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Abstract

The present paper is based on the framework of a classification tool namely, Multivari-
ate Receiver Operating Characteristic (MROC) curve, which is modelled to provide a better
classification. In general, there are certain properties where the proposed ROC curve has to
satisfy, violating any of such property leads to inappropriate conclusions about the classifier.
In this paper, a straight forward approach is presented to explain the nature of ‘Proper’ and
‘Improper’” ROC curves. The methodology is supported with both simulated and real data
sets.
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1. Introduction

Over the past seven to eight decades, the problem of detecting/identifying one’s behav-
ior and allocating them into one of the population gained lot of attention. Such work was
majorly observed and initially related in the fields of Experimental Psychology and Signal
Detection Theory (Tanner and Swets, 1954, Green and Swets, 1966). However, with the
involvement of statistical essentials, this area branched to diversified fields of Science and
Technology, namely Diagnostic Medicine, Banking, Finance and many more (Lusted, 1971,
Krzanowski and Hand, 2009). All these come under the hub of classification tools/techniques
(Statistical Decision Theory). The practice of allocation or separation is based on certain
characteristics of univariate or multivariate in nature.

Initial application of this was in Medicine and used majorly to identify the individual’s
health status by defining an optimal threshold for a biomarker observed in the case of
that particular disease. The first parametric ROC is the Binormal ROC Curve where the
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variable under study for two independent populations (healthy/diseased or signal/noise)
follow Normal distributions (Green and Swets, 1966). The important properties of ROC
curve are:

(i) y = h(x) is the mathematical model of the ROC curve, where y denotes the true
positive rate and x denotes the false positive rate. The curve is a monotonic increasing
function in the positive quadrant, lying between y =0 at xt =0 and y =1 at x = 1.

(ii) The ROC curve is unaltered if the classification scores undergo a strictly increasing
transformation.

(iii) The slope of the ROC curve (likelihood ratio of ROC curve) at threshold value ‘¢’ is
always positive and given by
dfg/ _ P(U > (1)
dr  P(U > c|0)

When dealing with practical problems, we often come across the presence or involve-
ment of several variables to have a classifier rule for a better classification. Su and Liu
(1993), Reiser and Ferragi (1997), Schisterman et al. (2004), Liu et al. (2005), Yuan and
Ghosh (2008), Chang and Park (2009) and Sameera et al. (2016) are a few to cite among
those who proposed an extension of univariate ROC model to multivariate. However the
present work is based upon the Multivariate ROC (MROC) model proposed by Sameera et
al. (2016), as they showed that this model works better than the model proposed by Su
and Liu (1993) and their model is applicable to data where the covariance structures of two
populations can be proportional or non-proportional. As mentioned about the properties of
the ROC curve, the most important one to verify is its concavity i.e., slope of the ROC curve
is always positive. Now the question that arises is, what happens if a curve is not satisfying
the concavity property? If the curve violates this property, it might affect the accuracy of
the test as well as the optimal cutoff point defined for that particular test. Mathematically,
a meaningful decision variable should be an increasing function of the likelihood ratio (Pepe,
2003) and such MROC curve is said to be “Proper”. A function whose first derivative is
decreasing throughout an open interval is called concave in that interval, and a function
whose first derivative is increasing throughout an open interval is called convex in that in-
terval. Since the slope of an MROC curve for a continuous decision variable is equal to the
likelihood ratio at the corresponding threshold, it follows that the slope of a MROC curve
decreases as the false positive rate (FPR) increases, that is, a MROC curve will be concave
everywhere (0 < FFPR < 1). If the decision variable is not an increasing function of the
likelihood function, then its model and corresponding MROC curve are said to be improper.

2. Illustration of Improper MROC (iMROC) Curve

Consider the following example which illustrates the Indian Liver Patients (ILP) dataset
for which the MROC curve has been drawn and depicted in Figure 1. The fitted MROC
curve seems to be proper but when observed keenly; the improperness of the curve can be
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witnessed. In such situation, the usual MROC curve methodology might not project the
true accuracy of a test and will not be used for future classification. Figure 1 visualizes the
two crucial points namely, Crossing Reference line ((fy) or Crossing Point) and Inflection
Reference line ((¢;) or Inflection Point). Figure 1 shows the corresponding fitted MROC
curve; note that there is a visible ‘dip’ in the curve crossing the chance line near the upper
right hand corner of the unit square plot. In Figure 1, MROC curve crosses the chance
line at the point (1-Specificity, Sensitivity) = (0.96, 0.96), shown by the intersection of the
“crossing” reference line with the MROC curve. Furthermore, this MROC curve is con-
cave for FPR < 0.76, but is convex for FPR > 0.76. Therefore, the MROC curve which
separates the concave and convex portions of the curve is called the “Inflection Point (t1)”.
Similarly, the MROC curve which crosses the chance line at the point where FPR=TPR is
called the “Chance line crossing point or Crossing Point (¢y)”. From Figure 1, though the
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Figure 1: Improper MROC curve for ILP dataset

dip of the curve is visible i.e. the MROC curve is not concave everywhere, it is not possible
to identify the inflection point visually. Even in the case of improper MROC curves, it is not
that easy to identify the point where the curve changes from concave to convex. In order to
deal with this situation, the ways to measure the improperness of an MROC curve is shown
in subsequent sections with the help of real and simulated data sets.

2.1. MROC curve

Let Uy and Uy € U be the vectors of test scores of two independent multivariate normal
populations with mean vectors g, pq and co-variance matrices >y and Yy with m and n
sample sizes respectively.
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1 -1
X|pi, 5i) = ———xe2 (X — )57 (X —
S (X i, i) ERHDIE (X = ) 57 (X = i)
Let z(c) denote the false positive rate (FPR) and y(c) denote the true positive rate (TPR)
where ‘¢’ is the threshold value. The expressions for FPR, TPR are

— (o) = ) =1 | LYk
FPR = () P(U> |0) 1 (I)( (b’EOb)) (1)
(o) — T
TPR =y(c) = P(U > /1) q>< (b'Zlb)) 2)

where b(# 0) be a k x 1 vector. The threshold value thus obtained using (1) is given as

=0+ (Vb)) (1 — x) (3)

where ®~1(.) is the inverse function of ®(.)

substituting (3) in (2) implies that

TPR=y(c) =7

V' (1 — o) — / (V'Zpb) 27 H(1 — )
(B/51)

which is the form of Multivariate ROC model (Sameera et al., 2016)

The AUC of MROC curve is

_ V' (1 — po)
AUC = @{ N, 21)1b} (5)

2.2. Crossing point

In order to verify whether the generated ROC curve is ‘proper’ or ‘improper’, Bal-
aswamy et al. (2020) came out with two measures namely crossing point and inflection
point. The mathematical framework of these measures are adopted here to maintain the
continuity of explanation about proper vs improper ROC curves. Let ‘c’ denote threshold
to a chance line crossing FPR, then

P(U > ¢0) = P(U > c|1)

@ c—bug _ % c— b
('Sob) ('%10)
on further simplification, the expression for ¢y crossing threshold is

. (0'110)/ (VE1b) — (0" )/ (V'20D) ©)
’ JISb) — /(=)
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Let ty denote the chance line crossing FPR corresponding to ¢q. Then

_ b/
t():P(U>C()|O):1—(I) u
(U'S0b)

on substituting (6) in the above expression, we obtain the expression for crossing point as,

_ 'y — Vo
bl (\/(b@lb) - <b’20b>> v

Uniqueness of ¢y follows from the uniqueness of .

2.3. Inflection point

The slope of ROC curve is twice differentiable. From basic calculus results concerning
concave functions it follows that the MROC curve is concave (convex) over an open interval
if its second derivative is negative (positive) throughout the interval (0, 1). The approach
is to show that the second derivative of the MROC curve is negative throughout (0, ¢;) and
positive throughout (¢, 1) if v < 1, and positive throughout (0, ¢;) and negative throughout
(t1, 1) if v > 1.

Let ¢ denote an FPR with corresponding threshold c. The derivative of the MROC
curve evaluated at t is equal to the likelihood ratio evaluated at c, i.e.,

OROC(t)
——= =1L
T R(c)
1.e., at t =1
OROC(t)
ot

it follows, using the chain rule, that

9’ROC(t)  OLR(c) Je )
0%t  Jc Ot

/t = to = LR(C())

since,

co — b'po
t=PU>cl0)=1-PU<cl0)=1-—a [ 21——L2
(b'320b)

then t is a strictly decreasing function of ¢ and

% _ 1 o Co — b,,U/O
ot ) (b'Sob)

therefore, the equation (8) can be rewritten as,
1 Co — b/,U/O
¥
(0'E0b) (0'E0b)

-1

0?ROC(t) _ OLR(c)
0%t e
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. co—b"po . . . .
Since ¢ (\/(b’Tob)> > 0, it follows from Equation (9) that the second derivative of the

MROC curve and the derivative of the likelihood ratio have opposites signs when evaluated
at t and ¢, respectively (Balaswamy et al., 2020).

The threshold value at the inflection point is given by
(0"216) (b o) — (b'E0b) (V' 1)

= 10
“ (U'S1b) — (S0b) (10)
then the corresponding FPR is
=1 ® c1—bug
L =1- g 7R
(0'20b)
on substituting ¢; in the above equation, the FPR at the corresponding ¢; is given by
(0'S10) (0 o) — (b'S0b) (Vpa) | _ 3
t=1—® { (b'31b)—(b'%0b) } b'hto (11)
(0'20b)
on further simplification, the FPR value at the inflection point is as follows
b, — b b'30b
b= (V' p = ' o)/ (U E0b) 12)
(0'51D) — ('X0b)

Since the derivative of the log likelihood ratio will have opposite sign of the second
derivative of the MROC curve evaluated at the corresponding FPR and thresholds less than
c1 correspond to FPRs greater than ¢; and vice versa, the FPR value

L= ((b’m — ') (b’Eob))

(b'S1D) — (B'Xb)
is the unique inflection point FPR and

(b210) (b'po) — (B'Sb) (V'p11)
(U/S1b) — (V'Sob)

cl =

is its corresponding inflection point threshold.
3. Results and Discussion
3.1. Proper MROC curve

In order to explain the concept of Proper MROC curve, the Statlog (heart) data taken
from UCI repository is used. The heart dataset consists of 270 samples of which 120 (44.4%)
are diagnosed with presence of heart disease and 150 (55.6%) with absence of heart dis-
ease. The parameters age, sex (Male: 183, 67.78% & Female: 87, 32.22%), chest pain type
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(4 nominal values), resting blood pressure, serum cholesterol, fasting blood sugar, resting
electrocardiographic (ECG) results (0, 1&2), maximum heart rate achieved, exercise induced
angina, oldpeak, the slope of the peak exercise ST segment, number of major vessels (0-3)
colored by fluoroscopy and thal (normal, fixed defect & reversible defect) are considered for
diagnosis. MROC curve is fitted and it corresponding linear combination is

U= —-0.022 x Age + 1.323 x Sex + 0.829 x C'hestpaintype + 0.019 x Restingbloodpressure
+ 0.005 x SerumCholesterol — 0.724 * Fastingbloodsugar
+ 0.358 x Resting EC'Gresults — 0.025 x M aximumheartrate
+ 1.091 x* Ezerciseinducedangina + 0.424 x Oldpeak + 0.534 * thal
+ 0.398 % Slopeo fthepeakexerciseST segment + 1.269 x Numberofmajorvessels

This linear combination helps us to know the status of a new individual basing on the
U value. From the results, the curve is found to be proper by satisfying the property of
monotonic likelihood ratio of MROC curve, hence it is a Proper MROC curve and the figure
is depicted in Figure 2.
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Figure 2: Proper MROC curve for Heart dataset

The optimal threshold value for identifying heart disease in an individual when the
above mentioned characteristics studied is 7.27 with accuracy (AUC) of 93.7%. If score
obtained for a new patient U is greater than 7.27, the individual will be allocated to heart
disease group. The obtained threshold is observed to have 86.2% of sensitivity and 13.8%
of 1-specificity (false positive rate). This means that the threshold is able to identify the
true status of individual in a sensible manner with 86.2% by allowing 13.8% of false positive
cases. This features out that the performance of the threshold has to be improved in such a
way that the percentage of false positive rate can be minimized.
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The concept of iIMROC curve is supported with the help of simulation studies as well
as real datasets. The degree of improperness is also measured with the help of crossing point
and inflection point and the results are reported along with the figures.

3.2.1.

Simulation study

Two sets of multivariate normal random numbers are generated with mean vectors and
covariance matrices (Table 1) for various samples sizes 25, 50, 100 and 300 respectively.
Table 1: Mean Vectors and Covariance Matrices of Simulation Studies

KD HH Yp Y
0.8606 0.8059 0.0084 0.0057 0.1221 0.0046 0.0001 0.0561
1 1.68 1.5812 0.0057 0.1183 0.0601 0.0001 0.1274 0.0037
5.1302 4.7992 0.1221 0.0601 2.3087 0.0561 0.0037 0.7628
0.7305 0.7057 0.0084 0.0057 0.1221 0.0046 0.0001 0.0561
2 1.39 1.2811 0.0057 0.1183 0.0601 0.0001 0.1274 0.0037
3.6302 3.5992 0.1221 0.0601 2.3087 0.0561 0.0037 0.7628

The accuracy and intrinsic measures along with the linear combinations obtained for
the simulated data sets are reported in Table 2.
Table 2: Measures of MROC curve for two sets of simulations at four different

sample sizes

Simulation Samples c AUC TPR FPR Linear combination

25 2.1928 0.5817 0.5591 0.4408 2.95% X; + 0.50 % X5 - 0.12 x X35
o0 4.4107  0.6323 0.5979 0.4020 6.01 % X; - 0.10 % X5 - 0.07 * X3

I 100 9.8698 0.6754 0.6444 0.3555 1627 % X7 + 0.62 * X5 - 0.90 * X3
300 18.5639 0.7003 0.6640 0.3359 29.69 % X7 + 0.99 % X5 - 1.53 % X3
25 -1.6330 0.5713 0.5543 0.4456 -2.93 x X; + 0.51 % X5 - 0.07 *x X3
50 2.0133 0.6109 0.5811 0.4188 3.62% X; + 1.05 % X5 - 0.53 * X3

II 100 4.3673 0.6493 0.6111 0.3888 5.37*x X7 +0.84 % X5 - 0.16 * X3
300 2.5782 0.6519 0.5943 0.4056 3.35* X; + 1.16 % X5 - 0.23 % X3

Here, an observation made is that as the sample size increases the accuracy (AUC) is

also slightly improving even though the expressions for the intrinsic measures FPR, TPR
and the accuracy measure AUC are free from the sample size. This means that, there is
slight deviation in the accuracy as the curve deviates from cancavity to convexity (Figure
3 and 4). Therefore, IMROC curve is not able to provide the maximum extent of correct
classification with less misclassification rate due to the shift in the magnitude of the curve.

3.2.2. Real datasets

In order to demonstrate the iMROC curve, MCA and ILP datasets are used. Further,
ILP dataset has been split according to gender of the patients. Of which, ILP male dataset
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Figure 3: iMROC curves for Simulation datasets at different sample sizes with
25 and 50

has a form of Improper ROC curve and the same dataset has been chosen for demonstration
purpose.

ILP Male dataset (Ramana et al., 2012)

The intrinsic measures TPR and FPR, summary measure AUC and optimal cut point
are computed using equations (1) to (5). The AUC observed is 0.7495 which provides
moderate classification, TPR and FPR are 0.6992 and 0.3008 respectively at the optimal
cutpoint ¢ = 1.5372. The best linear combination is given by

Urpp = 0.0172 % Age—0.0556 « T'B + 0.3133 « DB + 0.0005 * Alkphos—0.0104 x sgpt
+ 0.0074 * sgot — 0.4164 * TP + 0.6726 x ALB-1.1341 x A.G

If the test score is greater than optimal cutoff i.e., 1.5372 the individual is classified
as diseased, otherwise healthy. The iMROC curve is drawn and depicted in the Figure
(5). From Figure (5), it is clear that the fitted MROC curve crosses the chance line and is
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Figure 4: iMROC curves for Simulation datasets at different sample sizes with
100 and 300

moving towards the top right corner of the unit square plot, which generates an improper
MROC curve. Using the proposed methodology, the inflection point (¢;) and chance line
cross reference points (to) are obtained and are highlighted in the Figure (5). MROC curve
is concave for FPR < 0.5221, but is convex for FPR > 0.5221. Due to this improperness,
the true accuracy of the classifier cannot be obtained. Further, such contaminated AUC will
mislead the interpretation and decision making too.

MCA dataset (Vishnu Vardhan et al.. 2015)

The neonatal dataset consists of two procedures: MCA and CPR used to check the
blood flow from the womb of the mother to the baby for identifying the growth of the
baby. Three indices were measured namely pulsatility index (PI), resistivity index (RI) and
Systolic/Diastolic (S/D) ratio in all the procedures. The intrinsic measures TPR and FPR,
summary measure AUC and optimal cut point are computed using equation (1) to (5). The
AUC observed is 0.6253, which provides moderate classification, TPR and FPR are 0.5968
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Figure 5: iMROC curve for ILP Male dataset
and 0.4032 at the optimal cutpoint ¢ = —3.1749. The best linear combination is given by
Upeca = —10.6711 « MCA.RI 4 0.0226 x MCA.PI +1.1733 « MCA.SD

The above linear combination can be used for identifying the status of new individual.
If the test score is greater than optimal cutoff i.e., -3.1749 the individual is classified as
diseased, otherwise healthy.

Further, the MROC curve is drawn and depicted in Figure (6). From Figure (6), it is
clear that the fitted MROC curve crosses the chance line and moves towards the top right
corner of the unit square plot, which leads to an improper MROC curve. In this illustration
also, it is shown that not all ROC curves that gets generated for the classification data is
a “Proper” one and before fitting and computing the measures of ROC curve, one has to
verify whether the data is satisfying the three properties or not. Doing so, we can overcome
the misuse of the technique and misleading conclusions out of it.

4. Conclusion

In this paper, main focus was on establishing the fact that not all ROC curves that are
generated through data will be “Proper”,; i.e. that they possesses the monotonic property.
So, there is a need to have some mechanism to verify whether an ROC curve so obtained is
proper or improper. To address this, crossing point and inflection point are defined, which
work on concavity and convexity nature of the ROC curve. To have a better understanding
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Figure 6: iMROC curve for MCA dataset

of these crossing and inflection points, simulations were carried out for different sample sizes
and parameter combinations. Also support of real data sets is also taken. On the whole, the
message emerging from this study is that before interpreting the outcomes of ROC curves,
it is essential to check whether the curve is proper or improper. If the curve is satisfying
the desirable properties then one can proceed for using the classifier for future classification,
and if the curve is improper then it is not a better way to use the classifier anymore. So,
here it is quite essential to work on a procedure that helps in correcting the ROC curve and
making it to have the monotonicity.
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