
Statistics and Applications {ISSN 2452-7395(online)}
Volume 18, No. 2, 2020 (New Series), pp 67–74

Discriminating Between Superior
UE(s2)-optimal Supersaturated Designs

Feng- Shun Chai1, Ashish Das2, Rakhi Singh3 and John Stufken3

1Academia Sinica, Taipei, Taiwan
2Indian Institute of Technology Bombay, Mumbai, India

3University of North Carolina at Greensboro, Greensboro, NC, USA

Received: 21 April 2020; Revised: 07 May 2020; Accepted: 12 May 2020

Abstract
For binary factors, a design is supersaturated for the main effects model if the number

of runs is smaller than the number of factors. Supersaturated designs (SSDs) cannot have all
orthogonal columns, and so, the traditional notions of D-, A-, E-optimality are not applicable
here. SSDs are studied under criteria such as E(s2) or UE(s2) which are near-orthogonality
measures. In this work, following some of the latest works, we provide algorithms to construct
better UE(s2)-optimal designs. We also provide a few design examples to demonstrate the
proposed algorithms.
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1. Introduction

Factor-screening experiments are performed in situations when a large number of fac-
tors could potentially be affecting the response but only a limited number of runs can be
performed. The main goal of these studies is to screen (or, identify) the most important
factors. Supersaturated designs are useful in factor-screening experiments and they work
under the effect sparsity assumption that only a small number of factors are active. For m
binary factors and n runs, under a main-effects model, supersaturated designs require n to
be smaller than m + 1.

An n-run supersaturated design d for m two-level factors is represented by an n ×m
matrix Xd of 1’s and -1’s, where the ith column of Xd corresponds to the ith factor. Let
Zd = [1 Xd] be the model matrix of the main-effects model for d. Since n < m + 1, it
is not possible to have Zd with mutually orthogonal columns, even though orthogonality is
a desirable property. To assess non-orthogonality of supersaturated designs, the available
literature on the topic involves finding lower bounds to the popular E(s2)-criterion and
constructing designs satisfying these lower bounds. Designs that have an equal number of
±1s in each column of Xd for even n are called level-balanced designs. An E(s2)-optimal

Corresponding Author: John Stufken
Email: j stufke@uncg.edu



68 F.S. CHAI, A. DAS, R. SINGH AND J. STUFKEN [Vol. 18, No. 2

design is a level-balanced design that minimizes the sum of the squares of the inner products
of columns of Xd among all level-balanced designs. A review paper by Georgiou (2014)
and the references therein are a good source for the available literature on E(s2)-optimal
supersaturated designs.

Jones and Majumdar (2014) extended the class of available designs by removing the
imposition of level-balance from the designs. To keep the definition of E(s2) sensible in the
broader class of designs, they included the sums of squares of the inner product of columns
of Xd with the column of all 1s in the existing definition and called it unrestricted E(s2), or
UE(s2). For a design d, the

UEd(s2) = 1(
m+1

2

)
 m∑

i=1
(1T xi)2 +

∑
1≤i<j≤m

(xT
i xj)2

 , (1)

where xi is the ith column of Xd. The E(s2)-criterion minimizes the second quantity in (1)
among all level balanced designs (the first quantity is 0 for level-balanced designs), whereas
the UE(s2)-criterion minimizes (1) among all possible designs with±1s. Jones and Majumdar
(2014) obtained lower bounds to UEd(s2) and provided constructions of UE(s2)-optimal
supersaturated designs. UE(s2)-optimal supersaturated designs are easy to construct and
are available for any parameter sets, whereas E(s2)-optimal designs are difficult to construct
and are available only for selected parameter sets.

Since many UE(s2)-optimal designs exist, Jones and Majumdar (2014) and Cheng et al.
(2018) suggested various criteria to choose the better design among all available designs.
Using the same notations as in Cheng et al. (2018), following are a few definitions:

• SS = ∑m
i=1(1T xi)2 = 1T XdXT

d 1;
• LB = the number of level-balanced factors for n even;
• OF = the number of orthogonal pairs of factors among the

(
m
2

)
pairs for n even;

• Q = LB + OF.

For odd n, these definitions are easily generalized. For example, when n is odd, LB is the
number of nearly-level-balanced factors, that is the number of factors with the corresponding
column sums of Xd equal to ±1. Similarly, OF is the number of nearly orthogonal pairs of
factors among the

(
m
2

)
pairs, that is, the number of pairs of factors having an inner product

equal to ±1. For even n, Q is half the number of zeros in the matrix ZT
d Zd, whereas for odd

n, Q is half the number of ±1s in the matrix ZT
d Zd.

Cheng et al. (2018) defined a UE(s2)-optimal design to be a superior UE(s2)-optimal de-
sign if it additionally minimizes SS among the class of UE(s2)-optimal designs constructed in
a restricted class. Singh et al. (2020) then extended the definition of superior UE(s2)-optimal
designs in a global class of all UE(s2)-optimal designs, also providing the constructions of
the superior UE(s2)-optimal designs in a global class. In this work, we restrict ourselves to
the superior UE(s2)-optimal designs constructed in Cheng et al. (2018). Since the class of
superior UE(s2)-optimal designs is still very large, Cheng et al. (2018) further proposed that
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Q should be minimized to find a better design among superior UE(s2)-optimal designs. This
minimization reduces the spread among the off-diagonal elements of ZT

d Zd, and because the
minimization is restricted to superior UE(s2)-optimal designs it favors such designs with uni-
formly relatively small correlations between the columns of Zd. The superior UE(s2)-optimal
designs with small Q tend to perform very well on the projection-based measures such as
average D-efficiency when only a small number of factors are active.

In this paper, we propose algorithms to find designs with minimum Q among the class
of superior UE(s2)-optimal designs constructed by Cheng et al. (2018). These algorithms
differ based on whether m = 4t, 4t + 1, 4t + 2, or 4t + 3 and are provided in Section 2 along
with an example each.

2. Algorithms for Constructing Q-superior UE(s2)-optimal Designs

Constructions of superior UE(s2)-optimal designs (Cheng et al. (2018)) differ based on
the type of values that m has. Let H be a 4t × 4t normalized Hadamard matrix with all
the entries in the first row and first column equal to 1. If m = 4t − 1, then any UE(s2)-
optimal design is superior and these designs are constructed by deleting any 4t−n rows and
the first column of a normalized Hadamard matrix H. If m = 4t, adding a level-balanced
column to the UE(s2)-optimal design with m = 4t−1 gives a superior UE(s2)-optimal design.
If m = 4t − 2, deleting a column having maximum absolute column sum from a UE(s2)-
optimal design with m = 4t − 1 gives a superior UE(s2)-optimal design. If m = 4t + 1,
two columns are added to a UE(s2)-optimal design with m = 4t− 1 so that the pairs (1, 1),
(−1,−1), (1,−1) and (−1, 1) appear in these columns as close to equal as possible; moreover,
if n ≡ 2 (mod 4), the two columns must be orthogonal. Note that superior UE(s2)-optimal
designs can be constructed using other methods which do not necessarily add or delete one or
two columns to a Hadamard matrix; some of such construction methods have been studied
in Singh et al. (2020). We restrict ourselves to superior UE(s2)-optimal designs constructed
by Cheng et al. (2018).

We provide algorithms to find the designs with minimum Q among the superior UE(s2)-
optimal designs. Before we do that, we need the following result due to Singh et al. (2020).
This result gives the values of SS for superior UE(s2)-optimal designs in a restricted class,
that is, the class of designs constructed using the methods of Cheng et al. (2018).

Theorem 1 (Theorem 1 of Singh et al. (2020)): The values of SS for a superior UE(s2)-
optimal design d in restricted class are

C(m, n) =


n(m− n + 1) for m = 4t− 1
n(m− n) + x for m = 4t
n(m− n− 1) + z for m = 4t + 1
n(m− 2n + 2) + 4s(n− s) for m = 4t− 2 and s = min(n, 2t)

(2)

where x = 0 for n even and x = 1 for n odd, and z = 0 for n ≡ 0 (mod 4), z = 4 for
n ≡ 2 (mod 4), z = 2 for m 6= n ≡ 1 or 3 (mod 4), and z = 4n− 10 for n = m.

We now consider four cases depending on whether m is of the form 4t− 1, 4t− 2, 4t,
or 4t + 1, where t is a positive integer.
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(A) Construction for m = 4t − 1. Let Xb be a matrix obtained by deleting the first
column of all 1s and 4t − n rows of H. Irrespective of the Hadmard matrix used, and
irrespective of the rows deleted, each Xb has SS = C(n, 4t−1) as in Theorem 1, and hence is
a superior UE(s2)-optimal design (Cheng et al., 2018; Singh et al., 2020). We call Xb the base
matrix. All such Xb’s form the set of base design matrices for the other three cases. For Xb,
with m = 4t − 1 = mb (say), we denote the parameters SS, LB, OF, Q by SSb, LBb, OFb, Qb

respectively. To find a superior UE(s2)-optimal supersaturated design with minimum Q, the
following steps are proposed:

(i) Find the parameter values for all the
(

4t
n

)
superior UE(s2)-optimal designs obtained

from every available non-isomorphic Hadamard matrix H of order 4t. Collect designs
with the same parameters in the same class, thereby forming I classes of designs with
distinct parameters (SSb, LBb

i , OFb
i , Qb

i), i = 1, . . . , I.

(ii) Without loss of generality, let parameters satisfy Qb
1 ≤ Qb

2 ≤ · · · ≤ Qb
I . Any superior

UE(s2)-optimal design with Qb = Qb
1 is, therefore, a design as proposed.

For a large m, many non-isomorphic Hadamard matrices exist and it is not possible to
do (i) for all non-isomorphic Hadamard matrices. One could then do step (i) for as many
non-isomorphic Hadamard matrices as possible. Then, there is a possibility of a design with
smaller Q than the proposed design.

Example 1: For m = 15, n = 12, there are 5 non-isomorphic Hadamard matrices of order 16,
the total number of possible superior UE(s2)-optimal designs are

(
16
12

)
×5 = 1820×5 = 9100.

Among these 9100 possibilities of Xb’s, we get only four distinct parameter sets given in
Table 1. In Table 1, we also provide the respective number of designs in these classes under
the ‘Count’ column.

Table 1: Four sets of parameters for m = 15, n = 12

i SSb LBb
i OFb

i Qb
i Count

1 48 6 42 48 7248
2 48 3 57 60 384
3 48 9 51 60 1152
4 48 12 84 96 316

Total 9100

Any superior UE(s2)-optimal designs corresponding to the first row in Table 1, that
is, designs with Qb

1 = 48 are the proposed designs. One such example of a superior UE(s2)-
optimal design with Q = 48 is given below.
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-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1

-1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1

-1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1
1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1

-1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1
1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1

-1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1
-1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
-1 1 1 -1 1 -1 1 1 1 -1 -1 1 -1 1 -1
1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1

(B) Construction for m = 4t−2. For m = 4t−2, a column with the maximum absolute
column sum is deleted from Xb to get a superior UE(s2)-optimal design. Starting from Xb

with mb = 4t − 1, we construct a superior UE(s2)-optimal design with m = 4t − 2 and
minimum Q as follows.

(i) For the i-th set, there are m−LBb
i number of columns in the corresponding Xb’s which

are not (nearly) level-balanced. Let xu be the number of columns for a design in the
i-th class with the column sums equal to ±2u (for n even) and equal to ±(2u + 1) (for
n odd), u = 1, . . . , k. Then, for all designs in the i-th class, i = 1, . . . , I, we check
whether

4∑k
u=1 u2xu = C(4t− 2, n) for n even, and∑k

u=1(2u + 1)2xu = C(4t− 2, n)− LBb
i for n odd.

Assume that the conditions are true for I1 ≤ I sets of parameters. Only keep these I1
sets and number the sets as i = 1, . . . , I1 such that Qb

1 ≤ Qb
2 ≤ · · · ≤ Qb

I1 .

(ii) Starting from i = 1, for the designs in the i-th class, we delete a column with column
sum as ±n for n ≤ 2t or as ±(4t−n) for n > 2t (note that this can always be done, see,
Singh et al. (2020)). Then for each i, designs could have Ji possible sets of parameters
(C(4t− 2, n), LBi = LBb

i , OFi(j), Qi(j)), where OFb
i −m ≤ OFi(j) ≤ OFb

i , j = 1, . . . , Ji.
Without loss of generality, let Qi(1) ≤ Qi(2) ≤ · · · ≤ Qi(Ji). Define qi = min{Qi(1), qi−1}
for i = 2, . . . , I and q1 = Qi(1).

(iii) If qi ≤ Qb
i+1 −m, then a superior UE(s2)-optimal design with Q = qi is the proposed

design, otherwise the steps (ii)-(iii) are sequentially repeated for i = 2, . . . , I1. If we
reach i = I1, then a superior UE(s2)-optimal design with Q = qI1 is the proposed
design.

Example 2: For constructing a superior UE(s2)-optimal design, with m = 14, n = 12
having minimum Q, from Table 1, the base design with mb = 15, n = 12 has I = 4 sets of
parameters. With C(14, 12) = 32, the condition in step (i) of the algorithm is not met for
i = 2. This allows us to reduce the number of sets of parameters to I1 = 3. Now, for the
designs in the set i = 1, deleting a column with the desired property gives superior UE(s2)-
optimal designs with J1 = 1 parameters (SS = 32, LB1 = 6, OF1(1) = 36, Q1(1) = 42). Since,
q = 42 < 60 − 14 = 46, the design with Q = q = 42 is the proposed design and is given
below.
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1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

-1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
-1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
-1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
-1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

-1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
-1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

(C) Construction for m = 4t. For m = 4t, a level-balanced column should be added to
Xb to get a superior UE(s2)-optimal design. Our algorithm to construct a superior UE(s2)-
optimal design with m = 4t, having the minimum value of Q is as follows. We start with
Xb’s as in Construction (A) corresponding to mb = 4t− 1. Then, the ith set of parameters
corresponding to the base matrices is (SSb, LBb

i , OFb
i , Qb

i), i = 1, . . . , I. Note that these i
sets are such that Qb

1 ≤ Qb
2 ≤ · · · ≤ Qb

I .

(i) Starting from i = 1, for each design in the i-th class (that is, a design with minimum
Q), we add all possible balanced columns to the existing 4t−1 columns. Then for each
i, designs could have Ji resultant possible parameters (C(4t, n), LBi = LBb

i + 1, OFi(j),
Qi(j)), where OFb

i ≤ OFi(j) ≤ OFb
i + m − 1, j = 1, . . . , Ji. Without loss of generality,

let Qi(1) ≤ Qi(2) ≤ · · · ≤ Qi(Ji). Define qi = min{Qi(1), qi−1} for i ≥ 2 and q1 = Qi(1).

(ii) If qi ≤ Qb
i+1, then a superior UE(s2)-optimal design with Q = qi is the final design.

Otherwise steps (i)-(ii) are repeated sequentially for i = 2, . . . , I. If we reach i = I,
then a superior UE(s2)-optimal design with Q = qI is the proposed design.

Example 3: For constructing a superior UE(s2)-optimal design with m = 16, n = 12 having
minimum Q, we make use of Table 1. For the designs in the set i = 1 in Table 1, adding
level-balanced columns gives J1 = 7 parameter sets of which the one with the minimum
Q1(j) is (SS = 48, LB1 = 7, OF1(1) = 42, Q1(1) = 49). Since, q = 49 < 60, the design with
Q = q = 49, given below, is a proposed superior UE(s2)-optimal design with minimum Q.

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1

-1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

-1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1
1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1

-1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 1
-1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1
-1 -1 1 -1 1 1 1 1 1 1 -1 1 -1 -1 -1 1
-1 1 -1 1 1 1 -1 1 1 -1 1 -1 -1 -1 1 1
-1 1 1 1 -1 -1 1 1 1 -1 -1 -1 1 1 -1 1
1 -1 -1 1 -1 1 1 1 -1 1 1 -1 1 -1 -1 -1

(D) Construction for m = 4t + 1. For m = 4t + 1, to get a superior UE(s2)-optimal
design, two columns should be added to Xb so that the pairs (1, 1), (−1,−1), (1,−1) and
(−1, 1) appear in these columns as close to equal as possible; moreover, if n ≡ 2 (mod 4),
the two columns must be orthogonal. Our algorithm to construct a superior UE(s2)-optimal
design with m = 4t, having the minimum value of Q is an adaptation of the algorithm in
Construction (C) in this paper. We again start with Xb’s as in Construction (A) correspond-
ing to mb = 4t − 1. Then, the ith set of parameters corresponding to the base matrices is
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(SSb, LBb
i , OFb

i , Qb
i), i = 1, . . . , I with i = 1 corresponding to the set with the minimum

value of Q.

(i) Starting from i = 1, for the designs in the i-th class, we add all possible sets of
two level-balanced columns with 0 inner product. For each i, designs now have Ji

resultant sets of possible parameters (C(4t + 1, n), LBi = LBb
i + 2, OFi(j), Qi(j)),

where OFb
i ≤ OFi(j) ≤ OFb

i + 2m − 3, j = 1, . . . , Ji. Without loss of generality, let
Qi(1) ≤ Qi(2) ≤ · · · ≤ Qi(Ji). Define qi = min{Qi(1), qi−1} for i ≥ 2 and q1 = Qi(1).

(ii) If qi ≤ Qb
i+1, then a superior UE(s2)-optimal design with Q = qi is the proposed design.

Otherwise steps (i)-(ii) are sequentially repeated for i = 2, . . . , I. If we reach i = I,
then a superior UE(s2)-optimal design with Q = qI is the proposed design.

Example 4: For constructing a superior UE(s2)-optimal design with m = 17, n = 12 having
minimum Q, we can again make use of the sets listed in Table 1. Now, for the designs in
the set i = 1, adding two columns with required properties gives a large number of Ji.
However, the set with the minimum Q1(j) is (SS = 48, LB1 = 8, OF1(1) = 43, Q1(1) = 51).
Since, q = 51 < 60, the design with Q = q = 51, given below, is a proposed superior
UE(s2)-optimal design with minimum Q.

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 1 1 -1 1

-1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1 -1
1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1

-1 -1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 -1 1 -1
1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 1 1

-1 1 1 1 1 -1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1
1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 1 1 1 1 -1 -1 -1 -1 1 -1

-1 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 1 1
1 -1 1 1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1

3. Concluding Remarks

In this paper, we have provided algorithms for constructing superior UE(s2)-optimal
designs with minimum Q starting from the class of designs in Cheng et al. (2018). If it is
not feasible to identify the I sets of parameters for all non-isomorphic Hadamard matrices,
we propose to run the algorithms on only a selected set of the available Hadamard matrices;
however, then there is no guarantee that the designs proposed here would have the minimum
value of Q. As mentioned previously, superior UE(s2)-optimal designs also exist outside the
class of designs used here (Singh et al., 2020). A future direction is to identify the best de-
signs using better algorithms (or, analytically) to identify superior UE(s2)-optimal designs
with minimum Q among a broader class of all superior UE(s2)-optimal designs.
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