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Abstract  
  

 The objective of this paper is to suggest bootstrap technique for randomized response 

surveys dealing with the complex survey data. We mainly discuss modifications on Rao and 

Wu’s (1988) rescaling bootstrap and Sitter’s (1992) mirror-match bootstrap concentrating on 

estimation for correlation coefficients between two sensitive quantitative characteristics. The 

randomized responses (RR) are available for the two sensitive characters. Estimators for 

mean square error and confidence interval of the proposed estimator are also developed. A 

simulation study has been carried out to demonstrate our proposed method. 

 
Keywords: Bootstrap, confidence interval, mean square error estimation, randomized response.  
___________________________________________________________________________ 
 

1. Introduction 
 

For questions related to abortion, illegitimate birth, AIDs, illegal betting, shoplifting, 

drug-taking, tax evasion, annual income and students’ cheating behavior etc.,some 

respondents may simply refuse to answer. Even worse, they may provide wrong answers to 

maintain privacy when these questions are being asked directly. Warner (1965) introduced 

the idea of Randomized Response (RR) technique for eliciting information on sensitive 

characters and later it has been studied by various authors. Horvitz et al. (1967) and 

Greenberg et al. (1969) proposed an unrelated question model introducing an character which 

is totally unrelated to the sensitive character. A rich growth of literature can be found in the 

monograph of Chaudhuri (2011). Fox and Tracy (1986),  Hedayat and Sinha (1991, Chap. 

11). Eichorn and Hayre (1983) suggested a multiplicative model to collect information on 

sensitive quantitative variables like income, tax evasion, amount of drug used etc. 

 

Several techniques have been introduced for both of qualitative and quantitative 

variables. In many cases it is important to study on correlation coefficient estimators of two 

variables where they are of sensitive nature at the same time. This really prompted us to 

extend the bootstrap technique for randomized response survey data.  

 

Rao and Wu (1988) proposed a “rescaling-bootstrap technique” to construct useful 

confidence intervals (CI) and mean square error estimation for non-linear functions of finite 

population totals of several variables like correlation coefficients, regression coefficients etc. 

without demanding normal distributions of relevant pivotals. In randomized response survey 

several extensions are needed to implement their techniques Sitter’s (1992) mirror-match 

technique is also useful to deal with the above problem where samples are drawn by unequal  
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probability sampling eg. by Rao-Hartley-Cochran’s (RHC, 1962)  scheme. Their method 

seems reasonable to design a resampling scheme that parallels the original sampling scheme 

as closely as possible. For randomized response survey an extension of Sitter’s (1992) mirror-

match technique also has been developed where original samples are drawn by RHC (1962) 

scheme. 

 

In Section 2 we deal with the estimation of non-linear statistics. Section 3 gives us the 

details of RR procedure. In Section 4.1, we extend our “rescaling-bootstrap technique” for 

RR survey data. Section 4.2 gives us the extension of Sitter’s (1992) mirror-match bootstrap. 

A simulation study has been carried out in our Section 5.  In Section 6, we conclude with a 

brief summary discussion. 

 

2. Estimation of Non-linear Statistics 
 

Given a finite population, namely U  of N  elements, let y denote a variable of interest 

with the population values iy  and x  denote another variable of interest with the population 

values Nixi ,....,2,1,  . The variables x  and y are related to the sensitive characteristics A  

and B respectively. A  and B  may be related to illegal drugs, induced abortion etc. The 

collection of data through personal interview survey on such sensitive issue is a serious 

matter in social sciences. In this paper we are interested in the estimation of the finite 

population correlation coefficient and the regression coefficient between the variables x  and 

y  for complex survey design dealing with sensitive issues. Various resampling procedures 

for variance estimation and confidence intervals for non-linear statistics (such as correlation 

coefficient, regression coefficient etc.) in sample survey data have been proposed in the 

literature. Rao and Wu (1988), describe an application of the bootstrap under the design-

based approach to sample survey inference. It is “Rescaling bootstrap” technique. Sitter 

(1992) has proposed his “mirror-match” method for complex survey design.  

    

 In this article we try to modify their approaches where x  and y  are related to the 

sensitive characters A  and B respectively. The parameter of interest is assumed to be a non-

linear function of several population totals. In this paper we are considering the regression 

coefficient and the correlation coefficient for our detailed estimation. The correlation 

coefficient between x  and y , say xyR  and the regression coefficient of y on x , say yxB may 

be written as 
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So both xyR  and yxB  are non-linear functions ( g and f ) of the totals namely  
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A sample s  is chosen according to a design P  with a selection probability ).(sP By 

PE and PV  we shall denote operators for expectation and variance with respect to the design 

P . An estimate of the parameters xyR  and yxB  are given by 

),,,,,ˆ(ˆ
22 xyxyxyxy eeeeeNgR   where  22 ,,,,,ˆ

xyxyxy eeeeeN are the unbiased estimates for the 
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 and ,,,, respectively. Similarly, 

),,,,ˆ(ˆ
2xxyxyyx eeeeNfB  .  In section 3 we shall describe the estimation of above totals in 

detail. 

 

Chaudhuri (2011) has given a general treatment of RR adopting general sampling 

schemes liberating it from the erstwhile compulsion of simple random sampling with 

replacement (SRSWR) alone. In this paper general schemes are adopted following 

Chaudhuri’s (2011) approach. 

 

We suppose that the values iy ’s and ix ’s, Ni ,....,2,1  are non-ascertainable for a 

person i in a sample.  In Section 3 we describe the Randomized Response (RR) device to 

estimate the values iy ’s and ix ’s respectively. 

 

3 Randomized Response Procedure and Overall Estimation of the Totals 

3.1. RR estimation for iy and ix  
 

The respondent labeled ),.....2,1( Nii   may be instructed to report only a “randomized 

response” (RR) following a specified device . The variable y is supposed to relate to a 

stigmatizing characteristic A. The characteristic A may be related to earning by gambling, 

bribery, number of days of drunken driving, amounts of tax evaded and the like.  

 

Eichhorn and Hayre(1983) have considered a scrambled response technique involving a 

quantitative response variable and proposed an RR technique for it. According to them, ith 

respondent in the sample is requested to report the scrambled response ii SyZ   where iy  is 

the real value of the sensitive character A  for ith person. and S  is the scrambling variable 

whose distribution is assumed to be known. Later, Pollock and Bek (1976), Singh, Joarder 

and King (1996), Padmawar and Vijayan (2000), Gupta et al (2002), Bar-Lev et al. (2004) , 

Pal (2008) and others dealt with certain aspects of  scrambled response technique.  

 

Taking a cue from Eichhorn and Hayre(1983)’s scrambled response technique, here the 

respondents are requested to report the value 
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Similarly, the variable x  is related to the characteristic B . Let  ube another random 

variable(scrambling variable) with a known non-zero mean  and a known positive standard 

deviation u  . 
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So adopting a suitable Randomized Response (RR) device, from an i  in a sample, an 

RR may be procured as ir  and 


ir ( for iy  and ix  respectively) such that  
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,)v(  where RE  and RV  denote operators for expectation and 

variance with respect to the RR devices. An interested reader may see Chaudhuri (2001) for 

the clarifications of (i) to (iii) and (i)' to (iii)'. 

 

3.2. RR estimation for ii yx ,
2

iy and 
2

ix  

Suppose the variable ),(loglog 2normalu   then with mean normalu   with mean  

2/2 e and variance 
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222  ee . 
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variance )1(
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3.3. Overall estimation for the totals 
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Denoting the design based expectation and variance as PE  and PV , the overall 

expectation and variance can be written as PRRP EEEEE    and  

PRPRRPRP EVVEEVVEV  . 
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The population size N has to be estimated to make sure of the fact 1ˆ0  xyR . 

 The terms 
^

ii yx , 
^

2

ix  and 
^

2

iy  are the estimated RR values for the variables 
2

 , iii xyx  

and 
2

iy . Here  

)()(   ,)(
^^

iiiiiRiiiiR yxVyxVyxyxE  ; 

 )() (    ,)(
2

^
22

^
2

iiiRiiR xVxVxxE  ; 

 )() (    ,)(
2

^
22

^
2

iiiRiiR yVyVyyE   

Proceeding as in (4), the unbiased estimators of  )(),(),( 22 xyxy eVeVeV  are 

 ,
)(v

)()(v i2

^^

2 






si i

ii

j

jj

i

ii

ij

ijii

xy

yxyxyx
e




 

,
)(v

)()(v
2

2

i2

^
2

^
2

2 2 






si i

i

j

j

i

i

ij

ijii

y

yyy
e




 

and 






si i

i

j

j

i

i

ij

ijii

x

xxx
e

2

2

i2

^
2

^
2

2

)(v
)()(v 2




 where )(v i ii yx , )(v

2

i iy  and 

)(v
2

i ix  are unbiased RR related variance estimators of )( iii yxV , )(
2

i iyV  and )(
2

i ixV  

respectively (see 5,6,7 etc.). Using the above results we shall go ahead to modify on Rao and 

Wu’s (1988) rescaling bootstrap procedure in the RR context. 

 

4. Proposed Bootstrap Procedures 

 

4.1  Modifications on Rescaling Bootstrap procedure for RR survey  
 

Here it is assumed that the non-linear statistics are non-linear functions of several linear 

HT estimators. For mean square error estimation and to construct the confidence interval of 

non-linear statistics, Rao and Wu (1988) proposed a rescaling bootstrap method which 

rescales the resampled values appropriately so that the resulting bootstrap variance of the 

linear bootstrap estimator is the same as the usual unbiased variance estimate in the linear 

case. Denoting the expectation and variance operators for the bootstrap sampling as 
*E and 

*V and the bootstrap estimate of the population total Y as 
*

ye  and following Rao and Wu 

(1988), we may write  

          yby eeeE )(
*

*  and )(v)( 2

*

* yy eeV  .  

    In finite population sampling the theory we can not verify that the bootstrap       

distribution needs to converge to the sampling distribution. One may see Rao and Wu (1988) 

and Sitter (1992). 

   

 The resulting bootstrap estimates for the correlation coefficient xyR and the regression 

coefficient yxB  are 
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(2) Let us now draw from s , a second bootstrap sample *
2

S , ‘independently’ of the 

selection of *
1

S  following the Poisson sampling scheme as described by Hájek (1958) 

with ik  as the probability of ‘success’ associated with i  in s  implementing a 

Bernoullian trial. 

Let 
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 The final bootstrap estimate for 


N

i
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1

is 
*

2

*

1

* eeey  . 
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 Next we calculate the final bootstrap estimates for correlation coefficient and the 

regression coefficients using (14) and (15). 

 

 Calling such a sample *s  as a bth bootstrap sample 
*

bs , one has now to replicate the 

same, a large number of times, say, B =10,000 and calculate 
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as the bootstrap estimate of the Mean Square Error (MSE) of the original estimator xyR̂ . 

Similarly, for the regression coefficient yxB , the bootstrap estimate and the bootstrap estimate 

of the Mean Square Error (MSE) of the original estimator yxB̂  are  
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 respectively.            (17) 

 

  A 95% confidence interval (CI) for xyR  is then calculated as  ))(  ),(( 5.975.2 RURL using 

the lower 2.5% tail point )(5.2 RL  and the upper 2.5% tail point )(5.97 RU  of the ‘histogram’ of 

the )(ˆ *
bRxy  values, Bb ,.....,1 . This is by the well known ‘Percentile method’. An 

alternative ‘Double Bootstrap’ CI may be calculated as follows. From 
*

bs , B=10,000 more 

bootstrap samples are independently drawn using the same bootstrap sampling scheme and 

they are used to calculate 
R

gv  or 
B

gv as above—to be denoted by )(v b
R

g  or )(v b
B

g . This is 

repeated for every initial 10,000B...,1,2,......b  . For the histogram of  

 Bb
b

RbR

R

g

xyxy
,........,2,1,

)(v

ˆ)(ˆ *




, the lower 2.5% point 5.2l and the upper 2.5% point 5.97u  

are then calculated and 
R

gxy

R

gxy lRuR vˆ,vˆ
5.25.97  is taken as the 95%  ‘double bootstrap’ 

CI for Y. Similarly the 95% double bootstrap CI may be calculated for yxB̂ . For more 

clarification in bootstrap confidence intervals we may refer Rao and Wu (1988). 
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4.2.  Extension on Sitter’s Mirror-match bootstrap (1992) for Randomized response 

surveys 
 

Sitter’s (1992) mirror-match technique is useful to construct bootstrap samples from an 

initial sample chosen by Rao, Hartley and Cochran (RHC, 1962) scheme. The sampling 

method is as follows. 
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In RR surveys two bootstrap samples are required as an extension of Sitter’s Mirror 

match method. The method is as follows. 

(I)   For the first bootstrap sample let  

     

nir
p

Q
ai i

i

i

i ,....,2,1,   )( 
 

ii) Choose ,1 * nn  an integer and randomly partition the ia ’s into *n groups of sizes 

*

*

n

n
ng   

iii) Randomly select one ia from each of the *n  groups with probability 
*

i

i

Q

p
where 





*

1

*
n

i

ii pQ to get 
*

*

*

2

*

1 .,,........., naaa . 

iv) Repeat steps (ii)-(iii) 
NN

NN

nn

nn

k

n i

n i

n

g













2

22

1

*

.
)1(

)(

*

times independently, replacing the 

sai '  drawn at each step, k is integer valued. 



2017]                                           Bootstrap Technique for Randomized Response                                               89 

 

 

For the first bootstrap sample ))(
*

1 RHCs , define 

i

k

l

n

i i

i
a

p

Q

k
t 

 


1 1

*
*

1

*

1
. 

Then, )())((
1

)(
1

)(
11

*

1* RHCeRHCe
k

a
k

tE b

k

l

b

k

l
n i  



 . 

The bootstrap variance is 

]))(([
)1(

)(
1

             

]))(([
)1(

)(
1

            

])([
)1(

)(
1

)(

2

2

2

1

*

2

2

22

1

*

2

2

1

*

*

1*

*

*

*

RHCe
p

rQ

nn

nn

k

RHCe
pQ

rQ

nn

nn

k

a
R

a

nn

nn

k
tV

bn

i

ii

n

g

bn

ii

ii

n

g

n in
i

i

n

g































 

                                                                      (19) 

Equating (I) of (18) and (19) we have, 
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(II) From the original sample, a second bootstrap sample )(
*

2 RHCs (independently of 

))(
*

1 RHCs  is to be drawn by poisson sampling scheme with success probability il . 

Define, ]
1

[
1 *

*

*

2
*

2

 



n ii

S i

rr
lk

t  

Then, 0)(
*

2* tE ; 
2*

2* )1
1

(
1

)( in
i

r
lk

tV 


                                                                       (20) 

Equating (II) of equation (18) and (20) we have 
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 only. A similar approach has been done for the other totals mentioned in Section 

2. Proceeding as described in Section 4.1 we calculate here bootstrap estimates, bootstrap 

estimate of the Mean Square Error (MSE) the other related comparison criteria for the Sitter’s 

(1992) scheme. 
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 5. Simulation Study 
   

 A randomized response survey was undertaken among the students of a medical college 

at Calcutta. Here the characters A and B denote the amount of expenditure on alcohol 

consumption and the amount of expenditure on tobacco respectively. The variables x  and y 

are related to the characters A and B respectively.  We treat N 117 medical students as our 

population. To estimate the population correlation coefficient ( xyR ) between x  and y and the 

regression coefficient ( yxB ) of y on x , a sample ( s ) of size n  is drawn by Hartley-Rao (HR, 

1962) scheme which is required in applying Rescaling bootstrap procedure. The family 

income of a particular student is the size measure variable in drawing a sample. In the HR 

scheme the units of U are permuted at random and then n  units are chosen systematically 

with probabilities proportional to sizes. 

 

The sampled persons are requested to report their randomized responses (RR) as 

mentioned in our Section 3.1.   

   

 We considered a practicable choice of parameters as: 

2.34  ,6.29,3.20  ,4.3 22 


   and 2.13,3.4   . Here ,117N 13n .  

 

Another sample of size n is also drawn by Rao-Hartley-Cochran (RHC, 1962) scheme 

to apply Sitter’s Mirror Match (1992) Procedure. 
 

 Now we examine possible efficacies of our approach. Usually, a very large number of 

identically independently drawn bootstrap samples are required to be taken, labeled, say, as 

Bb ,.....,2,1 . Here B  is taken as 10,000. In order to judge the efficiency of the proposed 

method, the population is assumed to be known. We draw T 1000 samples from the 

population to calculate ACP, ACV and the AL values. For each sample we perform bootstrap 

methods to calculate bootstrap estimates for population correlation and regression 

coefficients using B  bootstrap samples. 
 

 The point estimator will be judged good if the coefficient of variation, namely 

estimate

te)MSE(estima
CV

 Estimated
100  has a small magnitude, preferably smaller than 10% or 

at most 30% . te)MSE(estima  is the mean square error of the required estimate. A CI will be 

judged good if on drawing a large number of simulated samples, say, T  in number taken as 

1000, from a population at hand, the (i) CI’s happen to cover the known value of the 

parameter, say, xyR  or yxB  a percentage of times close to 95% ‒ this percentage is called the 

ACP, the Average Coverage Percentage, and (ii) if the average value of the length, AL, say, 

of a CI is small enough. Between two CI’s the one with a smaller value of AL will be 

preferred unless its ACP is too far from 95% compared to that for the other. 

  

 Needless to say, our method extends to cover several non-linear functional other than 

correlation and regression coefficients with no extra efforts. 

        

 Based on the 1000T  such simulated samples, if the average of the values of CV’s be 

calculated, called the ACV, the average coefficient of variation, then the point bootstrap 

estimate is judged good if this ACV is good, preferably smaller than 10% or at most 30% in 

value. 
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In Table 1 we illustrate results based on HR (1962) scheme. Estimates and their 

Standard Errors (SE) of 500
th

 simulated sample are given. ACP, ACV and AL values are 

based on 1000 simulated samples. Table 2 gives us the same for the samples drawn by RHC 

(1962) scheme. 

 

Table 1: Bootstrap Estimates and their MSE estimates for correlation coefficient and regression 

coefficient for 500
th

 (t=500) simulated sample  

(The Population Correlation Coefficient to be estimated is 0.76 and the Population Regression 

Coefficient to be estimated is 0.42) 

 
Bootstrap 

estimate 

Sampling scheme 

HR RHC 

Estimate (t) 
MSE  

t MSE  

For correlation 

coefficient xyR : 0.61 R

gv : 0.49 xyR : 0.83 R

gv  0.61 

For regression 

coefficient yxB : 0.17 B

gv : 0.46 yxB : .34 B

gv : 0.21 

 

Table 2: Performances of correlation coefficient estimator and regression coefficient estimator 

with the criteria ACP, ACV and AL 

(The Population Correlation Coefficient to be estimated is 0.76 and the Population Regression 

Coefficient to be estimated is 0.42) 

Method Sampling scheme 

HR RHC 

ACP ACV AL ACP ACV AL 

Bootstrap for 

correlation 

coefficient 

Percentile 

method 

92.2 15.08 0.51 93.2 17.2 0.64 

Double 

bootstrap 

method 

90.1 12.8 0.46 89.5 16.6 0.49 

Bootstrap 

method for 

regression 

coefficient 

Percentile 

method 

84.3 15.2 0.39 84.3 18.8 0.47 

Double 

bootstrap 

method 

87.2 12.9 0.26 83.9 17.9 0.40 

 

6. Concluding Remarks 

To deal with non-linear statistics (eg., correlation coefficient and regression coefficient) 

we often employ Bootstrap technique. Concentrating on Rao and Wu’s rescaling bootstrap 

and Sitter’s Mirror match bootstrap for unequal probability sampling, we need new 

developments for some practical situations dealing with sensitive issues. Randomized 

response aims to reduce false responses on sensitive issues. There is a rich growth of 

literature on Randomized Response (RR) procedure. In this paper we try to modify Rescaling 

bootstrap technique and Mirror match technique for the situations where RR surveys are 

needed.  
     

 From our simulation study we may conclude that Double bootstrap method gives better 

ACV’s and the lengths of the CI’s and a desirable magnitude of the ACP values. Our result 
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shows that any of the schemes mentioned above may be used for our bootstrap method. For 

both of the schemes the desired requirements are fulfilled. 
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