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Abstract

Fractional factorial designs are widely used in industry and agriculture. Foldover fractional
factorial designs can de-alias effects of interest so that the effects can be estimated without ambi-
guities. We consider optimal foldover designs using general minimum lower-order confounding
criterion. A catalogue of 16- and 32-run optimal foldover designs is constructed and tabulated
for practical use. A comparison is made between the general minimum lower-order confounding
optimal foldover designs and other optimal foldover designs obtained using minimum aberration
and clear effect criteria.
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1. Introduction

Fractional factorial designs have been widely used in industry and agriculture. One problem
an experimenter is likely to face by employing a fractional factorial design is that some effects may
be aliased with others. This creates ambiguities about the analysis and estimation of the factors.
Hence, sometimes there is the need for additional runs to clarify these ambiguities. Foldover is a
follow-up method that is often used to solve the problem.

Foldover designs have been in the literature for many years. Some textbook, such as, Box
et al. (2005) and Wu and Hamada (2009) studied foldover techniques. Montgomery and Runger
(1996) considered the foldover plans that reverse the signs of one or two factors. They pointed
out that for a resolution IV initial design, when changing the signs of a factor of interest, the
combined foldover design can de-alias all the two-factor interactions that contain the factor; Li
and Lin (2003) searched optimal foldover plans using minimum aberration optimality criterion
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and provided catalogues of optimal foldover designs. However, Wang et al. (2010) pointed out
that some optimal foldover designs in Li and Lin (2003) may not be optimal under the clear effect
optimality criterion. Uniformity criteria were also used to construct optimal foldover designs.
Ou et al. (2011) provided some lower bounds of centered L2-discrepancy, the symmetric L2-
discrepancy and the wrap-around L2-discrepancy on combined foldover designs that can be used
to evaluate the optimal foldover plans for two-level fractional factorial designs. The lower bounds
were further improved by Ou et al. (2017). Qin et al. (2013) extended the results in Ou et al.
(2011) to a set of asymmetric fractional factorials and obtained a new lower bound of centred
L2-discrepancy of combined designs, which can be used as a benchmark for searching optimal
foldover plans. Recently, Li and Lin (2016) proposed to further improve foldover designs by
allowing column permutations. Yang and Li (2019) investigated under what circumstances can a
foldover design be improved by doing column permutations and provided some theoretical results.
For more work related to optimal foldover designs, see Li and Mee (2002), Li and Jacroux (2007),
and Ai et al. (2010).

Optimal designs have been studied extensively in the literature recently. The most popular
optimality criterion for fractional factorial designs is minimum aberration (MA). However, Min-
imum aberration criterion is used to choose designs in cases where there is very small or lack of
knowledge about the likely important effects. Recently, Zhang et al. (2008) proposed the general
minimum lower-order confounding (GMC) criterion to select optimal designs. This criterion re-
veals the basic information of all effects aliased with other effects at varying severity degrees in a
design. In particular, when an experimenter has a prior knowledge about which factors are more
important, the GMC optimal designs are better than other optimal designs. It has been proved
that the GMC criterion chooses optimal designs in a more elaborate and explicit manner than the
existing ones, such as minimum aberration, clear effects, and maximum capacity criteria. A lot
of research has been done for constructing general minimum lower-order confounding designs.
In particular, Zhang and Cheng (2010), Cheng and Zhang (2010), and Li et al. (2011) provided
construction theory for two-level unblocked GMC designs, and Zhang and Mukerjee (2009) and
Zhao et al. (2013) constructed two-level blocked GMC designs.

Some optimality criteria, such as minimum aberration and clear effects criteria, have been
used to finding optimal foldover designs. Most of the optimal foldover designs in the literature
are obtained from the minimum aberration designs tabulated in Chen et al. (1993). Zhang et al.
(2008) obtained a catalogue of optimal GMC designs which are more useful comparing to MA de-
signs when experimenters have prior knowledge about the important factors. The objective of this
research is to find the optimal foldover plans using the general minimum lower-order confounding
criterion from the GMC designs tabulated in Zhang et al. (2008). We then compare our results to
the optimal foldover designs under the minimum aberration and clear effects criteria.

In section 2, we introduce aliased effect number pattern and general minimum lower-order
confounding criterion. Minimum aberration and clear effects criteria will also be introduced. Some
relationships between these criteria are mentioned as well as their limitations and drawbacks. The
relationships of aliased effect number patterns between initial designs and combined foldover de-
signs are presented in section 3. In section 4, we present optimal foldover designs obtained using
general minimum lower-order confounding criterion, minimum aberration, and clear effects crite-
ria. The comparison between those optimal foldover designs are made.
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2. GMC Criterion, Foldover Designs and Other Optimality Criteria

Let n be the number of factors of a design and p be the number of generators. For a given
2n−p design, we can find how ith-order effects and jth-order effects of the design are aliased with
each other. When ith-order effects is aliased with k jth-order effects, we say that the degree of
ith-order effects being aliased with jth-order effects is k. The number of ith-order effects that are
aliased with jth-order effects at degree k is denoted by #

i C
(k)
j , which tells us how severe ith-order

effects are aliased with jth-order effects. At the same time, it also tells how many ith-order effects
are aliased with jth-order effects. It reveals the general aliasing that exists among effects. All the
#
i C

(k)
j ’s in a design forms a set

{#i C
(k)
j , i = 0, 1, 2, ..., n, j = 0, 1, 2, ...n, k = 0, 1, 2, ...,

(
n

j

)
}.

The smaller the degree at which an ith-order effect is aliased with other effects, the less
difficult it becomes in estimating the effect. Moreover, since the total number of i-th order effects
of a design is

(
n
i

)
, the smaller the #

i C
(0)
j , that is, the smaller the number of i-th order effects that are

not aliased j-th order effects, the more the severity of the confounding between ith-order effects
and jth-order effects. On the other way, when the value of #

i C
(0)
j is greater, the less severity of

ith-order effects are aliased with jth-order effects.

Since for different k, #i C
(k)
j s are not equally important. As the degree k increases, the severity

of aliasing increases. Thus Zhang et al. (2008) arranged #
i C

(k)
j s as

#
i Cj = (#i C

(0)
j , #

i C
(1)
j , ..., #

i C
(v)
j ), (1)

where v =
(
n
j

)
. Equation (1) gives the total number of ith-order effects aliased with jth-order

effects at various degrees starting from the least to the greatest in terms of severity.

Example 1. Consider the design with generators 4 = 12 and 5 = 13. The defining relation is
I=124=135=2345. Since all the main effects are aliased with two-factor interactions, #

1C
0
2=0. Note

that the number of main effects that are aliased with one and two two-factor interactions are 4 and
1, respectively, hence #

1C
1
2=4 and #

1C
2
2=1. Moreover, there are no main effects that are aliased with

three or more two-factor interactions, hence #
1C

k
2 =0 for k ≥ 3. Therefore #

1C2 = (0, 4, 1)

Similarly, there are four two-factor interactions that are not aliased with other two-factor
interactions, we get #

2C
0
2=4; there are six two-factor interactions that are aliased with only one two-

factor interactions, hence #
2C

1
2=6; there are no two-factor interactions that are aliased with other

two or more two-factor interactions, hence #
2C

k
2=0 for k ≥ 2. Therefore #

2C2 = (4, 6). One can
find other #

i Cjs similarly.

Zhang et al. (2008) defined the aliased effect number pattern (AENP) as
#C = (#1C1,

#
0C2,

#
1C2,

#
2C1,

#
2 C2,

#
0C3,

#
1C3,

#
2C3,

#
3C1,

#
3C2,

#
3C3,

#
0C4,

#
1C4, ...) (2)

The elements in #C are placed in using a rule: If max(i, j) < max(q, r), then #
i Cj is placed before

#
qCr; if max(i, j) = max(q, r) and i < q, then #

i Cj is placed before #
qCr; if max(i, j) = max(q, r),

i = q and j < r, then #
i Cj is placed before #

qCr.
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Suppose #C(d1) and #C(d2) are the aliased effect number patterns of two designs d1 and d2,
respectively, and #Cm is the mth component of #C. Let #Cm be the first component for which
#Cm(d1) and #Cm(d2) differ. If #Cm(d1) > #Cm(d2) we say that d1 has less general lower order
confounding relative to d2. A design is said to be a general minimum lower-order confounding
(GMLOC or GMC) design, if it has minimum general lower order confounding relative to other
designs.

A foldover design is obtained by reversing the signs of one or more factors of the initial
design. The combination of the initial design and the foldover design is called a combined foldover
design. The set of factors whose signs are revised in a foldover design is referred to as a foldover
plan. For each initial design, there are many foldover plans. Li and Lin (2003) showed that any
foldover plan is equivalent to a core foldover plan, which contains only generated factors. Thus,
we only need to consider core foldover plans when studying combined foldover designs.

Eexample 2. Consider the combined foldover designs obtained from the initial design discussed
in Example 1. The generated factors are 4 and 5. Thus, there are three core foldover plans 4,
5 and 45, where 45 indicates that the signs of both factors 4 and 5 are switched. The resulting
three combined foldover designs are denoted as d1, d2 and d3, respectively. The defining relations
of d1, d2 and d3 are I = 135, I = 124, and I = 2345, respectively. The AENPs of the three
combined foldover designs first differ at #

1C
1
2(d1) =

#
1C

1
2(d2) = 2 and #

1C
1
2(d3) = 5. Since #

1C
1
2(d3)

is larger than both #
1C

1
2(d1) and #

1C
1
2(d2), we obtain that 45 is the optimal foldover plan and the

corresponding combined foldover design is the optimal combined foldover design.

Zhang et al. (2008) discussed the relationships between the GMC criterion and other criteria,
such as minimum aberration and clear effects criteria. The minimum aberration criterion was
introduced by Fries and Hunter (1980) and it has remained one of the popular criteria in choosing
optimal designs when experimenters do not have information about the important effects. Define
the length of a word as the number of factors in the word. The minimum aberration criterion
depends on the word length pattern which is defined as (A1, A2, A3...), where Ai, i = 1, 2, ...,
represent the number of length-i words in the defining relation of the design. For instance, for the
design in Example 1, the word length pattern is (0, 0, 2, 1, 0...). The minimum aberration design
can be obtained by sequentially minimizing the component of the word length pattern. Zhang et al.
(2008) pointed out that the WLP is only related to #

i C
1
0 , i = 1, 2, ..., and AENP is a more refined

pattern than the WLP for judging designs.

Clear effects are effects that are not aliased with main effects and two-factor interactions.
One of the drawbacks of the minimum aberration criterion is that, sometimes it is unable to max-
imize the number of some clear lower-order effects especially two-factor interactions. One of the
criteria that takes care of this situation is the clear effects criterion. The optimal designs sequen-
tially maximizes the number of clear main effects and the number of clear two-factor interactions.
Zhang et al. (2008) pointed out that #

2C
0
2 is the number of clear main effects and #

2C
0
2 −

#
1 C

1
2 is the

number of clear two-factor interactions. For more details about the relationship between the GMC
criterion and MA and clear effects criteria, see Zhang et al. (2008).
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3. Relationships Between AENPs

It is well known that when the signs of all the factors of an initial design are reversed, all
the words containing odd number of factors disappear in the combined foldover design and all the
words that contain even number of factors in the initial design are still in the combined foldover
design. Let #

i C
(k)
j (d) and #

i C
(k)
j (c) denote the number of ith-order effects that is aliased with k

jth-order effects in the initial design d and the combind foldover design c, respectively. Note that
#
l C

(0)
0 =

(
n
l

)
− Al or #

l C
(1)
0 = Al by Theorem 2 in Zhang et al. (2008). From the well known

result, we obtain some relationships between the AENPs of initial designs and combined foldover
designs as shown in Result 1.

Result 1, Assume that a combined foldover design is obtained by reversing the signs of all the
factors in the initial design. Then,

(1) if l is odd, then #
l C

(0)
0 (c) =

(
n
l

)
or #

l C
(1)
0 (c) = 0.

(2) if i + j is odd, then #
i C

(0)
j (c) = r, where r is the number of i-th order effects of the design d

and #
i C

(k)
j (c) = 0 for k = 1, 2, ....

(3) if i+ j is even, then #
i C

(k)
j (d) =#

i C
(k)
j (c) for k = 0, 1, 2, ....

Since some effects are de-aliased after folding an initial design, the number of i-order effects
that are not aliased with any j-th order effects in a combined foldover design is always greater than
or equal to that of its corresponding initial design. Therefore, we have Result 2.

Result 2. #
i C

(0)
j (c) ≥#

i C
(0)
j (d) for any i, j = 1, 2, ....

The resolution of a design is defined as the length of the shortest word of the design. Note
that the results 1 and 2 are true for designs with any resolution.

4. Optimal Foldover Designs

Zhang et al. (2008) presented a catalogue of 16- and 32-run GMC designs. We search opti-
mal foldover designs from the designs in Zhang et al. (2008) using GMC criterion, and compare
them with the optimal foldover designs obtained using MA and clear effects criteria. For each ini-
tial design, we consider all core foldover plans and calculate the AENP for each combined foldover
design. Then the AENPs are compared and the optimal combined foldover designs are obtained.
Similarly, the optimal MA foldover designs and the optimal clear effects foldover designs are also
obtained. Tables 1 and 2 present the optimal foldover designs obtained from the 16- (6 ≤ n ≤ 12)
and 32-run (7 ≤ n ≤ 15) designs, respectively, in Zhang et al. (2008).

In Tables 1 and 2, the first column lists the initial designs in Zhang et al. (2008); the second
column lists additional columns, which represent the generators of each design, from the design
matrix (Table 1 in Chen et al. Chen et al. (1993)); the third column lists AENP of the initial
design. To save space, we list only (#1C2 ,

#
2C2). The fourth and fifth columns represent the optimal
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foldover plans based on GMC criterion and AENP of the corresponding optimal combined foldover
designs, respectively. The sixth column shows the word length pattern (A4, A5, A6) of the optimal
foldover designs chosen based on MA criterion. We do not show A3 since it is zero for any
optimal foldover designs in the table. To save space, the corresponding optimal foldover plans are
not listed. The last column presents the number of clear main effects c1 and the number of clear
two-factor interactions c2 of the optimal foldover designs based on clear effects criterion. Again,
to save space, the corresponding optimal foldover plans are not listed.

For example, for 16-run design 7.3.1, the AENP of the initial design is (#1C2;
#
2C2) =

(7; 0, 0, 21). To save space, we write it as (7; 02, 21). The optimal foldover plans based on GMC
criterion are 5, 6, 7, 56, 57, 67, 567 and the AENP of the corresponding optimal foldover designs
is (7; 6, 12, 3). The word length pattern of the optimal foldover designs based on MA criterion is
(A4, A5, A6) = (3, 0, 0). For the optimal foldover designs obtained using clear effects criterion,
the number clear main effects is c1 = 7 and the number of clear two-factor interactions is c2 = 6.

For the optimal GMC foldover designs, we find that most of the 16-run designs considered
have only one optimal foldover plan except for designs 6.2.1, 7.3.1 and 8.4.1; for 32-run designs,
most of them have more than one optimal foldover plans. One can see that #

i C
(0)
j of all the optimal

foldover designs are the same or larger than that of the corresponding initial designs.

Although the optimal foldover plans of MA foldover designs are not listed, MA and GMC
criteria choose the same foldover plans as optimal for all the designs considered except for the 16-
run design 8.4.1 and 32-run designs 9.4.3, 11.6.1, 12.7.1, 12.7.2, 13.8.1 and 15.10.1, for which, the
two criteria choose completely different optimal foldover plans. This shows that the GMC criterion
can choose completely different foldover plans as the optimal from MA criterion. For example,
for design 8.4.1, eight foldover plans 5, 6, 7, 8, 567, 568, 578, and 678 are chosen as optimal
according to GMC criterion while six foldover plans 56, 57, 58, 67, 68, and 78 are selected as
optimal according to MA criterion. The AENP ′s of the optimal foldover designs chosen by GMC
and MA criteria are (8; 7, 0, 21) and (8; 0, 24, 0, 4), respectively. Clearly, the foldover designs
chosen by GMC criterion has seven clear two-factor interactions and the optimal foldover designs
selected by MA criterion has no clear two-factor interactions. Therefore, GMC criterion chooses
better designs than MA criterion in terms of estimation of effects. For 32-run designs, we search
optimal designs for 13 designs. The two criteria choose complete different optimal foldover plans
for six designs 9.4.3, 11.6.1, 12.7.1, 12.7.2, 13.8.1 and 15.10.1. For each of the six designs, there
are more than one optimal MA foldover plans. We present only one for each design here, they
are 67, 6910, 6710 12, 6712, 6711 13, and 6711 14 15, respectively. The results show that when the
number of runs becomes larger, the two criteria tends to choose different optimal foldover plans.

For the optimal foldover designs chosen by the clear effects criterion, their optimal foldover
plans always include the ones chosen by the GMC criterion. In fact, the two criteria choose the
same optimal foldover plans for all the designs except for the 16-run design 9.5.1 and 32-run
designs 9.4.1, 11.6.2, 12.7.2, and 13.8.1. For instance, for design 9.5.1, the GMC criterion chooses
589 as the optimal foldover plan while the clear effect criterion chooses 5 and 589 as the optimal
foldover plans. The AENP ′s of the optimal foldover designs obtained by foldover plans 5 and
589 are (9; 8, 0, 0, 28) and (9; 8, 24, 0, 4), respectively. Even though both foldover designs have
the same number of clear main effects and two-factor interactions, the former have 24 two-factor
interactions aliased with only 1 two-factor interaction whiles the latter have 28 two-factor



2019] OPTIMAL FOLDOVER DESIGNS 61

interactions aliased with 3 two-factor interactions. The alias structure in latter is more severe
than in the former, thereby making it less preferable. In general, when the run size of a design is
large, the GMC criterion tends to choose less optimal foldover plans than the clear effects criterion.
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