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Abstract
In this paper, we propose two tests for testing equality of hazard quantile functions of

two populations. The test statistics are based on estimators of the quantile density function.
Limiting distribution of both these test statistics has been derived. The power of the new
tests is computed through simulations for uncensored and censored observations. The new
tests are compared with two existing tests available in literature. Procedures have been
illustrated on real data.
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Reminiscences

Isha had known Prof. Aloke Dey for almost 36 years. She could walk into his office
anytime to discuss statistics, official and even personal problems. He was a good listener,
had a great sense of humor and was kind of a quick reference point on government rules and
regulations. Three of us have fond memories of our association with Prof. Aloke Dey - a
gentle person - went too soon.

1. Introduction

In survival analysis, the hazard rate is a basic reliability measure. It is studied as
failure rate in reliability, force of mortality in demography or actuarial science, intensity
function in stochastic processes and age specific failure rate in epidemiology. Sometimes,
interest may be in comparing the hazard rates of two populations. Chikkagoudar and Shuster
(1974) proposed the locally most powerful test for testing equality of hazard rates of two
populations. Kochar (1979) provided distribution free test based on U-statistics and Kochar
(1981) proposed a test based on linear function of order statistics for testing equality of
hazard rates. For the same problem, Cheng (1985) proposed a test based on ranks.

Quantile based approach is popular now a days. The reliability analysis based on quan-
tiles provides an alternate methodology for statistical analysis when cumulative distribution
function (cdf) or probability density function (pdf) is not available in a closed form. Exam-
ples of such distributions are Generalised Lambda distribution (GLD) (Karian and Dudewicz
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(2000)), Skew logistic distribution (Gilchrist (2000)) and Davies distribution (Hankin and
Lee (2006)). Maladan and Sankaran (2020) proposed a new family of distributions by using
transformation in context of quantiles.

Let X1, . . . , Xn and Y1, . . . , Yn be two independent random samples from two popu-
lations with distribution functions F (x) and G(x), survival functions F̄ (x) and Ḡ(x), pdfs

f(x) and g(x), hazard rate functions h1(x) = f(x)
F̄ (x)

and h2(x) = g(x)
Ḡ(x)

, respectively. The

quantile function for the first population is denoted by Q1(u) and defined as

Q1(u) = F−1(u) = inf{x : F (x) ≥ u}, 0 < u < 1. (1)

From (1), it is seen that
F (Q1(u)) = u. (2)

Differentiating (2), we get the quantile density function for the first population as

q1(u) = d

du
Q1(u) = 1

f(Q1(u)) . (3)

Note that the quantile density function as defined in (3) is not a density function in
the usual sense but is reciprocal of density function at corresponding quantile function. Nair
and Sankaran (2009a) presented various reliability measures viz, hazard rate, mean residual
life function, variance residual life function and percentile residual life function in terms of
quantiles. The hazard quantile function for the first population is given by

H1(u) = h1(Q1(u)) = f(Q1(u))
F̄ (Q1(u))

= ((1− u)q1(u))−1. (4)

Hazard quantile function is the hazard function at the corresponding quantile function.
The quantile function, quantile density function and hazard quantile function for second
population are denoted by Q2(u), q2(u) and H2(u), respectively.

Many ageing concepts viz increasing failure rate, increasing failure rate average, new
better than used and new better than used in expectation have been defined in terms of
quantiles by Kumar and Nair (2011). Nair and Sankaran (2009b) studied estimation of the
hazard quantile function based on right censored data. Peng and Fine (2007) provided tests
for equality of cause specific hazard rates for competing risk data based on quantiles. Fan
et al. (2020) proposed smooth kernel type estimator of quantile function for right-censored
competing risks data.

We wish to test the null hypothesis of equality of hazard rate functions of two inde-
pendent populations, that is

H0 : h1(x) = h2(x) for all x
against the alternative
HA : h1(x) ≤ h2(x) for all x (5)
with strict inequality in (5) with a positive probability.
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Kochar (1979) showed that for increasing failure rate distributions, location-scale or-
dering of distribution functions leads to ordering of their corresponding hazard rates.

Above testing problem can be equivalently written in terms of hazard quantile functions
as follows

H0 : H1(u) = H2(u) for all 0 < u < 1
against the alternative
HA : H1(u) ≤ H2(u) for all 0 < u < 1 (6)
with strict inequality in (6) with a positive probability.

From (4), it is noted that for all 0 < u < 1

H1(u) = H2(u) iff q1(u) = q2(u),
H1(u) ≤ H2(u) iff q1(u) ≥ q2(u). (7)

Hence, from (6) and (7), it is clear that testing for equality of hazard rates is equivalent
to testing for equality of quantile density functions. Hence, we will propose tests for testing

H0 : q1(u) = q2(u) for all 0 < u < 1
against the alternative
HA : q1(u) ≥ q2(u) for all 0 < u < 1 (8)
with strict inequality in (8) with a positive probability.

In Section 2, we discuss few preliminaries that are needed to define and study the
properties of test statistics. Two examples are given where distribution functions can not
be expressed in closed forms but quantile functions have nice forms. We also discuss the
estimator of quantile density function proposed by Soni et al. (2012). In Section 3, two test
statistics - a supremum type and an integral type have been proposed for testing the equality
of hazard quantile functions against the alternative that they are ordered. The statistics are
based on estimators of quantile density functions due to Soni et al. (2012). Asymptotic
distribution of two test statistics is discussed. The tests can be used when observations are
uncensored or censored. Simulations are carried out in Section 4 for comparing power of the
proposed tests with those suggested by Kochar (1979) and Cheng (1985). In Section 5, a
real data set is considered to illustrate the utility of the tests proposed by us. The proofs of
the Theorems and three Tables showing power comparisons are given in the Appendix.

2. Preliminaries

Two examples for which distribution function can not be written in a closed form but
quantile function has a closed form, are discussed in Section 2.1. Estimator of quantile den-
sity function proposed by Soni et al. (2012) is discussed in Section 2.2.
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2.1. Examples

(i) Davies Distribution (Davies(C, λ1, λ2)) with C > 0, λ1 > 0, λ2 > 0 was given by
Hankin and Lee (2006). The quantile function, the quantile density function and the
hazard quantile function for 0 < u < 1 are

QD(u,C, λ1, λ2) = Cuλ1

(1− u)λ2
, (9)

qD(u,C, λ1, λ2) = Cuλ1−1(λ1(1− u) + λ2u)
(1− u)λ2+1 , (10)

HD(u,C, λ1, λ2) = (1− u)λ2

Cuλ1−1(λ1(1− u) + λ2u) . (11)

(ii) The Generalized Lambda Distribution (GLD(λ1, λ2, λ3, λ4)) was introduced by
Ramberg and Schmeiser (1974) and further discussed by Karian and Dudewicz (2000).
The quantile function, the quantile density function and the hazard quantile function
for 0 < u < 1 are given below:

QGL(u, λ1, λ2, λ3, λ4) = λ1 + (uλ3 − (1− u)λ4)
λ2

, (12)

qGL(u, λ1, λ2, λ3, λ4) = λ3u
λ3−1 + λ4(1− u)λ4−1

λ2
, (13)

HGL(u, λ1, λ2, λ3, λ4) =
(

(1− u)(λ3u
λ3−1 + λ4(1− u)λ4−1)

λ2

)−1
. (14)

The parameters λ1, λ2, λ3, and λ4 can assume real values, but some restrictions on
these parameters have been imposed for defining a valid distribution. The possible
eight regions of parameter values for which GLD is a valid distribution have been listed
in Karian and Dudewicz (2000). Table 1 gives two sets of choices of parameters λ2, λ3
and λ4 of GLD with λ1 taking any real value. These choices ensure that observations
always have support on the positive real line.

Table 1: Considered regions and corresponding supports of GLD

Regions Supports

1. λ2 > 0, λ3 > 1, λ4 > 0
(
λ1 −

1
λ2
, λ1 + 1

λ2

)
2. λ2 < 0, λ3 > 1, λ4 < −1

(
λ1 − 1

λ2
,∞
)
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Here λ1 controls the left tail, λ2 controls the right tail and C is the scale parameter.

These distributions will be used for simulation studies in Section 4.

2.2. Quantile density estimator

Estimators of the quantile density function were proposed by Parzen (1979), Csörgo
(1981), Falk (1986), Jones (1992), Cheng and Parzen (1997) and Soni et al. (2012). The
wavelet based estimator of quantile density function was proposed by Chesneau et al. (2016).
This estimator behaved well in tails.

The estimator of q1(u) given by Soni et al. (2012), based on random sampleX1, X2, . . . , Xn

from F (x) is

q̂1(u) = 1
h(n)

� 1

0

K( t−u
h(n))

fn(Q̂1(t))
dt (15)

where fn(x) is a kernel density estimator of f(x) with h(n) as bandwidth.

Q̂1(u) = inf{x : Fn(x) ≥ u}, 0 < u < 1 is the empirical estimator of the quantile
function Q(u) based on empirical distribution function Fn(x). The kernel K(.) is a density
function satisfying regularity conditions (Prakasa Rao (1983))

Estimator proposed by Soni et al. (2012) performs better than those given by Jones
(1992) in terms of mean square error. Soni et al. (2012) proved the following results for
fixed u, where 0 < u < 1:

(R1) q̂1(u) is a consistent estimator of q1(u),

(R2) as n→∞,
√
nh(n)(q̂1(u)− q1(u))

σ1n(u) is asymptotically normal with mean zero and vari-
ance 1, where

σ2
1n(u) = E(

� 1
0 dK

∗
n(u, t)Fn(Q̂1(t)))2 with K∗n(u, t) = K( t−u

h(n))q1(t).

Let q̂2(u) denote the corresponding estimator of q2(u) based on a random sample
Y1, Y2, . . . , Yn from G(x).

3. Test Statistics and Asymptotic Distribution

We propose two test statistics for testing H0 against HA. Let q̂1(u) and q̂2(u) be con-
sistent estimators of q1(u) and q2(u) as discussed in Section 2.2. The difference q̂1(u)− q̂2(u)
is an empirical measure of departure from the null hypothesis. This difference is expected
to be zero under the null hypothesis and non-negative under the alternative hypothesis.

First proposed test statistic T1 is Kolmogorov-Smirnov type distance between q̂1(u)
and q̂2(u) and is given as

T1 = sup
0<u<1

(q̂1(u)− q̂2(u)). (16)
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Second proposed test statistic T2 is Cramer-von Mises type difference, as given below

T2 =
� 1

0
(q̂1(u)− q̂2(u))d

(
Q̂1(u) + Q̂2(u)

2

)
. (17)

Test based on T1, T2 will reject H0 in favour of HA for large values of normalised ver-
sions of the statistics T1 and T2, respectively.

Next we consider a lemma needed to derive the asymptotic distributions of T1 and T2
under the null hypothesis.

D and D[0, 1] are equipped with the uniform norm ||.|| and the product norm respec-
tively. In the following lemma, weak convergence of the process Sn(u) is established on D,
where

Sn(u) = {
√
nh(n)(q̂1(u)− q1(u)),

√
nh(n)(q̂2(u)− q2(u))}.

Lemma 1: Let B1(q1(u)) and B2(q1(u)) be Brownian bridge processes with zero means.
Then Sn(u) converges in D to a 2-dimensional Gaussian Process {B1(q1(u)), B2(q2(u))} as
n→∞.

Proof: See the Appendix.

The above lemma helps us in determining the asymptotic distribution of T1 as estab-
lished in Theorem 1 given below.

Theorem 1: Under H0, as n→∞,
√
nh(n)T1 converges in distribution to

sup
0<u<1

(B1(q1(u))−B2(q2(u))).

Proof: See the Appendix.

Remark 1: A slight modification can be made to the test statistic T1 as discussed below.

Suppose under H0, B1(q1(u)) − B2(q2(u)) = g(u), where g(u) is difference of two
Brownian process. Then variance of random variable g(u) is given by

V ar(g(u)) = V ar(B1(q1(u))) + V ar(B2(q2(u))) = σ2
g(u) · · · (say).

If {W (t) : t ≥ 0} is a standard Brownian motion (Wiener process), then

g(u)→ W (σ2
g(u)).

Under H0, this gives for 0 < u < 1 and n→∞,
√
nh(n)(q̂1(u)− q̂2(u))→ W (σ2

g(u))
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⇒
√
nh(n)(q̂1(u)− q̂2(u))

σg(T ) → W (
σ2
g(u)
σ2
g(T ))

where σ2
g(T ) = max

t
[σ2
g(t)] for T ∈ (0, 1). Note that σ2

g(u)
σ2
g(T ) ∈ (0, 1).

Let σ̂g(T ) be a consistent estimator of σg(T ) and define

T ∗1n =
√
nh(n)(sup0<u<1(q̂1(u)− q̂2(u)))

σ̂g(T ) =
√
nh(n)T1

σ̂g(T ) . (18)

Theorem 2: Under H0 ,

lim
n→∞

P [T ∗1n > b] = P [ sup
0<u<1

W (u) > b] = 2(1− Φ(b)) (19)

where Φ(b) is the cdf of Standard Normal distribution at b.

Proof: The proof follows from Section 7.4 of Durrett (2019).

In the next theorem, we find the null asymptotic distribution of

T ∗2n =
√
nh(n)

� 1

0
(q̂1(u)− q̂2(u))d(Q̂1(u) + Q̂2(u)

2 ) =
√
nh(n)T2. (20)

Theorem 3: Under H0, T ∗2n converges in distribution to a normal random variable with
mean zero and variance σ2 as n→∞ where

σ2 = V ar(
�

(B1(q1(u))−B2(q2(u)))d[Q1(u) +Q2(u)
2 ]).

Proof: The proof follows using Hadamard differentiability and functional delta method
(Ref. van der Vaart and Wellner (1996); Theorem 3.9.4). For details, see the Appendix.

In the sequel, T ∗1n will be referred to as the supremum statistic and T ∗2n as the integral
statistic.

4. Simulations

A simulation study has been carried out to verify the asymptotic distribution of test
statistics under H0 and to compute size and power of the standardized versions of statistics
T ∗1n and T ∗2n. The data are generated from GLD, Davies and exponential distributions with
sample size n = 25, 50, 100. For censored data, censoring distribution is chosen so as to
ensure 20% censoring. The chosen bandwidths are 0.15, 0.19, 0.25 (Soni et al. (2012)) for
GLD and exponential distributions and 0.85 for Davies distribution. Variances of T ∗1n and
T ∗2n, are estimated by taking 5000 bootstrap samples from the underlying distribution and
then T ∗1n and T ∗2n are calculated for each sample. The kernels used for estimation of quantile
density functions are
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(i) Triangular: K(u) = (1− |u|)I(|u| ≤ 1) and

(ii) Epanechnikov: K(u) = .75(1−u2)I(|u| ≤ 1) (the optimal kernel (Prakasa Rao (1983))).

4.1. Asymptotic distribution

Simulations are used to verify asymptotic distribution of the proposed statistics under
H0. Test Statistics have been calculated by considering GLD(1,1,2,1) distribution. Both
graphical and testing procedures have been employed to test the normality. Figures 1 and 2
show Q-Q plots of standardized versions of T ∗1n and T ∗2n for n = 25 and these plots indicate
normality of the statistics.
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Figure 1: Q-Q plot of Integral statistic for n = 25, h(n) = 0.15, 0.19, 0.25
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Figure 2: Q-Q plot of Supremum statistic for n = 25, h(n) = 0.15, 0.19, 0.25

Kolmogorov-Smirnov goodness of fit statistic is used to test the hypothesis that the
simulated distributions of two test statistics are asymptotically normal. Table 2 shows p -
values of Kolmogorov-Smirnov test statistic for n = 25 and bandwidth h(n) = 0.15, 0.19, 0.25.

Table 2: p - values of Kolmogorov-Smirnov Test

h(n) Int Statistic Sup Statistic
0.15 0.257 0.559
0.19 0.612 0.978
0.25 0.934 0.257

Hence from Q-Q plots (Figures 1 and 2) and Kolmogorov-Smirnov goodness of fit
test, we conclude that standardized versions of both T ∗1n and T ∗2n follow Standard Normal
distribution for n ≥ 25. In the following subsection, we compute size and power of supremum
and integral statistics when observations are uncensored and censored.
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4.2. Calculation of estimates of size and power of tests

Power of the tests based on supremum and integral statistics and those given by Kochar
(1979) and Cheng (1985) have been computed for GLD distribution with parameters in the
regions listed in Table 1.

Table 3 depicts size of all tests for a sample of size 25, for uncensored data. For
calculating size of the tests, considered distribution is GLD (1,1,2,1).

Table 3: Size of all tests

h(n)
n Statistics 0.15 0.19 0.25
25 Sup 0.030 0.050 0.049

Int 0.048 0.050 0.051
Kochar 0.044 0.044 0.044
Cheng 0.050 0.050 0.050

For the calculation of power of the tests, we first consider Davies distribution with
quantile, quantile density and hazard quantile function as mentioned in (9), (10), and (11)
respectively. The selection of parameters, which will lead to the ordering of hazard quantile
functions is explained below through Figure 3(a)-3(c).

Figure 3 (a) shows the hazard quantile functions for Davies (10,1,1), Davies (10,2,1),
Davies (10,3,1), Davies (10,4,1) and Davies (10,5,1), that is, λ1 is changing. Figure 3(b)
plots the hazard quantile functions for Davies (10,1,1), Davies (10,1,2), Davies (10,1,3),
Davies (10,1,4) and Davies (10,1,5), that is, λ2 varies. Figure 3(c) displays the hazard
quantile functions for Davies (10,1,1), Davies (12,1,1), Davies (14,1,1), Davies (16,1,1) and
Davies(18,1,1), that is, scale parameter C is varied.
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Figure 3: Hazard quantile functions for Davies distribution

Figures 3(a)-3(c) lead to the conclusions that

(i) for C ≤ C∗, that is, when scale parameters are ordered,
HD(u,C∗, λ1, λ2) ≤ HD(u,C, λ1, λ2);
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(ii) if λ1 ≤ λ∗1, that is, shape parameters are ordered, then
HD(u,C, λ1, λ2) ≤ HD(u,C, λ∗1, λ2);

(iii) when λ2 ≤ λ∗2,
HD(u,C, λ1, λ

∗
2) ≤ HD(u,C, λ1, λ2).

Tables 4 and 5 give the power of four statistics for comparing the hazard quantile
functions of two Davies distributions for h(n) = 0.85. In these tables, shape parameter λ2
of Davies distribution is varied and in Table 5, departure in shape parameter λ2 is reduced.
In body of Tables 4 and 5, the first (second) value corresponds to power when Triangular
(Epanechnikov) kernel is used for the estimation of quantile density function.

Table 4: Power comparison - Davies(10,1,1) vs Davies(10,1,2)(Uncensored case)
n

h(n) Statistics 25 50 100
.85 Sup 0.186(0.260) 0.476(0.594) 0.886(0.902)

Int 0.676(0.636) 0.838(0.848) 0.980(0.978)
Kochar 0.508 0.786 0.972
Cheng 0.566 0.754 0.938

Table 5: Power comparison - Davies(10,1,1) vs Davies(10,1,1.5)(Uncensored case)
n

h(n) Statistics 25 50 100
.85 Sup 0.154(0.157) 0.212(0.238) 0.574(0.596)

Int 0.286(0.490) 0.466(0.492) 0.646(0.696)
Kochar 0.276 0.354 0.672
Cheng 0.364 0.422 0.634

The next distribution of interest is GLD, with quantile, quantile density and hazard
quantile function as mentioned in (12), (13), and (14) respectively. Selection of parameters
of GLD, required for ordering of hazard quantile functions is explained through Figures 4(a)
and 4(b). Figure 4(a) plots the hazard quantile functions of GLD (1,1,2,1), GLD (1,2,2,1),
GLD (1,3,2,1), GLD (1,4,2,1) and GLD (1,5,2,1) and Figure 4(b) displays the hazard quantile
functions of GLD (1,-1,2,-2), GLD (1,-2,2,-2), GLD (1,-3,2,-2), GLD (1,-4,2,-2) and GLD (1,-
5,2,-2). Note that in both the figures, only scale parameter has been changed and all other
parameters are same.
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Figure 4: Hazard quantile functions for GLD in regions 1 and 2

For 0 < u < 1, Figures 4(a) and 4(b) depict the following:

(i) In Region 1, for λ2 ≤ λ∗2, it is observed that

HGL(u, λ1, λ2, λ3, λ4) ≤ HGL(u, λ1, λ
∗
2, λ3, λ4);

(ii) In Region 2, for λ2 ≤ λ∗2, it is seen that

HGL(u, λ1, λ
∗
2, λ3, λ4) ≤ HGL(u, λ1, λ2, λ3, λ4).

Tables 6 and 7 (given in Appendix A.2) give the power for GLD in the Region 1
(Table 1) for Triangular and Epanechnikov kernels in censored as well uncensored case.

We consider GLD(1,1,2,1), GLD(1,2,2,1) in Table 6 and GLD(1,1,2,1), GLD(1,1.2,2,1)
in Table 7 wherein departure in scale parameter λ2 is reduced. The censoring variables have
been generated from uniform distribution such that percentage of censoring in both cases is
20 and values in bold font are for censored case.

Table 8 (Appendix A.2) gives the power of our proposed test statistics for testing the
equality of hazard quantile functions of EXP(1) and EXP(2) in censored as well as uncen-
sored case. The censoring variables are distributed as EXP(.25) and EXP(0.5) respectively
which ensure 20 percentage of censoring. In Tables 6-8, values in parentheses correspond to
Epanechnikov kernel.

On the basis of values in Tables 3-5 and 6-8 (given in Appendix A.2), it can be concluded
that

(i) for all test statistics and n ≥ 25, size of tests ≤ 0.05 (level of significance);

(ii) power is not affected by choice of kernel considered;

(iii) power increases with an increase in sample size in uncensored as well as censored cases;

(iv) when observations are from GLD, both the proposed test statistics give higher power
than Cheng’s and Kochar’s test statistics;
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(v) when the parameters of GLD are in Region 1 (Table 1), integral statistic has more power
than supremum statistic in uncensored case. Integral statistic is able to discriminate
small departure in scale parameter λ2;

(vi) when observations are from GLD, integral statistic is performing better than the supre-
mum statistic in censored case;

(vii) when observations follow Davies distribution, the integral statistic has more power
than all other test statistics;

(viii) when observations follow exponential distribution, supremum statistic performs better
than integral statistic in censored case;

(ix) Cheng’s and Kochar’s statistics have more power than newly proposed test statistics
when the underlying distribution is exponential.

5. Real Data

Data set of 101 patients with advanced acute myelogenous leukemia reported to Inter-
national Bone Marrow Transplant Registry is considered (Source: Klein and Moeschberger
(1997)). Fifty one of these patients had received an autologous bone marrow transplant in
which high doses of chemotherapy and their own bone marrow were reinfused to replace their
destroyed immune system. Fifty patients had an allogoneic bone marrow transplant where
marrow from an HLA (Histocompatibility Leukocyte Antigen) matched sibling was used to
replenish their immune systems. An important issue in bone marrow transplantation is the
comparison of hazard quantile functions for these two methods. We compare hazard quan-
tile functions of two techniques through their quantile density functions. Since test statistics
proposed by us are for equal sample sizes, we randomly remove one observation from first
sample.

Plots of quantile density functions are given in Figure 5. Solid line indicates estimate
of quantile density function for auto transplant data and dotted one shows an estimate
of quantile density function for allo transplant data. This figure shows that two quantile
density functions are ordered. For supremum and integral statistics, p-values are 0.01 and
0.03 respectively. This leads to rejection of null hypothesis at 5 percent level of significance.
Hence, it can be concluded that auto transplant technique is more effective than allogenic
transplant technique.
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Figure 5: Graph of quantile density functions of autologous(auto) transplant and
allogenic(allo) transplant

6. Conclusion

In this paper, we propose two tests based on consistent estimators of quantile density
functions for testing equality of two hazard functions or equivalently, the hazard quantile
functions, against the alternative that they are ordered. The tests have limiting normal
distributions. Numerical studies show that all the tests attain their size. The supremum
and the integral tests have better power than the tests proposed by Kochar and Cheng for
some alternatives. However, it should be noted that tests by Kochar, Cheng and others can
not be used when the observations are censored. But both the tests proposed in this paper
can be used for censored data as well. Our tests perform well for families of distributions
when closed form of distribution function is not available but explicit form of the quantile
function is known.
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Appendix

A.1: Proofs

Proof:[Lemma 1] For arbitrary real numbers λ1 and λ2, we consider
Tn(u) =

√
nh(n)(λ1(q̂1(u)− q1(u)) + λ2(q̂2(u)− q2(u))).

On using central limit theorem, Tn(u) converges in distribution to N(0, σ2
n(u)) as n→

∞ where σ2
n(u) = λ2

1σ
2
1n(u) + λ2

2σ
2
2n(u).

Using Cramer Wold device, as n→∞, we get

Sn(u) = {
√
nh(n)(q̂1(u)− q1(u), q̂2(u)− q2(u))} → Gaussian process N(0,Σn) where

Σn =
[
σ2

1n(u) 0
0 σ2

2n(u)

]
.

For a finite set of numbers u1, ..., un and arbitrary λ1i, λ2i,
∑n
i=1(λ1iq̂1(ui) + λ2iq̂2(ui))

is sum of independent random variables. Using central limit theorem for the univariate
independent random variables and Cramer Wold device, we conclude that the finite
dimensional distribution of process {Sn(u)} converges weakly to that of a 2-dimensional
Gaussian process.

It is well known that the sequences
√
nh(n)(q̂1(u)− q1(u)) and

√
nh(n)(q̂2(u)− q2(u))

converge weakly in (D[0, 1], .) to B(q1(u)) and B(q2(u)) respectively, where B(q1(u)) and
B(q2(u)) are Brownian Bridge processes with zero means. Thus, two sequences√
nh(n)(q̂1(u)−q1(u)) and

√
nh(n)(q̂2(u)−q2(u)) are asymptotically tight which implies that

the process {Sn(u)} is also asymptotically tight using (Lemma 1.4.3 and Theorem 1.5.4, van
der Vaart and Wellner (1996)).

Distribution of Sn(u) is established using Theorem 1.5.4 of van der Vaart and Wellner
(1996). Hence, we conclude that the finite dimensional distribution of the process {Sn(u)}
converges weakly to that of a 2-dimensional Gaussian process {B1(q1(u)), B2(q2(u))}.

Proof: [Theorem 1] From Lemma 1, we have

√
nh(n){(q̂1(u)− q1(u)), (q̂2(u)− q2(u))} L−→ {B1(q1(u)), B2(q2(u))}

where Bi are Brownian bridge processes with zero means. Using continuous mapping
theorem,

sup
0<u<1

√
nh(n)(q̂1(u)− q̂2(u)) converges to sup

0<u<1
(B1(q1(u))−B2(q2(u))) as n→∞.

Proof: [Theorem 3] The proof follows using Hadamard differentiability and functional
delta method (Theorem 3.9.4, Van der Vaart and Wellner (1996)). Let BV1[0, 1] denote the
set of cadlag functions of total variation bounded by M (finite). The map

φ(A,B) =
� 1

0 AdB from D[0, 1]× BV1[0, 1] to the real line is Hadamard differentiable
(using Lemma 3.9.17 of van der Vaart and Wellner (1996)). The Hadamard derivative of
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φ(A,B) is

φ(A,B)(α, β) =
� 1

0
Adβ +

� 1

0
αdB (21)

where
�
Adβ is defined via integration by parts if β is not of bounded variation.

Let A = q1(u)− q2(u) , B = Q1(u)+Q2(u)
2 , α = B1(q1(u))−B2(q2(u)) and

β = B3(Q1(u)+Q2(u)
2 ) where B3 is a Brownian bridge process with mean zero.

Using Lemma 1 and delta method, we get for large n and under H0

√
nh(n)T2 → φ

(q1(u)−q2(u), Q̂1(u)+Q̂2(u)
2 )

(B1(q1(u))−B2(q2(u)), B3(Q1(u) +Q2(u)
2 )) (22)

=
�

(B1(q1(u))−B2(q2(u)))d
((Q1(u) +Q2(u)

2
)
,

since the first term in (22) is zero under H0 for large n.

Hence, the limiting random variable is normally distributed with mean zero and
variance

σ2 = V ar(
�

(B1(q1(u))−B2(q2(u)))d((Q1(u) +Q2(u)
2 )). (23)

A.2: Tables
Table 6: Power comparison for GLD(1,1,2,1) vs GLD(1,2,2,1)

h(n)
n Statistics 0.15 0.19 0.25
25 Sup uncensored 0.390(0.636) 0.288(0.614) 0.310(0.824)

Sup censored 0.15(0.168) 0.18(0.153) 0.250(0.266)
Int uncensored 0.984(1.000) 0.966(1.000) 0.978(1.000)
Int censored 0.262(0.247) 0.347(0.365) 0.457(0.428)
Kochar 0.356 0.356 0.356
Cheng 0.146 0.146 0.146

50 Sup uncensored 0.422(0.806) 0.712(0.948) 0.836(0.948)
Sup censored 0.305(0.585) 0.389(0.444) 0.491(0.584)
Int uncensored 1.000(1.000) 1.000(1.000) 1.000(1.000)
Int censored 0.565(0.283) 0.767(0.793) 0.862(0.923)
Kochar 0.524 0.524 0.524
Cheng 0.146 0.146 0.146

100 Sup uncensored 1.000(1.000) 1.000(1.000) 1.000(1.000)
Sup censored 0.496(0.638) 0.773(0.82) 0.951(0.963)
Int uncensored 1.000(1.000) 1.000(1.000) 1.000(1.000)
Int censored 0.972(0.981) 0.992(0.987) 0.997(0.998)
Kochar 0.798 0.798 0.798
Cheng 0.160 0.160 0.160
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Table 7: Power comparison for GLD(1,1,2,1) vs GLD(1,1.2,2,1)

h(n)
n Statistics 0.15 0.19 0.25
25 Sup uncensored 0.086(0.102) 0.076 (0.080) 0.122 (0.084)

Sup censored 0.061(0.078) 0.095(0.100) 0.086(0.100)
Int uncensored 0.196(0.182) 0.260(0.214) 0.304(0.308)
Int censored 0.111(0.133) 0.127(0.194) 0.170(0.193)
Kochar 0.102 0.102 0.102
Cheng 0.109 0.109 0.109

50 Sup uncensored 0.086(0.104) 0.130(0.16) 0.182(0.142)
Sup censored 0.122(0.122) 0.142(0.165) 0.157(0.205)
Int uncensored 0.636(0.58) 0.688(0.588) 0.804(0.804)
Int censored 0.266(0.343) 0.361(0.401) 0.539(0.548)
Kochar 0.200 0.200 0.200
Cheng 0.110 0.110 0.110

100 Sup uncensored 0.146(0.118) 0.188(0.222 ) 0.322(0.358)
Sup censored 0.232(0.241) 0.283(0.316) 0.369(0.405)
Int uncensored 0.974(0.968) 0.982(0.986) 0.992(0.996)
Int censored 0.712(0.756) 0.805(0.819) 0.915(0.941)
Kochar 0.301 0.301 0.301
Cheng 0.119 0.119 0.119

Table 8: Power comparison for EXP(1) vs EXP(2)

h(n)
n Statistics 0.15 0.19 0.25
25 Sup uncensored 0.270(0.310) 0.400(0.230) 0.350(0.290)

Sup censored 0.126(0.106) 0.106(0.170) 0.186(0.242)
Int uncensored 0.570(0.510) 0.620(0.600) 0.600(0.650)
Int censored 0.086(0.118) 0.122(0.198) 0.108(0.144)
Kochar 0.694 0.694 0.694
Cheng 0.740 0.740 0.740

50 Sup uncensored 0.540(0.360) 0.590(0.360) 0.550(0.570)
Sup censored 0.240(0.244) 0.238(0.192) 0.386(0.356)
Int uncensored 0.700(0.690) 0.700(0.730) 0.780(0.810)
Int censored 0.216(0.154) 0.246(0.240) 0.254 (0.222)
Kochar 0.926 0.926 0.926
Cheng 0.939 0.939 0.939

100 Sup uncensored 0.380(0.670) 0.490(0.320) 0.620(0.710)
Sup censored 0.370(0.250) 0.476(0.366) 0.538(0.386)
Int uncensored 0.810(0.780) 0.900(0.830) 0.830(0.910)
Int censored 0.304(0.296) 0.172(0.240) 0.284(0.338)
Kochar 0.998 0.998 0.998
Cheng 0.999 0.999 0.999


