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Abstract

This is a review article in a popular area of research which Professor J.N.K. Rao had touched
upon - during his distinguished research career. We convey our congratulations and best wishes to
JNK Rao on his attaining 80 yrs. We wish him a long, active and peaceful life in the years to come.

Herein we review the problem of unbiased estimation of the common parameter (θ) involved in
the linear regression models of the means of two independent normal populations with unequal and
unknown variances. We examine the popular Graybill–Deal estimator for the common parameter
θ and ask the question: When will the Graybill–Deal estimator possess uniformly smaller variance
than that of the individual unbiased estimators θ̂1 and θ̂2 arising out of the two given models? It
turns out that the result depends only on the quantities m1 and m2, corresponding to the error
degrees of freedom, irrespective of the nature of the linear mean models. We find the same result
continues to hold in situations wherein the p (p ≥ 2) linear regression models involve k (k >
1) common estimable parameter(s) in the mean models. In this context, we use the criterion of
‘Loewner Order Domination’ of information or dispersion matrices.

Key words: Common parameter estimation; Graybill-Deal estimator; Loewner order domination;
Linear regression

1 Introduction

The common mean estimation problem was first introduced by Cochran (1937), while he was
considering combining a series of similar experiments. The general setting for this kind of problem
is: suppose we have p independent groups of normal variables with sample size ni, for the i-th
group, having the sample mean x̄i ∼ N(µ,

σ2
i

ni
), where i = 1, 2, . . . , p. The setup presupposes that

there is a common unknown mean µ for the p populations and the problem considered is that of
efficient unbiased estimation of µ based on the data from the p groups.

For p = 2, Cochran (1937) suggested the unbiased estimator
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µ̂C =

(
x̄1

n1

σ2
1

+ x̄2
n2

σ2
2

)
n1

σ2
1

+ n2

σ2
2

. (1.1)

This estimator is the best linear unbiased estimator for µ, assuming that the two variances are
known. Motivated by Cochran’s (1937) work, Graybill and Deal (1959) introduced their estimator
µ̂GD|2 by replacing the true variances with their corresponding unbiased estimators:

µ̂GD|2 =

(
x̄1

n1

s21
+ x̄2

n2

s22

)
n1

s21
+ n2

s22

, (1.2)

where s2
i = 1

ni−1

∑ni
j=1(xij − x̄i)2 for i = 1, 2. In view of distributional independence of x̄i and

s2
i , µ̂GD|2 is an unbiased estimator for µ. Furthermore, Graybill and Deal established that µ̂GD|2

is uniformly superior to any single unbiased estimator of µ if and only if the following condition
holds:

Either both n1 and n2 > 10 or n1 = 10 (n2 = 10) and n2 > 18 (respectively n1 > 18) .

Norwood and Hinkelmann (1977) extended Graybill and Deal’s (1959) result to general p
groups, and they established that µ̂GD|p is a uniformly better estimator of µ than each x̄i if and
only if either ni > 10 for i = 1, 2, . . . , p or ni = 10 for some i, and nj > 18 (i, j = 1, 2, . . . , p for
each j 6= i), where

µ̂GD|p =

p∑
i=1

x̄i
ni
s2i∑p

j=1
nj
s2j

. (1.3)

The properties of such estimators have been widely studied in the literature. In particular we
would like to emphasize the work of Meier (1953), Cochran and Carroll (1953), Zacks (1966),
Rao and Subrahmaniam (1971), Khatri and Shah (1974), Ghosh and Sinha (1981), Sinha (1985),
Hartung (1999) and Krishnamoorthy and Moore (2002).

Shinozaki (1978) extended µGD|p to a general form:

µ̂S =

p∑
i=1

x̄i
ci
s2∗i∑p

j=1
cj
s2∗j

, (1.4)

where s2∗
i =

s2i
ni

. By a careful choice of (c1, c2, . . . , cp), Shinozaki gave a proof of the claim that
µ̂S,p (same as µ̂S in 1.4, and similar to µ̂GD|p in 1.3) combining p groups is a uniformly better
estimator of µ than any µ̂S,q of combining q (< p) components, if and only if cj

ci
≤ 2

(ni−1)(nj−5)

(ni+1)(nj−1)

for any 1 ≤ i 6= j ≤ p and for all 1 ≤ q < p. It is readily verified that when our choice of
(c1, c2, . . . , cp) corresponds to (c1 = c2 = · · · = cp), the condition above simplifies to what is stated
earlier involving only the sample sizes. Chiou and Cohen (1984), Loh (1991), Kubokawa (1989),
Tsukuma and Konno (2003) investigated the multivariate normal counterpart of this problem.
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With reference to the general framework of common parameter estimation problem, we observe
that JNK Rao and Subrahmaniam (1971) examined the status of Graybill-Deal Type Estimators
in the above formulations of (i) common mean estimation in normal samples and (ii) common
parameters estimation in linear regression models as also (iii) predictions in such models - all with
heterogeneous variances, when the variance components are estimated using MINQUE of Rao
(1970).

Much later, the problem in the context of linear regression models was revisited by Krish-
namoorthy and Moore (2002)and that work is the basis of our present study. We rework on and
review the problem in linear regression set-up and discuss some generalizations.

2 Common Parameter Estimation in General linear regression models with Independent
Normal Errors

In environmental pollution studies, in order to understand the environmental factors affecting
the mean ‘contamination/pollution level’ of air/water/land, representative samples are sent to dif-
ferent laboratories for statistical analyses. This corresponds to what is technically addressed as
‘Meta Analysis’ problem. All the studies in different laboratories have a common goal viz., esti-
mation and assessment of global contamination level in the experimental region. At times, linear or
quadratic or higher degree regression models are adequate with(without) common intercept term
and/or common slope. Of course, the laboratories are likely to have instruments with different pre-
cision levels. In such situations, we call for natural application of Graybill-Deal Type estimators.
Our purpose in this section is to examine the effectiveness of such estimators.

In this paper we revisit a linear regression set-up with common parameter. We adopt the gen-
eral approach of formation of Graybill-Deal - type estimators in such set-ups and then examine
conditions for their superiority over corresponding estimators based on partial exposure to the en-
tire body of data. So far in the literature related to Graybill-Deal estimator (GDE), the standard
set-up of estimation of normal common mean has been investigated. There are exceptions such as
Kubokawa (1989).
Consider p independent linear regression models in matrix form, with sample size ni, i = 1, 2, . . . , p:

Y i = X i(ni×k)θ(k×1) +Zi(ni×ti)τi(ti×1) + εi

X i(ni×k) =


xi11 xi21 . . . xik1

xi12 xi22 . . . xik2

. . . . . . . . . . . .
xi1ni xi2ni . . . xikni


εi ∼ N

(
0(ni×1), σ

2
i I(ni×ni)

)
.

We assume that these p independent linear regression models share a k-dimensional (k-dim) com-
mon estimable parameter vector θ(k×1), and an extra ti-dimensional estimable parameter vector τi
at i-th model, i = 1, 2, . . . , p. From the normal equations, the OLS unbiased estimator, θ̂i(k×1), of
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θ(k×1) based on the data arising out of the i-th model, has the following distribution

θ̂i(k×1) ∼ N
(
θ(k×1), σ

2
iW i(k×k)

)
,

where

W i(k×k) =

((
X i(ni×k)

... Zi(ni×ti)

)T (
X i(ni×k)

... Zi(ni×ti)

))−1

(k×k)

,

W i(k×k)’s are nonsingular matrices.

An unbiased estimator for σ2
i is the mean square residuals s2

ri, which is the sum of square
residuals divided by the degrees of freedom νi = ni−k−ti. Further, it is known that νis

2
ri

σ2
i
∼ χ2(νi).

In the sequel, we shall deal with the estimation of the common θ(k×1) under three different
scenarios: in Section 2.1, we shall study the case k = 1 for p ≥ 2 groups; in Section 2.2, we shall
study the case k ≥ 2 for p = 2 groups; and in Section 2.3, we shall study the case k ≥ 2 for p > 2
groups. Krishnamoorthy and Moore (2002) had deduced some such results.

2.1 Single Common Parameter Involving p Groups

Suppose there is only one single common parameter, α, among these p independent linear
regression models. As mentioned before, under certain conditions, the GDE will be efficient. Here
we use a simple example to express our ideas by assuming that common α is the intercept in two
linear regression models.

Example 2.1. Consider two simple independent linear regression models involving unequal un-
known variances with common intercept. We have

Y1 = α1n1×1 + β1Xn1×1 + ε1

Y2 = α1n2×1 + β2Zn2×1 + ε2

ε1 ∼ N(0n1×1, σ
2
1In1×n1)

ε2 ∼ N(0n2×1, σ
2
2In2×n2).

The OLS estimators (α̂1, β̂1) and (α̂2, β̂2), respectively for (α, β1) and (α, β2), have the following
variance-covariance matrices:

Var
(
α̂1

β̂1

)
= σ2

1

(
n1

∑n1
i=1 xi∑n1

i=1 xi
∑n1
i=1 x

2
i

)−1

and Var
(
α̂2

β̂2

)
= σ2

2

(
n2

∑n2
i=1 zi∑n2

i=1 zi
∑n2
i=1 z

2
i

)−1

.

We also have E(α̂1) = E(α̂2) = α, V ar(α̂1) = σ2
1( 1
n1

+ x̄2

SSx
) and V ar(α̂2) = σ2

2( 1
n2

+ z̄2

SSz
)

where SSx =
∑n1

i=1(xi − x̄)2, and SSz =
∑n2

i=1(zi − z̄)2 respectively.

If A is a matrix of order p×q and B is another matrix of order p×r, then (A
...B) represents a matrix of order p×(q+r),

wherein the columns of A are preceded by the columns of B without any change of their relative positions. In the
above, Wi(k×k) represents the k× k upper submatrix of the right hand side (RHS) matrix of order (k+ ti)× (k+ ti)
in each block matrix representation. Note that the RHS matrix involves inversion of a square matrix, assumed to be
positive definite.
It is tacitly assumed that all nuisance parameters (τi’s ) are estimable.
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Denote 1
n1

+ x̄2

SSx
by w−1

1 , and 1
n2

+ z̄2

SSz
by w−1

2 . The GDE of α is

α̂GD|2 =

α̂1

s2r1w
−1
1

+ α̂2

s2r2w
−1
2

1
s2r1w

−1
1

+ 1
s2r2w

−1
2

.

We can easily extend the formula for α̂GD|2 to

α̂GD|p =

p∑
i=1

α̂i
wi
s2ri

p∑
i=1

wi
s2ri

in case there are p such models to be combined. It is to be noted that w1, w2, . . . , wp have similar
algebraic expressions. At this stage, we will state and prove a general result on the property
of α̂GD|p. By a simple application of the results, from Norwood and Hinkelmann (1977), and
Shinozaki (1978), we have the following Theorem 2.1 for p independent linear regression models
sharing one single common intercept parameter α. We may note in passing that νi defined above
in the beginning of Section 2 assumes the form νi = ni − 2 for the model in Example 2.1 being
studied.

Theorem 2.1. If p independent linear regression models share one single common intercept pa-
rameter α, i = 1, 2, . . . , p, then we have the following results:

1. α̂GD|p is an unbiased estimator for α.

2. A necessary and sufficient condition for α̂GD|p to have a smaller variance than each α̂i, for
all values of σ2

i , wi > 0 (i = 1, . . . , p) is either

(a) νi > 9, i = 1, 2, . . . , p or

(b) νi = 9 for some i, and νj > 17 for i, j ∈ {1, 2, . . . , p} and each j 6= i.

Moreover, if either condition (2a) or (2b) is satisfied, then α̂GD|p=
φp(α̂1, . . . , α̂p; s

2
1, . . . , s

2
p) has a smaller variance than any of the q (< p) subgroups α̂GD|q =

φq(α̂1, . . . , α̂q; s
2
1, . . . , s

2
q).

Proof. Set σ2
i
?

=
σ2
i

wi
and s2

ri
?

=
s2ri
wi

for i = 1, 2, . . . , p. We have α̂i ∼ N(α, σ2
i
?
) and νis

2
ri
?

σ2
i
? =

νis
2
ri

σ2
i
∼ χ2(νi) .

Then GDE α̂GD|p =
p∑
i=1

α̂i
wi
s2
ri∑p

i=1
wi
s2
ri

=
p∑
i=1

α̂i
s2
ri
?∑p

i=1
1

s2
ri
?

.

This is the same setting as in Norwood and Hinkelmann (1977). It is easy to show that α̂GD|p
is an unbiased estimator for α, and V ar(α̂GD|p) < σ2

i
?

=
σ2
i

wi
∀i if and only if either Condition (2a)

or (2b) holds.

Furthermore, we notice that our α̂GD|p is a special case of α̂S at ci = 1 for i = 1, . . . , p.
From Shinozaki(1978)’s results, we know that V ar(α̂GD|p) < V ar(α̂GD|q), q < p if and only if
2
νi(νj−4)

(νi+2)νj
≥ cj

ci
= 1 for any i 6= j. This is equivalent to condition (2a) or (2b) as stated above.
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Remark 1. The statistical independence of the α̂i and s2
ri guarantees α̂GD|p to be an unbiased

estimator of α.

Remark 2. The necessary and sufficient condition in (2a) or (2b) only concerns the degrees of
freedom νi in group i, which is related with the sample size ni. Theorem 2.1 tells us that if
the sample size is reasonable enough (subject to condition in (2a) or (2b)), then the GDE of a
single common parameter utilizing p independent linear regression models always provides a more
efficient unbiased estimator than any single group or any q(< p) subgroups.

2.2 k-dim Common Parameter Involving Two Groups

In this section, we consider p = 2 independent linear regression models. The k-dim GDE of
the common estimable parameter vector θ(k×1) in matrix forms is:

θ̂GD|2 =
(
(s2
r1W1)−1 + (s2

r2W2)−1
)−1
(

(s2
r1W1)−1θ̂1 + (s2

r2W2)−1θ̂2

)
.

It is easily determined that this k-dim GDE is an unbiased estimator of θ. The dispersion matrix
of θ̂GD|2 is:

D(θ̂GD|2)

= E
(
D
(
θ̂GD|2|s2

r1, s
2
r2

))
+D

(
E
(
θ̂GD|2|s2

r1, s
2
r2

))
= E

(
D
(
θ̂GD|2|s2

r1, s
2
r2

))
+D (θ)

= E
(
D
(
θ̂GD|2|s2

r1, s
2
r2

))
+ 0

= E

((
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1
(
σ2

1

s4
r1

W1
−1 +

σ2
2

s4
r2

W2
−1

)(
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1
)
.

In the above, we are conditionally fixing s2
r1 and s2

r2. So at the end, we only need to compute
expectation with respect to these variance estimates.

By way of notation, if a dispersion matrix A is non-negative definite (n.n.d.) we write A ≥ 0,
if it is positive definite (p.d.) we write A > 0. The Loewner order domination of a dispersion
matrixA overB (A > B) meansA−B > 0, the Loewner order ofA belowB (A < B) means
A−B < 0.

Lemma 2.2. If W1 and W2 are diagonal matrices, then D(θ̂GD|2) < min(σ2
1W 1, σ

2
2W 2) if and

only if either

1. νi > 9, i = 1, 2 or

2. νi = 9 for some i, and νj > 17 for the other j 6= i.

Proof. Let W1 = Diag(w−1
1g ), and W2 = Diag(w−1

2g ), where w−1
1g and w−1

2g are the g-th diagonal
entries of matrices W1 and W2 respectively, g = 1, . . . , k. To prove this Lemma, it is enough
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to show the g-th diagonal entry of the dispersion matrix D(θ̂GD|2)gg ≤ min(
σ2
1

w1g
,
σ2
2

w2g
) for all

g = 1, 2, . . . , k, and for all values of σ2
1 , σ2

2; whereD(θ̂GD|2)gg = V ar

 θ̂1g

s2r1w
−1
1g

+
θ̂2g

s2r2w
−1
2g

1

s2r1w
−1
1g

+ 1

s2r2w
−1
2g

.

From Theorem 2.1, it is known that:

V ar

 θ̂1g

s2r1w
−1
1g

+ θ̂2g

s2r2w
−1
2g

1
s2r1w

−1
1g

+ 1
s2r2w

−1
2g

 < min

(
σ2

1

w1g

,
σ2

2

w2g

)
.

if and only if condition stated in (1) or (2) of Lemma 2.2 holds.

Remark 3. When W1 and W2 are k-dim diagonal matrices, we can decompose the k-dim GDE
into k simple single GDEs.

It is pertinent to observe that the above result holds even without the two matrices being diag-
onal matrices. This is established below.

Theorem 2.3. In two independent linear regression models, the Loewner order of D(θ̂GD|2) is
below min(σ2

1W 1, σ
2
2W 2), for all values of σ2

1 , σ2
2 , if and only if condition stated in (1) or (2) of

Lemma 2.2 holds.

Proof. Notice thatW1
−1 andW2

−1 are positive definite matrices. We need to show:

E

((
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1
(
σ2

1

s4
r1

W1
−1 +

σ2
2

s4
r2

W2
−1

)
(
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1
)
< σ2

1W 1,

(2.1)

and

E

((
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1
(
σ2

1

s4
r1

W1
−1 +

σ2
2

s4
r2

W2
−1

)
(
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1
)
< σ2

2W 2.

(2.2)

For inequality (2.1), we can obtain

E

(
W1

−1/2
(
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1

W1
−1/2W1

1/2

(
σ2

1

s4
r1

W1
−1 +

σ2
2

s4
r2

W2
−1

)
(
W1

1/2W1
−1/2

(
s−2
r1 W1

−1 + s−2
r2 W2

−1
)−1

W1
−1/2

))
< σ2

1W1
−1/2W 1W1

−1/2.

(2.3)

DenoteW1
−1/2W 2W1

−1/2 byA. Then inequality (2.3) can be rewritten as:

E

((
s−2
r1 I

−1 + s−2
r2 A

−1
)−1
(
σ2

1

s4
r1

I−1 +
σ2

2

s4
r2

A−1

)(
s−2
r1 I

−1 + s−2
r2 A

−1
)−1
)
< σ2

1I.
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Due to the fact thatA is symmetric, there exists an orthogonal matrixP , whileP TP = PP T = I ,
such that P TAP = C, where C is a diagonal matrix.
Then we have:

E

(
P T

(
s−2
r1 I

−1 + s−2
r2 A

−1
)−1

PP T

(
σ2

1

s4
r1

I−1 +
σ2

2

s4
r2

A−1

)
PP T

(
s−2
r1 I

−1 + s−2
r2 A

−1
)−1

P

)
< σ2

1P
TIP .

Upon simplification:

E

((
s−2
r1 I

−1 + s−2
r2 C

−1
)−1
(
σ2

1

s4
r1

I−1 +
σ2

2

s4
r2

C−1

)
(
s−2
r1 I

−1 + s−2
r2 C

−1
)−1
)
< σ2

1I.

(2.4)

Similarly, from (2.2) we obtain:

E

((
s−2
r1 I

−1 + s−2
r2 C

−1
)−1
(
σ2

1

s4
r1

I−1 +
σ2

2

s4
r2

C−1

)
(
s−2
r1 I

−1 + s−2
r2 C

−1
)−1
)
< σ2

2C.

(2.5)

By combining (2.4) and (2.5), we have:

E

((
s−2
r1 I

−1 + s−2
r2 C

−1
)−1
(
σ2

1

s4
r1

I−1 +
σ2

2

s4
r2

C−1

)
(
s−2
r1 I

−1 + s−2
r2 C

−1
)−1
)
< min

(
σ2

1I, σ
2
2C
)
.

(2.6)

Note that (2.6) exhibits a pattern of the comparison of the GDE against individual estimators based
on two diagonal matrices viz., identity matrix and the C matrix. This is exactly the same formula-
tion as in Lemma 2 above. Hence the result follows by an application of Lemma 2.2.

2.3 General k-dim Common Parameter Involving p Independent Groups

Next we consider the general case of p (> 2) independent groups of linear regression models
sharing a k-dim common estimable parameter vector θ. The k-dim GDE of p groups is:

θ̂GD|p =

(
p∑
i=1

s−2
ri Wi

−1

)−1( p∑
i=1

s−2
ri Wi

−1θ̂i

)
.

Again, it is easy to show θ̂GD|p is an unbiased estimator of θ, with the following dispersion
matrix:
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D(θ̂GD|p) = E
(
D
(
θ̂GD|p|s2

r1, s
2
r2, . . . , s

2
rp

))
+D

(
E
(
θ̂GD|p|s2

r1, s
2
r2, . . . , s

2
rp

))
= E

(
D
(
θ̂GD|p|s2

r1, s
2
r2, . . . , s

2
rp

))
= E

( p∑
i=1

s−2
ri Wi

−1

)−1( p∑
i=1

σ2
i

s4
ri

Wi
−1

)(
p∑
i=1

s−2
ri Wi

−1

)−1
 .

Lemma 2.4. IfWi’s are diagonal matrices i = 1, 2, . . . , p, thenD(θ̂GD|p) < mini∈{1,...,p} (σ2
iWi),

for all values of σ2
i , if and only if condition in (2a) or (2b) of Theorem 2.1 holds.

Moreover, if condition in (2a) or (2b) of Theorem 2.1 is satisfied, the Loewner order of disper-
sion matrix,D(θ̂GD|p) is belowD(θ̂GD|q) for any q(< p) subgroups.

Proof. This is the extension of Lemma 2.2. In case that Wi (i=1,2,. . . ,p)’s are diagonal matrices,
that can be decomposed into k single GDE of p groups. Our claim follows from an application of
Theorem 2.1.

If not allWi’s are diagonal matrices, i ∈ {1, 2, . . . , p}, we have the following Theorem.

Theorem 2.5. Suppose there exists a nonsingular matrix P , such thatW−1
i = PCi

−1P T , where
Ci’s are diagonal matrices for all i = 1, 2, . . . , p. Then the Loewner order of D(θ̂GD|p) is below
D(θGD|q) for any q(< p) subgroups, for all values of σ2

i , if and only if condition in (2a) or (2b) of
Theorem 2.1 holds.

Proof. We need to examine the validity of

D(θ̂GD|p) <D(θ̂GD|q), q < p.

Equivalently,

E

( p∑
i=1

s−2
ri Wi

−1

)−1( p∑
i=1

σ2
i

s4
ri

Wi
−1

)(
p∑
i=1

s−2
ri Wi

−1

)−1


< E

( q∑
i=1

s−2
ri Wi

−1

)−1( q∑
i=1

σ2
i

s4
ri

Wi
−1

)(
q∑
i=1

s−2
ri Wi

−1

)−1
 .

SinceW−1
i = PC−1

i P T ,then

E

( p∑
i=1

s−2
ri PCi

−1P T

)−1( p∑
i=1

σ2
i

s4
ri

PCi
−1P T

)(
p∑
i=1

s−2
ri PCi

−1P T

)−1


< E

( q∑
i=1

s−2
ri PCi

−1P T

)−1( q∑
i=1

σ2
i

s4
ri

PCi
−1P T

)(
q∑
i=1

s−2
ri PCi

−1P T

)−1
 .
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Upon simplification:

E

P T−1

(
p∑
i=1

s−2
ri Ci

−1

)−1

P−1P

(
p∑
i=1

σ2
i

s4
ri

Ci
−1

)
P TP T−1

(
p∑
i=1

s−2
ri Ci

−1

)−1

P−1


< E

P T−1

(
q∑
i=1

s−2
ri Ci

−1

)−1

P−1P

(
q∑
i=1

σ2
i

s4
ri

Ci
−1

)
P TP T−1

(
q∑
i=1

s−2
ri Ci

−1

)−1

P−1

 .

This reduces to:

E

P−1T

(
p∑
i=1

s−2
ri Ci

−1

)−1( p∑
i=1

σ2
i

s4
ri

Ci
−1

)(
p∑
i=1

s−2
ri Ci

−1

)−1

P−1


< E

P−1T

(
q∑
i=1

s−2
ri Ci

−1

)−1( q∑
i=1

σ2
i

s4
ri

Ci
−1

)(
q∑
i=1

s−2
ri Ci

−1

)−1

P−1

 ,

which requires

E

( p∑
i=1

s−2
ri Ci

−1

)−1( p∑
i=1

σ2
i

s4
ri

Ci
−1

)(
p∑
i=1

s−2
ri Ci

−1

)−1


< E

( q∑
i=1

s−2
ri Ci

−1

)−1( q∑
i=1

σ2
i

s4
ri

Ci
−1

)(
q∑
i=1

s−2
ri Ci

−1

)−1
 .

Since Ci
′s are diagonal matrices, the results follows by an application of Lemma 2.4.

Remark 4. Generally, the existence of such a nonsingular matrix P that diagonalizes all Wi si-
multaneously is not guaranteed. However, Corollary 2.6 below provides a special case.

Suppose in the most general representation of the linear regression model described in the
beginning of Section 2,Zi(ni×ti) does not exist, which indicates that all these p independent groups
of linear regression models are following the same linear regression. In such a case, W i(k×k) =
(XT

i X i)
−1.

Corollary 2.6. Suppose Zi(ni×ti)’s do not exist. For p independent groups of linear regression

models sharing a 2-dim common estimable parameter θ =
(
θ1
θ2

)
, if (

∑ni
j=1 xi1jxi2j)

(
∑ni
j=1 x

2
i1j)

=constant, i =

1, 2, . . . , p, then a necessary and sufficient condition for the Loewner order of D(θ̂GD|p) to be
below D(θ̂GD|q) for any q(< p) subgroups, for all values of σ2

i , is that the condition in (2a) or
(2b) of Theorem 2.1 holds.
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Proof. From the linear regression theory, we know:

Wi
−1 =

( ∑ni
j=1 x

2
i1j

∑ni
j=1 xi1jxi2j∑ni

j=1 xi1jxi2j
∑ni

j=1 x
2
i2j

)

=

(
1 0

(
∑ni
j=1 xi1jxi2j)

(
∑ni
j=1 x

2
i1j)

1

)∑ni
j=1 x

2
i1j 0

0
∑ni

j=1 x
2
i2j −

(
∑ni
j=1 xi1jxi2j)

2

(
∑ni
j=1 x

2
i1j)


(

1
(
∑ni
j=1 xi1jxi2j)

(
∑ni
j=1 x

2
i1j)

0 1

)
.

If (
∑ni
j=1 xi1jxi2j)

(
∑ni
j=1 x

2
i1j)

= b, a constant, then let P =

(
1 0

(
∑ni
j=1 xi1jxi2j)

(
∑ni
j=1 x

2
i1j)

1

)
=

(
1 0
b 1

)
.

Hence from Theorem 2.5, the result follows.

Remark 5. When this 2-dim common estimable parameter of interest θ =
(
θ1
θ2

)
contains intercept,

viz. θ1 , then it asks
∑ni

j=1 xi1jxi2j/
∑ni

j=1 x
2
i1j = x̄i2·, which is the sample mean, to be constant.

Remark 6. The ratio
(∑ni

j=1 xi1jxi2j

)
/
(∑ni

j=1 x
2
i1j

)
= ‖~xi2· cos θ‖

‖~xi1·‖ , where θ is the angle between
two covariate variable vectors ~xi1· and ~xi2·. This suggests that, typically in non-intercept linear
models, if we can pre-select our ~xi1· and ~xi2· to make this ratio constant, then we can obtain a more
efficient estimator of this common parameter of interest by utilizing all p models, as long as we
can collect enough observations for each linear model.

3 Conclusion

We revisited the properties of GDE in two and higher dimensions. We argued that GDE is
still an unbiased estimator for the vector parameter of interest. We also found that the condition
(2a) or (2b) in Theorem 2.1 (condition (1) or (2) in Lemma 2.2 for groups of two) continued
to hold when estimating a k-dim common parameter vector for p independent groups of linear
regression models. Consequently the GDE of k-dim common parameters by combining these p
groups provides a better and more efficient estimator.

In the linear regression model that we have revisited here, we tacitly assumed that the regression
parameters are fixed and unknown. In the literature there are studies on what are called ’random
coefficient regression models’, such as Carter and Yang (1986) and Liski et al. (1996). We may
postulate a model with fixed unknown α parameter (the intercept) but the coefficients are random.
The problem of estimation of the common mean α in such scenarios is a rather routine exercise.
We propose to examine the domination results in such scenarios in a subsequent communication.
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