define the runs of length exactly k.

Definition 3: When k(≥ 1) consecutive successes, either occur at the beginning of the
sequence or end of the sequence or bordered on both sides by failures, contribute towards
the counting of a run then we call it run of length exactly k.Note that when there are more
than k consecutive successes then it is not counted as run of length exactly k.

We may represent this mathematically as follows:

ϵi(k) =


∏k

j=1 Xj(1 − Xk+1) if i = 1
(1 − Xi−1)

∏i+k−1
j=i Xj(1 − Xi+k) if 1 < i < n − k + 1

(1 − Xn−k) ∏n
j=n−k+1 Xj if i = n − k + 1.

Note here that ϵi(k) = 1 if and only if a run of length exactly k starts at time point
i. Now, we define the total number of runs of length exactly k by

Nn(k) =
n∑

i=1
ϵi(k). (4)

In this paper, we study the number of runs of length exactly k till the stopping time
τr(k, l) (see Definition (2)). Fix any constant k1 ≤ k. For each r ≥ 1, we define the random
variable

Nr(= Nr(k1)) := Nτr(k,l)(k1) =
τr(k,l)∑

i=1
Ri(k1) (5)

as the number of runs of length exactly k1 until the stopping time τr(k, l).

Before we proceed, we present an example to facilitate the understanding. Consider
the following sequence of 0’s and 1’s of length 20

11010111011111011101.

For k = 3 and l = 1, it should be noted that, R6(3, 1) = R10(3, 1) = R12(3, 1) = R16(3, 1) = 1,
while for other values of i, Ri(3, 1) = 0. Thus, τ1(3, 1) = 8, τ2(3, 1) = 12, τ3(3, 1) = 14 and
τ4(3, 1) = 18. For k1 = 2, the number of runs of length exactly k1 are given by N1 = N2 =
N3 = N4 = 1 respectively.

Let us define the probability generating function of Nr, i.e.,

ζr(s; k1) :=
∞∑

n=0
P(Nr = n)sn. (6)
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Theorem 1: For any initial condition x ∈ Ci, k2 = k − k1 > 0 and k1 ≥ m, the probability
generating function of Nr is given by

ζr(s; k1) =
[ (

p2m−1
)k2

q2m−1 +
(
p2m−1

)k2 − q2m−1s

][(
p2m−1

)l+1

+

(
p2m−1

)k2

q2m−1 +
(
p2m−1

)k2 − q2m−1s

(
1 −

(
p2m−1

)l+1
)]r−1

.

Theorem 1 provides a useful representation of Nr in terms of Bernoulli and geometric
random variables when k2 > 0. Let us set,

pE =

(
p2m−1

)k2

1 − ∑k2−1
t=1

(
p2m−1

)t
q2m−1

=

(
p2m−1

)k2

q2m−1 +
(
p2m−1

)k2
. (7)

Corollary 1: Let {Gi : i = 1, . . . , r} and {Bi : i = 1, . . . , r} be two independent sets of ran-
dom variables with each Gi having a geometric distribution (taking values in {0, 1, . . . , }) with
parameter pE and each Bi having a Bernoulli distribution with parameter

(
1 −

(
p2m−1

)l+1
)

,
then we have

Nr
d= G1 +

r∑
i=2

GiBi. (8)

Indeed, it is easy to see that the probability generating function of Gi, for i ≥ 1, is
given by (

p2m−1
)k2

q2m−1 +
(
p2m−1

)k2 − q2m−1s

and the probability generating function of Bi, for i ≥ 1, is given by(
p2m−1

)l+1
+ s

(
1 −

(
p2m−1

)l+1
)

.

Therefore, the probability generating function of GiBi is given by

(
p2m−1

)l+1
+

(
p2m−1

)k2

q2m−1 +
(
p2m−1

)k2 − q2m−1s

(
1 −

(
p2m−1

)l+1
)

. (9)

From the independence of Gi and Bi for i ≥ 1, the corollary easily follows.

When k2 = 0, i.e., k = k1, we can obtain the the probability generating function, but
it is difficult to identify the exact distribution (see Section 4).

The delayed renewal structure of the number of runs of exact length until the stopping
time, observed in equation (8), can be used for approximating the original distribution when
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the number of trials are large. Indeed we may obtain a strong law for the number of runs of
exact length using this.

Let us set k = k1 + 1 and l = k − 1 = k1. Then, the expectation of G1B1 can be
easily computed from the expression of the probability generating function in (9). Indeed,
it is given by

µ1 = q2m−1

p2m−1

(
1 −

(
p2m−1

)k1+1
)

. (10)

We will further define a constant µ. Let S be the first time when k successive heads
have occurred given the initial condition of k successive heads. In section 5, We will show
that S is finite with probability 1. Further, its expectation is also finite. We denote

µ = E(S). (11)

Theorem 2: For any initial condition x ∈ Ci and k1 ≥ m, we have

1
n

Nn(k1) → µ1

µ

as n → ∞ with probability 1.

3. Formal set-up

In this section, we outline the basic set up which will be used in the subsequent section
to establish the results. Let us define two functions f0, f1 : Ck1 → Ck1 by

f1(x) = 2x + 1 (mod 2k1) and f0(x) = 2x (mod 2k1).

Further define a projection θm : Ck1 → Cm by θm(x) = x (mod 2m). Now, set X−m =
X−m−1 = · · · = X−k1+1 = 0. Define a sequence of random variables {Yn : n ≥ 0} as follows:

Yn =
k1−1∑
j=0

2jXn−j.

Since Xi ∈ {0, 1} for all i, Yn assumes values in the set Ck1 . Further, the random variables
Xn’s are stationary and forms a mth order Markov chain, hence we have that {Yn : n ≥ 0}
is a homogeneous Markov chain with transition matrix given by

P(Yn+1 = y|Yn = x) =


pθm(x) if y = f1(x)
1 − pθm(x) if y = f0(x)
0 otherwise.

It should be noted that Yn is even if and only if Xn = 0. This motivates us to define
the function κ : Ck1 → {0, 1} by

κ(x) =
{

1 if x is odd
0 if x is even.
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Therefore, κ(Yn) = 1 if and only if Xn = 1. Hence, the definition of l-look-back run can be
described in terms of Yn’s as

Ri(k, l) =
i−1∏

j=i−l

(1 − Rj(k, l))
i+k−1∏

j=i

κ(Yj).

Let us fix any initial condition x ∈ Cm. We denote the probability measure governing
the distribution of {Yn : n ≥ 1} with Y0 = x ∈ Ck by Px. Since we have set X−m = X−m−1 =
· · · = X−k+1 = 0, we have Y0 = x.

In order to obtain the recurrence relation for the probabilities, we will condition the
process after the first occurrence of the run of length k1. Therefore, we consider the stopping
time T when the first occurrence of a run of length k1 ends, i.e., when we observe k1 successes
consecutively for the first time. More precisely, define

T := inf{i ≥ k1 :
i∏

j=i−k1+1
Xj = 1}. (12)

We would like to translate the above definition in terms of Yi’s. It must be the case that
when T occurs, last k1 trials have resulted in success, which may be described by κ(Yj) = 1
for j = i − k1 + 1 to i. Therefore, YT must equal 2k1 − 1. Since this is the first occurrence
and this has not happened earlier. So, T can be better described as

T = inf{i ≥ k1 : Yi = 2k1 − 1}, (13)
i.e., the first visit of the chain to the state 2k1 − 1 after time k1 − 1. Now, we note that
{Yn : n ≥ 0} is a Markov chain with finite state space. Further, since 0 < pu < 1 for
u ∈ Cm, this is an irreducible chain; hence, it is positive recurrent. So we must have
Px(T < ∞) = 1. We observe that when the first occurrence of k consecutive successes
happens, then k1 consecutive successes must have occured previously since k1 ≤ k. Therefore,
we have Px(T < τ1(k, l)) = 1.

4. Number of runs of exact length until stopping time

First we establish the basic recurrence relation which is central to our result. Define
the probability g(x)

r (n) by
g(x)

r (n) := Px(Nr = n) (14)
for n ∈ Z. We note that since Nr ≥ 0, Px(Nr = n) = 0 for n < 0. Our first task is to show
that g(x)

r (n) is independent of x.

Theorem 3: Suppose that k2 = k − k1 > 0. For any x ∈ Ck1 and any n ≥ 0, we have

g
(x)
1 (n) = q2m−1g

(2m−2)
1 (n − 1) +

k2−1∑
t=1

q2m−1
(
p2m−1

)t
g

(2m−2)
1 (n)

+
(
p2m−1

)k2In(0) (15)

where Iu1(u2) is the indicator function defined by

Iu1(u2) =
{

1 if u1 = u2

0 otherwise.
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Proof: When k2 = k − k1 > 0 and r = 1, we have

g
(x)
1 (n) = Px(N1 = n) = Px(N1 = n, YT +1 = 2k1 − 2)

+
k2−1∑
t=1

Px(N1 = n, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)

+ Px(N1 = n, YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1). (16)

We simplify the terms in the summation first. For any 1 ≤ t ≤ k2 − 1, we have,

Px(N1 = n, YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= Px(N1 = n | YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
× Px(YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2). (17)

The second term in (17) can be written as

Px(YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= Px(YT +t+1 = 2k1 − 2 | YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1)

×
t∏

j=1
Px(YT +j = 2k1 − 1 | YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1).

Now, for any 1 ≤ j ≤ t, T + j − 1 is also a stopping time. We denote by FT +j−1,
the σ-algebra generated by the process Yn up to the stopping time T + j − 1, and by
F(T +j−1)+, the σ-algebra generated by the process after the stopping time T + j −1. Clearly,
{YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1} ∈ FT +j−1 and {YT +j = 2k1 − 1} ∈ F(T +j−1)+. Thus,
using the strong Markov property, we can write

Px(YT +j = 2k1 − 1 | YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1)
= PYT +j−1(YT +j = 2k1 − 1) = P2k1 −1(Y1 = 2k1 − 1) = p2m−1. (18)

A similar argument shows that

Px(YT +t+1 = 2k1 − 2 | YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1) = q2m−1. (19)

For the first term in (17), we note that T + t + 1 is also a stopping time and {YT +1 =
2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2} ∈ FT +t+1. Since YT = 2k1 − 1, we must
have either XT −k1 = 0 and XT −j = 1 for j = 0, 1, . . . , k1 − 1 or T = k1. Further, since
YT +j = 2k1 −1 for j = 1, . . . , t and YT +t+1 = 2k1 −2, we also have XT +j = 1 for j = 0, 1, . . . , t
and XT +t+1 = 0. Therefore, we have a sequence of 1′s of length k1 + t with t > 0 which
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contributes to 0 runs of length exactly k1 and since there are no runs of length k1 before
T , by the very definition of T , we have that the number of runs of length exactly k1 up to
time T + t + 1 is 0. Since t ≤ k2 − 1, we have that T + t + 1 < τ1(k, l). Let us define
Y ′

i = Yi+T +t+1 for i ≥ 0. Now, using the strong Markov property, we have that {Y ′
i : i ≥ 0}

is a homogeneous Markov chain with same transition matrix as that of {Yi : i ≥ 0} with
Y ′

0 = 2k1 − 2. Now, define τ ′
1(k, l) as the stopping time for the process {Y ′

i : i ≥ 0}. From
the above discussion, we have that τ1(k, l) = T + t + 1 + τ ′

1(k, l). Further, if we define, N ′
1

as the number runs of length exactly k1 up to time τ ′
1(k, l) for the process {Y ′

i : i ≥ 0}, we
must have that N ′

1 = n. Therefore, we have,

Px(N1 = n | YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
= P(2m−2)(N ′

1 = n) = g
(2m−2)
1 (n). (20)

Now, the first term in (16) can be written as

Px(N1 = n, YT +1 = 2k1 − 2)
= Px(N1 = n | YT +1 = 2k1 − 2, YT = 2k1 − 1)Px(YT +1 = 2k1 − 2 | YT = 2k1 − 1)
= q2m−1Px(N1 = n | YT +1 = 2k1 − 2, YT = 2k1 − 1). (21)

The arguments leading to equation (20) can now be repeated to conclude that

Px(N1 = n | YT +1 = 2k1 − 2, YT = 2k1 − 1) = P(2m−2)(N1 = n − 1) = g
(2m−2)
1 (n − 1). (22)

Using the equivalent characterisation of T (see equation (13)) we note that YT =
2k1 − 1 with probability 1. Hence, for the last term in (16) becomes

Px(N1 = n, YT +1 = 2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1)
= Px(N1 = n, YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1)

=
k2∏

j=1
Px(YT +j = 2k1 − 1 | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +j−1 = 2k1 − 1)

× Px(N1 = n | YT = 2k1 − 1, YT +1 = 2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1)

=
(
p2m−1

)k2Px(N1(k1) = n | YT +1 = 2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1).

Note that given {YT +1 = 2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1}, we have τ1(k, l) =
T + k2. Therefore, N1 = n if and only if n = 0. In other words, Px(N1 = n | YT +1 =
2k1 − 1, . . . , YT +k2−1 = 2k1 − 1, YT +k2 = 2k1 − 1) = In(0) where I is the indicator function as
defined in the statement of the Theorem.

Thus combining the above expression with the equations (16) - (22), we have

g
(x)
1 (n) = q2m−1g

(2m−2)
1 (n − 1) +

k2−1∑
t=1

q2m−1
(
p2m−1

)t
g

(2m−2)
1 (n) +

(
p2m−1

)k2In(0).

This completes the proof.
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We note that the right hand side of (15) does not involve the initial condition x ∈ Cm.
Therefore g

(x)
1 (n) must be independent of x. So, we will drop x and denote the above

probability by g1(n), i.e.,
g1(n) = Px(N1 = n).

Hence, we may rewrite the equation (15) as follows: for any k2 = k − k1 > 0, x ∈ Ck1 and
any n ≥ 0,

g1(n) = q2m−1g1(n − 1) +
k2−1∑
t=1

q2m−1
(
p2m−1

)t
g1(n) +

(
p2m−1

)k2In(0). (23)

Now, the equation (23) can be easily solved.

Corollary 2: Suppose that k2 = k − k1 > 0. For any x ∈ Ck1 and any n ≥ 0, we have

g1(n) =
[

q2m−1

1 − ∑k2−1
t=1

(
p2m−1

)t
q2m−1

]n
(
p2m−1

)k2

1 − ∑k2−1
t=1

(
p2m−1

)t
q2m−1

. (24)

Indeed, for n = 0, we have

g1(0) =

(
p2m−1

)k2

1 − ∑k2−1
t=1

(
p2m−1

)t
q2m−1

=

(
p2m−1

)k2

q2m−1 +
(
p2m−1

)k2
. (25)

For n ≥ 1, inductively we have

g1(n) = g1(n − 1) q2m−1

1 − ∑k2−1
t=1

(
p2m−1

)t
q2m−1

=
[

q2m−1

1 − ∑k2−1
t=1

(
p2m−1

)t
q2m−1

]n

g1(0)

which proves the corollary.

We observe that N1 follows a geometric distribution with parameter pE where pE is
given in (7). The generating function of N1 is given by

ζ1(s; k1) = pE

1 − (1 − pE)s =

(
p2m−1

)k2

q2m−1 +
(
p2m−1

)k2 − q2m−1s
. (26)

For r ≥ 2, we can also derive a similar recurrence relation.

Theorem 4: Suppose that k2 = k − k1 > 0. For any x ∈ Ck1 and any n ≥ 0, r ≥ 2, we have

g(x)
r (n) = q2m−1g

(2m−2)
r (n − 1) +

k2−1∑
t=1

q2m−1
(
p2m−1

)t
g(2m−2)

r (n)

+
r−2∑
j1=0

l∑
j2=0

q2m−1
(
p2m−1

)k2+j1(l+1)+j2
g

(2m−2)
r−1−j1(n) +

(
p2m−1

)k2+(r−1)(l+1)
In(0). (27)

where I is the indicator function as defined earlier.
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The proof is very similar to the proof of Theorem 3. Again, conditioning on the
process when T occurs, we obtain for k2 > 0, as in Theorem 3,

g(x)
r (n) = Px(Nr = n, YT +1 = 2k1 − 2)

+
k2−1∑
t=1

Px(Nr = n, YT +1 = 2k1 − 1, . . . , YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)

+
k2+(r−1)(l+1)−1∑

t=k2

Px(Nr = n, YT +1 = 2k1 − 1, . . . ,

YT +t = 2k1 − 1, YT +t+1 = 2k1 − 2)
+ Px(Nr = n, YT +1 = 2k1 − 1, YT +2 = 2k1 − 1, . . . ,

YT +k2+(r−1)(l+1)−1 = 2k1 − 1, YT +k2+(r−1)(l+1) = 2k1 − 1).

The above expression is similar to the expression given in (16) obtained in Theorem
3. Hence following the similar calculations, we get the required result in Theorem 4.

The recurrence relation in (27) cannot be solved directly. However, we may easily
check that g(x)

r (·) is independent of x. We have shown that g(x)
r (·) is independent of x for

r = 1. By induction, assume that g(x)
r (·) is independent of x ∈ Cm. Clearly, from the relation

(27), we have that g
(x)
r+1(·) can be expressed as weighted sums of g

(x)
i (·) for i = 1, 2, . . . , r and

other terms which do not involve x. Since the right hand side of the above relation does not
involve any x ∈ Cm, the left hand side, i.e., g

(x)
r+1(·) must be independent of x. Therefore,

from now on, we will drop the superscript x from the notation and denote it by gr(·).

The equation in (27) may now be simplified. Transferring terms containing gr(n) in
the right hand side to the left hand side, we have the following result.

Lemma 1: Suppose that k2 = k − k1 > 0. For any x ∈ Ck1 and any n ≥ 0, r ≥ 1,
g(x)

r (n) = Px(Nr = n) is independent of x. For r ≥ 2, it satisfies the recurrence relation
(

1 −
k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

gr(n)

= q2m−1gr(n − 1) +
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
)r−2∑

j=0

(
p2m−1

)j(l+1)
gr−1−j(n)

+
(
p2m−1

)k2+(r−1)(l+1)
In(0). (28)

Now, using relation (28), we develop the recurrence relation between the probability
generating functions of Nr. The probability generating function ζr(s; k1), for r ≥ 2 and
k2 > 0, is given by(

1 −
k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

ζr(s; k1) =
∞∑

n=0

(
1 −

k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

gr(n)sn

=
(
p2m−1

)k2+(r−1)(l+1)
+

∞∑
n=0

q2m−1gr(n − 1)sn
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+
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
) ∞∑

n=0

r−2∑
j=0

(
p2m−1

)j(l+1)
gr−1−j(n)sn

=
(
p2m−1

)k2+(r−1)(l+1)
+ q2m−1sζr(s; k1)

+
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
)r−2∑

j=0

(
p2m−1

)j(l+1) ∞∑
n=0

gr−1−j(n; k1)sn

=
(
p2m−1

)k2+(r−1)(l+1)
+ q2m−1sζr(s; k1)

+
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
)r−2∑

j=0

(
p2m−1

)j(l+1)
ζr−1−j(s; k1).

Thus, we have proved the following lemma.

Lemma 2: For r ≥ 2 and k2 > 0, the sequence of probability generating functions satisfy
the recurrence relation

(
1 − q2m−1s −

k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

ζr(s; k1)

=
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
)r−2∑

j=0

(
p2m−1

)j(l+1)
ζr−1−j(s; k1)

+
(
p2m−1

)k2+(r−1)(l+1)
. (29)

Now we can use the above results to prove the main Theorem 1 as follows:

Proof: (Theorem 1) Let the generating function of the sequence {ζr(s; k1) : r ≥ 1} be
denoted by Ξ(z; k1), i.e., Ξ(z; k1) = ∑∞

r=1 ζr(s; k1)zr. For k2 > 0, we have

(
1 − q2m−1s −

k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

Ξ(z; k1)

=
∞∑

r=1

(
1 − q2m−1s −

k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

ζr(s; k1)zr

=
(

1 − q2m−1s −
k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

ζ1(s; k1)z +
∞∑

r=2

(
p2m−1

)k2+(r−1)(l+1)
zr

+
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
) ∞∑

r=2

r−2∑
j=0

(
p2m−1

)j(l+1)
ζr−1−j(s; k1)zr

=
(
p2m−1

)k2
z +

(
p2m−1

)k2
z

∞∑
r=1

(
p2m−1

)r(l+1)
zr

+
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
) ∞∑

j=0

∞∑
r=j

(
p2m−1

)j(l+1)
ζr−j+1(s; k1)zr+2
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=

(
p2m−1

)k2
z

1 −
(
p2m−1

)(l+1)
z

+ zΞ(z; k1)
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
) ∞∑

j=0

(
p2m−1

)j(l+1)
zj

=

(
p2m−1

)k2
z

1 −
(
p2m−1

)(l+1)
z

+
zΞ(z; k1)

(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
)

1 −
(
p2m−1

)(l+1)
z

. (30)

Now, from the above equation (30), we can easily solve for Ξ(z; k1) to obtain

Ξ(z; k1)

=
[(

p2m−1
)k2

z
][(

1 −
(
p2m−1

)l+1
z

)(
1 − q2m−1s −

k2−1∑
j=1

q2m−1
(
p2m−1

)j
)

− z
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1
)]−1

=
z

(
p2m−1

)k2

1 − q2m−1s − ∑k2−1
j=1 q2m−1

(
p2m−1

)j

×
[
1 −

(
p2m−1

)l+1
z −

z
(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1

1 − q2m−1s − ∑k2−1
j=1 q2m−1

(
p2m−1

)j

]−1

=
z

(
p2m−1

)k2

1 − q2m−1s − ∑k2−1
j=1 q2m−1

(
p2m−1

)j

×
[
1 − z

[(
p2m−1

)l+1
+

(
p2m−1

)k2
(

1 −
(
p2m−1

)l+1

1 − q2m−1s − ∑k2−1
j=1 q2m−1

(
p2m−1

)j

]]−1

. (31)

From the expression of generating function Ξ(z; k1), ζr(s; k1) is obtained by computing
the coefficient of zr. Observe that first term in the right hand side of (31) has a power
of z. Therefore, we need a power of zr−1 from the second term. Using the expansion
(1 − az)−1 = ∑∞

n=0 anzn, we have

ζr(s; k1) =
[ (

p2m−1
)k2

q2m−1 +
(
p2m−1

)k2 − q2m−1s

][(
p2m−1

)l+1

+

(
p2m−1

)k2

q2m−1 +
(
p2m−1

)k2 − q2m−1s

(
1 −

(
p2m−1

)l+1
)]r−1

. (32)

This completes the proof.

If we consider the case, when k2 = 0, i.e., k = k1, then for r = 1, we must have
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Px(N1(k) = 1) = 1. Thus the probability generating function is given by

ζ1(s; k) = s

However for r ≥ 2, using the similar arguments, we obtain,

gr(n) = q2m−1gr−1(n − 1) +
(

1 − q2m−1 −
(
p2m−1

)l+1
)

gr−1(n)

+
r−2∑
j=1

(
p2m−1

)j(l+1)
(

1 −
(
p2m−1

)l+1
)

gr−1−j(n) +
(
p2m−1

)(r−1)(l+1)
In(0).

This again can be used to obtain the recurrence relation between the probability
generating functions ζr(s; k) for r ≥ 2. Indeed, we would obtain

ζr(s; k) =
(
p2m−1

)(r−1)(l+1)
+ q2m−1sζr−1(s; k) +

(
1 − q2m−1 −

(
p2m−1

)l+1
)

ζr−1(s; k)

+
(

1 −
(
p2m−1

)l+1
)r−2∑

j=1

(
p2m−1

)j(l+1)
ζr−1−j(s; k).

Using the above expression, we obtain the generating function Ξ(z; k) as follows:

Ξ(z; k) =
sz +

(
p2m−1

)l+1
(1 − s)

1 − z(p2m−1 + q2m−1s) − z2
(
p2m−1

)l+1
(1 − p2m−1 − q2m−1s)

. (33)

However, the explicit expression for ζr(s; k), i.e., the coefficient of zr in (33), will be compli-
cated and it would be difficult to identify the distribution of the underlying random variables
in terms of the known probability distributions..

5. Strong law of large numbers

In this section, we show how we may use our main result to establish the strong law
of large numbers for the number of runs of exact length. Given k1, we may fix k = k1 + 1.
For simplicity of the calculations, we will consider here the non-overlapping runs, i.e., l =
k − 1 = k1. Let us define

θ(n) = sup{r ≥ 0 : τr(k1 + 1, k1) ≤ n}. (34)

Clearly, θ(n) represents the number of non-overlapping runs of length k that have been
observed until time n. Also, we must have

τθ(n)(k1 + 1, k1) ≤ n < τθ(n)+1(k1 + 1, k1).

First we observe that the occurrence of a non-overlapping run is a renewal event in
our set up. Let Et denote the event that a non-overlapping run has finished at time t. Then,
for t, s ≥ 1, we have

Px(Et ∩ Et+s) = Px(Et)Px

(
Et+s | (Yu; u ≤ t)

)
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= Px(Et)Px

(
Et+s | Yt = 2k1−1

)
= Px(Et)P(2m−1)

(
Es

)
where we have used the strong Markov property on the expression in second step and the
fact that at time t, a non-overlapping run is finished and hence we must have Yt = 2k1−1.
Further, this shows that the events again have the structure of a delayed renewal event.

Since we have assumed that 0 < px < 1, for all x ∈ Ci, it is the case that the Markov
chain {Yt : t ≥ 0} is an irreducible chain and hence positive recurrent. This implies that
the renewal event is also positive recurrent. Therefore, the expected time for getting k1 + 1
consecutive successes from any state is finite and have finite expectation. In other words, we
must have

E(2m−1)(τ1(k1 + 1, k1)) = µ < ∞. (35)
The value of µ will depend upon the values of {px : x ∈ Ci}. For the i.i.d. case, it is known
that (see Feller (1968), page 324),

µ = 1 − pk1+1

qpk1+1 .

Using the results of renewal theory (see Feller (1968)), we further have that

1
n

θ(n) → 1
µ

(36)

with probability 1. Now, we prove Theorem 2 which establishes the strong law of large
numbers.

Proof: (Theorem 2) For any r ≥ 1, we can represent, using Corollary 1,

Nτr(k1+1,k1)(k1)(= Nr(k1)) d= G1 +
r∑

i=2
GiBi.

Since the equality is in distribution, we cannot directly apply the strong law on this family
to conclude our result.

Now, expectation of the random variable G1 as well as G1B1 may be computed from
the probability generating function given in equation (9). Indeed, we have E(G1B1) = µ1
(see equation (10)). Further observe that all moments of G1B1 are finite.

Let us set µ1(r) =
[
E(G1) + (r − 1)E(G1B1)

]
. Then, we have

1
r

µ1(r) = 1
r

[
E(G1) + (r − 1)µ1

]
→ µ1 (37)

as r → ∞. Note that, from the representation, we have E(Nτr(k1+1,k1)(k1)) = µ1(r). Fur-
thermore, for any ϵ > 0, we have

P
(1

r
|Nτr(k1+1,k1)(k1) − µ1(r)| ≥ ϵ

)
= P

(1
r

|G1 +
r∑

i=2
GiBi − µ1(r)| ≥ ϵ

)
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= P
(

|G1 − E(G1) +
r∑

i=2
(GiBi − E(G1B1))| ≥ rϵ

)
.

Now, we may estimate the probability using the Markov inequality. Indeed, we have

P
[
|G1 − E(G1) +

r∑
i=2

GiBi − E(G1B1)| ≥ rϵ
]

≤ 1
r4ϵ4E

[(
G1 − E(G1) +

r∑
i=2

GiBi − E(G1B1)
)4]

≤ 1
r4ϵ4

[
E

(
G1 − E(G1)

)4
+ 3(r − 1)E

(
G1 − E(G1)

)2
E

(
G1B1 − E(G1B1)

)2

+ 6(r − 1)2
(

E
(
G1B1 − E(G1B1)

)2
)2

+ (r − 1)E
(
G1B1 − E(G1B1)

)4
]

≤ C

r2ϵ4

for a suitably chosen constant C > 0.

Thus, by Borel-Cantelli lemma, we conclude that 1
r

(
Nτr(k1+1,k1)(k1)−µ1(r)

)
→ 0 with

probability 1. This along with equation (37) implies that

1
r

Nτr(k1+1,k1)(k1) → µ1 (38)

as r → ∞ with probability 1.

Since τθ(n)(k1 + 1, k1) ≤ n < τθ(n)+1(k1 + 1, k1), we must have Nθ(n)(k1) ≤ Nn(k1) ≤
Nθ(n)+1(k1). Therefore, we obtain that

1
n

Nθ(n)(k1) ≤ 1
n

Nn(k1) ≤ 1
n

Nθ(n)+1(k1)

=⇒ θ(n)
n

× 1
θ(n)Nθ(n)(k1) ≤ 1

n
Nn(k1) ≤ θ(n) + 1

n
× 1

θ(n) + 1Nθ(n)+1(k1).

Since θ(n)/n → 1
µ
, we have that θ(n) → ∞ as n → ∞. Hence, we may apply the equation

(38) along the sub-sequence θ(n) and equation (36) to conclude that both the upper bound
as well as the lower bound will converge to µ1/µ. This proves the result.
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